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SPECTRAL SYNTHESIS IN DE BRANGES SPACES

ANTON BARANOV, YURII BELOV, ALEXANDER BORICHEV

Abstract. We solve completely the spectral synthesis problem for reproducing kernels

in the de Branges spaces H(E). Namely, we describe the de Branges spaces H(E) such

that every complete and minimal system of reproducing kernels {kλ}λ∈Λ with complete

biorthogonal {gλ}λ∈Λ admits the spectral synthesis, i.e., f ∈ Span{(f, gλ)kλ : λ ∈ Λ} for

any f in H(E). Surprisingly, this property takes place only for two essentially different

classes of de Branges spaces: spaces with finite spectral measure and spaces which are

isomorphic to Fock-type spaces of entire functions. The first class goes back to de Branges

himself, while special cases of de Branges spaces of the second class appeared in the

literature only recently; we give a complete characterisation of this second class in terms

of the spectral data for H(E).

1. Introduction and main results

1.1. De Branges spaces and systems of reproducing kernels. The de Branges spaces

of entire functions play a central rôle in various problems of spectral theory of second order

ordinary differential operators and of harmonic analysis. The basic theory of these spaces

was summarized by de Branges in [9]. For more recent developments of this theory and its

diverse applications see the works [15, 24, 19, 17, 21]; by no means is this list complete.

The essence of the theory of de Branges spaces are their reproducing kernels.

Here, we study geometric properties of systems of reproducing kernels in the de Branges

spaces. Let us recall a few notions. A system of vectors {xn}n∈N in a separable Hilbert

space H is said to be exact if it is both complete (i.e., Span{xn} = H) and minimal

(i.e., Span{xn}n 6=n0 6= H for any n0 ∈ N). Given an exact system there exists a unique

biorthogonal system {x̃n}n∈N which satisfies the relation (xm, x̃n) = δmn. Thus, to every

element x ∈ H we can associate its (formal) Fourier series

(1.1) x ∼
∑

n∈N

(x, x̃n)xn.

This correspondence is one-to-one whenever no x ∈ H \ {0} generates zero series, that is

whenever the biorthogonal system {x̃n}n∈N is also complete. Such exact system is said to
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be a Markushevich basis (or M-basis). A very natural property is the possibility to recover

any vector x ∈ H from its Fourier series:

x ∈ Span{(x, x̃n)xn}.

If this holds, then the system {xn}n∈N is called a strong Markushevich basis (strong M-

basis), a hereditarily complete system or one says that the system {xn} admits the spectral

synthesis, see the operator theory motivation below. An equivalent definition of a strong

M-basis is that for any partition N = N1∪N2, N1∩N2 = ∅, of the index set N , the mixed

system

{xn}n∈N1 ∪ {x̃n}n∈N2

is complete in H . Furthermore, an M-basis which is not a strong M-basis is called a

nonhereditarily complete system.

In this paper we give a complete description of the de Branges spaces such that every

M-basis of reproducing kernels is strong. There are several motivations for this problem

(which essentially goes back to Nikolski):

• Strong M-bases of exponentials on an interval. This is a special case of the strong

M-basis problem for reproducing kernels since the Paley–Wiener space PWa =

FL2(−a, a) is a de Branges space and exponentials correspond to reproducing

kernels of PWa via the Fourier transform F , see [3].

• Spectral synthesis for a class of linear operators. Systems of reproducing kernels in

de Branges spaces appear (in an appropriate functional model) as eigenfunctions

of rank one perturbations of compact selfadjoint operators and the strong M-bases

of reproducing kernels correspond to the possibility of the spectral synthesis (see

[5] for more details).

• Applications to differential operators. Systems of reproducing kernels correspond

to eigenvectors of Schrödinger operators via the Weil–Titchmarsh transform (see,

e.g., [19]) or, more generally, of canonical systems of differential equations.

A class of nonhereditarily complete systems of reproducing kernels was constructed in [3].

If, on the contrary, any exact system of reproducing kernels with the complete biorthogonal

system in a de Branges space is a strong M-basis we say that this de Branges space has

strong M-basis property.

1.2. Description of de Branges spaces with strong M-basis property. Now we

state the main result of the paper. All necessary definitions from de Branges spaces theory

will be given in Section 2. Each de Branges space H(E) is generated by some entire function
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E of the Hermite–Biehler class. On the other hand, the space H(E) can be identified with

the space H of all entire functions of the form

F (z) = A(z)
∑

n

anµ
1/2
n

z − tn
, {an} ∈ ℓ2,

where

• T = {tn}n∈N is an increasing sequence such that |tn| → ∞, |n| → ∞, N = Z or

Z+ or Z−;

• µ =
∑

n µnδtn is a positive measure on R satisfying
∑

n
µn

t2n+1
<∞;

• A is an entire function with zero set T (all zeros are simple) which is real on R;

• the norm of F is defined as ‖F‖H = ‖{an}‖ℓ2 .

For the details of this identification see Section 2. We will call the pair (T, µ) the spectral

data for the space H(E). For a special class of de Branges spaces (regular spaces) which

appear in the de Branges inverse spectral theorem, µ is the spectral measure of the operator

associated with the canonical system.

It should be noted that this point of view on de Branges spaces was used in [7, 6], where

a more general model of spaces of entire functions with Riesz bases of reproducing kernels

was developed.

In what follows we will always assume for simplicity that 0 /∈ T . We will need the

following two conditions on the sequence T .

Definition. We will say that the sequence T is

• lacunary (or Hadamard lacunary) if

lim inf
tn→∞

tn+1

tn
> 1, lim inf

tn→−∞

|tn|

|tn+1|
> 1.

Equivalently, this means that for some δ > 0 we have dn := tn+1 − tn ≥ δ|tn|.

• power separated if there exist c, N > 0 such that

dn = tn+1 − tn ≥ c|tn|
−N .

The absence of strong M-basis property was previously known only for some special

examples of de Branges spaces (including the Paley–Wiener space). It was shown in [3]

that if T is power separated and dn = o(|tn|), |n| → ∞, then one can choose µn such that

the corresponding de Branges space H(E) does not have strong M-basis property. We are

now in position to give a complete characterisation of such de Branges spaces in terms of

their spectral data.
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Theorem 1.1. Let H(E) be a de Branges space with the spectral data (T, µ). Then H(E)

has the strong M-basis property if and only if one of the following conditions holds:

(i)
∑

n µn <∞;

(ii) The sequence {tn} is lacunary and, for some C > 0 and any n,

(1.2)
∑

|tk|≤|tn|

µk + t2n
∑

|tk|>|tn|

µk

t2k
≤ Cµn.

Thus, there exist two distinct classes of de Branges spaces with strong M-basis property.

It seems that there are deep reasons for this property which are essentially different in these

two cases:

• For the case
∑

n µn < ∞ there exists an operator theory explanation. Passing to

the model of rank one perturbations of selfadjoint operators [5] we find ourselves

in the case of weak perturbations in the sense of Macaev. It is known that this

class of perturbations is more regular than the general rank one perturbations.

• Perturbations of the form (1.2) are, on contrary, large, but the spectrum is la-

cunary. It turns out that in this case de Branges space coincides (as a set with

equivalence of norms) with a Fock-type space.

Note also that in the case (ii) any exact system of reproducing kernels in H(E) is

automatically an M-basis (see [2, Theorem 1.2]), whereas in the case (i) there always exist

exact systems of reproducing kernels with incomplete biorthogonal system (see [2, Theorem

1.1] or Proposition 9.1).

1.3. De Branges spaces with strong M-basis property and Fock-type spaces. Let

ϕ : [0,∞) → (0,∞) be a measurable function. With each ϕ we associate a radial Fock-type

space (or a Bargmann–Fock space)

Fϕ =
{

F entire : ‖F‖2Fϕ
:=

∫

C

|f(z)|2e−ϕ(|z|)dm(z) <∞
}

.

Here m stands for the area Lebesgue measure. The classical Fock space corresponds to

ϕ(r) = πr2.

It is known that some Fock-type spaces with slowly growing ϕ (e.g., ϕ(r) = (log r)γ,

γ ∈ (1, 2]) have Riesz bases of reproducing kernels corresponding to real points and, thus,

can be realized as de Branges spaces with equivalence of norms [8] (whereas the classical

Fock space has no Riesz bases of reproducing kernels). Surprisingly, it turns out that the

class of de Branges spaces which can be realized as Fock-type spaces coincides exactly with

the class of de Branges spaces with strong M-basis property from Theorem 1.1, (ii).
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Theorem 1.2. Let H(E) be a de Branges space with the spectral data (T, µ). Then the

following conditions are equivalent :

(i) There exists a Fock-type space Fϕ such that H(E) = Fϕ;

(ii) The operator Rθ : f(z) 7→ f(eiθz) is a bounded invertible operator in H(E) for all

(some) θ ∈ (0, π);

(iii) The sequence T is lacunary and condition (1.2) holds.

Let us also mention here an important characteristic property of de Branges spaces: each

Hilbert space of entire functions possessing two orthogonal bases of reproducing kernels is

a de Branges space [6].

1.4. Nonhereditarily complete systems with infinite defect. Assume that for some

de Branges space H(E) strong M-basis property fails. In view of the applications to the

spectral synthesis of linear operators, it is an important problem to determine whether the

codimension of every mixed system of reproducing kernels and their biorthogonals is finite

or infinite.

Let {kλ}λ∈Λ be an exact system of reproducing kernels with a complete biorthogonal

system {gλ}λ∈Λ (see Subsection 3.1 for the definition of gλ). For a partition Λ = Λ1 ∪ Λ2,

define the defect of the corresponding mixed system as

def (Λ1,Λ2) := dim ({gλ}λ∈Λ1 ∪ {kλ}λ∈Λ2)
⊥.

We also put

def(Λ) = sup{def(Λ1,Λ2) : Λ = Λ1 ∪ Λ2},

def
(

H(E)
)

= sup{def(Λ) : {kλ}λ∈Λ is M-basis}.

It turns out that one can construct examples of M-bases of reproducing kernels with large

or even infinite defect.

Theorem 1.3. Let H(E) be a de Branges space with the spectral data (T, µ),
∑

n µn = ∞.

1. If for some N ∈ N there exists a subsequence tnk
of T such that

∑

k t
2N−2
nk

µnk
< ∞,

then def(H(E)) ≥ N (moreover, there exist an M-basis of reproducing kernels {kλ}λ∈Λ in

H(E) such that def (Λ1,Λ2) = N for some partition Λ = Λ1 ∪ Λ2).

2. Let T be a power separated sequence. Then the following are equivalent:

(i) def
(

H(E)
)

= ∞;

(ii) infn µn|tn|
N = 0 for any N > 0.



SPECTRAL SYNTHESIS IN DE BRANGES SPACES 6

This theorem gives, for a wide class of spectral data, a necessary and sufficient condition

for the existence of M-bases of reproducing kernels with arbitrarily large defects. Its proof

does not provide, however, an example of an M-basis with infinite defect def(Λ1,Λ2).

Theorem 1.4. For any increasing sequence T = {tn} with |tn| → ∞, |n| → ∞, there

exists a measure µ such that the de Branges space with the spectral data (T, µ) contains

an M-basis of reproducing kernels {kλ}λ∈Λ such that def (Λ1,Λ2) = ∞ for some partition

Λ = Λ1 ∪ Λ2.

1.5. Spectral theory of rank one perturbations of selfadjoint operators. A con-

tinuous operator  L in a Banach (or a Fréchet) space is said to admit the spectral synthesis

(in the sense of Wermer) if any  L-invariant closed linear subspace M is spanned by the

root vectors it contains. Wermer [25] showed that any compact normal operator admits the

spectral synthesis. Neither normality nor compactness alone is sufficient. The first example

of a compact operator  L such that both  L and  L∗ have complete sets of eigenvectors, but

 L admits no spectral synthesis was given by Hamburger [13], who constructed a compact

operator with a complete set of eigenvectors, whose restriction to an invariant subspace is a

nonzero Volterra operator. Further examples of operators which do not admit the spectral

synthesis were obtained by Nikolski [22] and Markus [20]. In particular, it was shown in

[20, Theorem 4.1] that a compact operator admits the spectral synthesis if and only if its

root vectors form a strong M-basis.

In [5] a functional model is constructed for rank one perturbations of compact self-

adjoint operators (see [5] for an extensive survey of similar models). Let A be a compact

self-adjoint operator in a Hilbert space H such that KerA = 0 and the spectrum of A is

simple. For a, b ∈ H , let  L = A+a⊗ b, where (a⊗ b)x = (x, b)a. Any such perturbation is

unitarily equivalent to a certain model operator acting in a de Branges space H(E). The

model operator (unbounded, defined on some appropriate domain which is dense in H(E))

is given by

T F = zF − cFG,

where G is an entire function such that G /∈ H(E), but G/(· − λ) ∈ H(E) when G(λ) = 0.

Here cF is some constant depending on F (see [5, Theorem 4.4] or [4, Section 4] for

details). Conversely, any pair (E,G) as above corresponds to some rank one perturbation

of a compact self-adjoint operator whose spectrum is the zero set of the function E + E∗,

where E∗(z) = E(z). Clearly, eigenvectors of T are of the form gλ = G/(· − λ), where

G(λ) = 0, i.e., they are elements of the system biorthogonal to a system of reproducing

kernels in H(E) (the corresponding reproducing kernels are eigenvectors of the adjoint

operator T ∗).
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Combining Theorems 1.3 and 1.4 with the above model we obtain a series of striking

examples: any compact self-adjoint operator can be turned by a rank one perturbation into

an operator for which the spectral synthesis fails up to a finite or even an infinite defect.

Denote by E( L) the set of eigenvetors of the operator  L.

Theorem 1.5. For any compact self-adjoint operator A (in some Hilbert space H) with

simple spectrum and trivial kernel there exists a rank one perturbation  L of A with real

spectrum such that both E( L) and E( L∗) are complete in H, but  L does not admit the

spectral synthesis. Moreover, for any N ∈ N ∪ {∞}, the rank one perturbation may be

chosen so that for some  L-invariant subspace M we have

dim
(

M ⊖ span{E( L) ∩M}
)

= N.

Indeed, let A be a compact self-adjoint operator with simple spectrum {sn}, sn 6= 0. Put

T = {tn}, tn = 1/sn. By Theorems 1.3 and 1.4 one can construct a measure µ =
∑

n µnδtn
such that the de Branges space H(E) with the spectral data (T, µ) contains a complete and

minimal system of reproducing kernels {kλ}λ∈Λ with the generating function G, which is not

a strong M-basis. Moreover, we can achieve that def (Λ1,Λ2) = N for some system of the

form {gλ}λ∈Λ1 ∪ {kλ}λ∈Λ2 . By the functional model, there exists a rank one perturbation

 L of A whose eigenvectors may be identified (via a unitary equivalence) with {gλ}λ∈Λ.

Clearly, M = {kλ : λ ∈ Λ2}⊥ is an  L-invariant subspace, and gλ ∈ M for λ ∈ Λ1, but the

complement of {gλ}λ∈Λ1 in M is of dimension N .

1.6. Strong M-bases in the general setting. It is not a completely trivial problem

to produce a nonhereditarily complete system in a separable Hilbert space. First explicit

examples of M-bases which are not strong were constructed by Markus [20] in 1970. Later,

Nikolski, Dovbysh and Sudakov studied in detail the structure of nonhereditarily complete

systems in a Hilbert space and produced many further examples. One more series of

examples was constructed by Larson and Wogen [18], Azoff and Shehada [1] and Katavolos,

Lambrou, and Papadakis [16]. These systems are obtained by an application of a three-

diagonal matrix to the standard orthonormal basis in ℓ2.

Clearly, the property of being a strong M-basis is necessary for the existence of a linear

summation method for the Fourier series (1.1). It is far from being sufficient. E.g., one

may deduce from the results of an interesting paper [16] that there are strong M-bases

with the following property: there exist two vectors h1 and h2 in H such that one cannot

approximate h1 by a linear combination of (h1, x̃n)xn and h2 by a linear combination of

(h2, x̃n)xn with the same coefficients.
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Organization of the paper. The paper is organized as follows. Main Theorem 1.1 is

proved in Sections 3–7. A detailed outline of the proof is given in Subsection 3.2. Theorem

1.2 about de Branges spaces coinciding with Fock-type spaces is proved in Section 8.

Examples of M-bases of kernels with large defects are constructed in Section 9.

Notations. Throughout this paper the notation U(x) . V (x) (or, equivalently, V (x) &

U(x)) means that there is a constant C such that U(x) ≤ CV (x) holds for all x in the set

in question, which may be a Hilbert space, a set of complex numbers, or a suitable index

set. We write U(x) ≍ V (x) if both U(x) . V (x) and V (x) . U(x). We write un ≪ vn

(usually in the context of sequences) if un = o(vn) as n→ ∞. For an entire function F we

denote by ZF the set of its zeros. For a finite set Y we denote by #Y the number of its

elements.

Acknowledgements. The authors are grateful to Dmitry Yakubovich for many useful

remarks and to Mikhail Sodin for his constructive comments that helped to improve the

presentation of the paper.

2. Preliminaries on de Branges spaces and Clark measures

2.1. De Branges spaces. An entire function E is said to be in the Hermite–Biehler class

if

|E(z)| > |E∗(z)|, z ∈ C+,

where E∗(z) = E(z). With any such function we associate the de Branges space H(E)

which consists of all entire functions F such that F/E and F ∗/E restricted to C+ belong

to the Hardy space H2 = H2(C+). The inner product in H(E) is given by

(F,G)E =

∫

R

F (t)G(t)

|E(t)|2
dt.

The reproducing kernel of the de Branges space H(E) corresponding to the point w ∈ C

is given by

(2.1) kw(z) =
E(w)E(z) − E∗(w)E∗(z)

2πi(w − z)
=
A(w)B(z) − B(w)A(z)

π(z − w)
,

where the entire functions A and B are defined by A = E+E∗

2
, B = E∗−E

2i
, so that A and

B are real on R and E = A− iB.

There exists an equivalent axiomatic description of de Branges spaces [9, Theorem 23]:

any reproducing kernel Hilbert space of entire functions H such that the mapping F 7→ F ∗

preserves the norm in H and the mapping F 7→ z−w
z−w

F (z) is an isometry in H whenever

w ∈ C \ R, F (w) = 0, is of the form H(E) for some E in the Hermite–Biehler class.
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From now on we restrict ourselves to the case when E has no real zeros and, correspond-

ingly, H(E) has no common zeros in the complex plane.

The space H(E) is essentially defined (up to a canonical isomorphism) by the function

ΘE = E∗/E which is inner in C+ and meromorphic in C: the mapping F 7→ F/E is a

unitary operator from H(E) onto the subspace KΘE
= H2⊖ΘEH

2 of the Hardy space H2

known as a model subspace.

However, it is often useful to think about de Branges spaces not in terms of the zeros of

E, but in terms of the zeros of A (or B) and some associated measure supported by ZA.

It is a crucial property of de Branges spaces that there exists a family of orthogonal bases

of reproducing kernels corresponding to real points [9, Theorem 22]. Namely, for any α ∈

T = {z ∈ C : |z| = 1} consider the set Tα of points tα,n ∈ R such that ΘE(tα,n) = α. Then

the system of reproducing kernels {ktα,n} is an orthogonal basis for H(E) for each α ∈ T

except, may be, one (α is an exceptional value if and only if Eα := (αE −E∗)/2 ∈ H(E)).

The points tα,n may be also obtained via the so-called phase function for E. For an

Hermite–Biehler function E there exists a smooth increasing function ϕ (called the phase

function of E) such that E(t)eiϕ(t) ∈ R, t ∈ R (equivalently, 2ϕ is a branch of the argument

of ΘE on R). Clearly, ϕ is uniquely defined up to a constant πl, l ∈ Z. Then tα,n are the

solutions of the equation ϕ(tα,n) = 1
2

argα + πn. Note that tα,n may exist for all n ∈ Z,

for n ∈ [n1,∞) or for n ∈ (−∞, n2], where n1, n2 ∈ Z. The case where there is only

finite number of solutions tα,n corresponds to finite-dimensional de Branges spaces where

the strong M-basis problem is trivial.

Thus, for all α ∈ T except the possible exceptional value, the system
{ Eα(z)

z−tα,n

}

is an

orthogonal basis in H(E) and any function F ∈ H(E) admits the expansion

F (z) = Eα(z)
∑

n

anµ
1/2
α,n

z − tα,n
,

where {an} ∈ ℓ2 and µα,n = π2
∥

∥

Eα(z)
z−tα,n

∥

∥

−2

E
. Also, by (2.1),

Eα(z)

z − tα,n
= −

πi

E(tα,n)
ktα,n(z), µα,n =

π

ϕ′(tα,n)

(recall that ‖kt‖
2
E = |E(t)|2ϕ′(t)/π, t ∈ R).

Let µα =
∑

n µα,nδtα,n . We call the elements of the family (Tα, µα) (excluding the possible

exceptional value of α) the spectral data for the de Branges space H(E). In what follows

it will be often convenient to pass from one data (i.e., orthogonal basis of reproducing

kernels) to another; this method played also a crucial role in [3].
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2.2. An alternative approach to de Branges spaces. In what follows we will always

assume that A /∈ H(E) (in other words, (T−1, µ−1) is a spectral data for H(E)). Let

T = T−1 = {tn} be the zero set of A, that is, the set {t : ΘE(t) = −1}. Then
{ A(z)

z−tn

}

is an

orthogonal basis in H(E) and any function F ∈ H(E) admits the expansion

(2.2) F (z) = A(z)
∑

n

anµ
1/2
n

z − tn
,

where
∑

n
µn

t2n+1
< ∞ and ‖{an}‖ℓ2 = ‖F‖E/π < ∞. Conversely, this expansion may

be taken as a definition of the de Branges space. Starting from any increasing sequence

T = {tn}n∈N , |tn| → ∞ as |n| → ∞, and a measure µ =
∑

n µnδtn satisfying
∑

n
µn

t2n+1
<∞

we may consider the space of all entire functions of the form (2.2) with the norm ‖F‖ =

π‖{an}‖ℓ2. Here A can be taken to be any entire function with simple zeros which is real on

R and whose zero set coincides with T . Then the corresponding space of entire functions

is a de Branges space H(E) for some E with E+E∗

2
= A. The corresponding function B

will be given by

(2.3)
B(z)

A(z)
= r +

1

π

∑

n

(

1

tn − z
−

tn
t2n + 1

)

µn,

where r is some real number.

In [7] a more general model for reproducing kernel Hilbert spaces of entire functions

with a Riesz basis of reproducing kernels was developed. Let H be a reproducing kernel

Hilbert space of entire functions such that in H there exists a Riesz basis of reproducing

kernels {kHwn
}wn∈W and such that H is closed under division by zeros: if F ∈ H and

F (w) = 0, w ∈ C, then F (z)
z−w

∈ H. Then there exists a positive sequence µn such that
∑

n
µn

|wn|2+1
<∞ and an entire function A (which has only simple zeros exactly on W ) such

that H coincides with the space of the entire functions of the form F (z) = A(z)
∑

n
anµ

1/2
n

z−wn

and ‖F‖H ≍ ‖{an}‖ℓ2.

The structure of such spaces is determined by the data (W,µ), and does not depend

on the choice of A. If A1 = AS for a nonvanishing entire function S, then the mapping

F 7→ SF is an isomorphism of the corresponding space. Therefore, it makes sense to

consider the space of meromorphic functions (the Cauchy transform)

H(W,µ) =

{

f(z) =
∑

n

anµ
1/2
n

z − wn
: {an} ∈ ℓ2, ‖f‖H(W,µ) := π‖{an}‖ℓ2

}

De Branges spaces correspond to the case when all wn are real.
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2.3. Remarks on Clark measures. Recall that all spectral data (Tα, µα) may be ob-

tained as follows: let µα be the measure from the Herglotz representation

Re
αE(z) + E∗(z)

αE(z) −E∗(z)
= pαy +

y

π

∫

R

dµα(t)

|t− z|2
,

where z = x + iy, pα ≥ 0. Then µα is an atomic measure supported by the zero set Tα

of the function αE − E∗. Measures µα are often called Clark measures after the seminal

paper [10] though in the de Branges space context they were introduced much earlier by

de Branges himself.

Let us mention some well-known properties of the measures µα:

1. The system {kt}t∈Tα is an orthogonal basis in H(E) for all α ∈ T except, possibly,

one; α is an exceptional value if an only if pα > 0 (or, equivalently, αE −E∗ ∈ H(E)) (see

[9, Problem 89]).

2. µα({t}) = 2π|Θ′
E(t)|−1 = |E(t)|2‖kt‖

−2
E , t ∈ Tα, whence the embedding of E−1H(E)

into L2(µα) is a unitary operator (only a co-isometry for the exceptional value of α).

3. If there exists an exceptional value of α, then µβ(R) < ∞ for any β ∈ T, β 6= α

(indeed, the function (αE −E∗)/E is a nonzero constant on Tβ and belongs to L2(µβ)).

4. If µβ(R) < ∞ for some β ∈ T, then there exists an exceptional value α such that

αE − E∗ ∈ H(E). Indeed, set Ẽ = βE = Ã − iB̃. If Ã /∈ H(Ẽ) = H(E), then B̃/Ã −
∑

µn/(· − tn) = c ∈ R, with (tn) = ZÃ, (µn) = µβ and hence, (1 + ic)/(1 − ic)Ẽ − (Ẽ)∗ ∈

H(E).

The masses of the Clark measures are determined by the equality |Θ′
E | = 2ϕ′ and,

therefore, the estimates of the derivatives of meromorphic inner functions are of importance

here. Since 2A = E(1 + ΘE) and 2iB = E(ΘE − 1), it follows from equation (2.3) that

(2.4) |Θ′
E(t)| =

∣

∣

∣

∣

i + r +
∑

n

µn

π

(

1

tn − t
−

1

tn

)
∣

∣

∣

∣

−2
∑

n

2µn

π(tn − t)2
, t ∈ R,

a formula which proves to be useful in what follows.

3. Plan of the proof of Theorem 1.1

In this section we discuss the first step of the proof (reduction of the strong M-basis

problem to a system of interpolation equations) and give a detailed outline of the proof.
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3.1. Reduction to an interpolation problem. We will use the following criterion for

being a strong M-basis: Let {xn}n∈N be an M-basis in a Hilbert space H. Then {xn}n∈N
is a strong M-basis if and only if for any h, h̃ ∈ H such that (h, xn) · (x̃n, h̃) = 0 we have

(h, h̃) = 0 (see, e.g., [16]). Indeed, it is an obvious reformulation of the definition of a

strong M-basis that for any partition N = N1 ∪N2, Span{xn : n ∈ N1} = {x̃n : n ∈ N2}
⊥.

The condition (h, xn) · (x̃n, h̃) = 0 means that for some partition N = N1 ∪ N2 we have

h ∈ {xn : n ∈ N1}
⊥ and h̃ ∈ {x̃n : n ∈ N2}

⊥, whence (h, h̃) = 0. The converse implication

is analogous.

We will apply this criterion to an M-basis of reproducing kernels {kλ}λ∈Λ. Recall that its

biorthogonal system is given by
{

G
G′(λ)(·−λ)

}

, where G is the so-called generating function

of the set Λ, that is, an entire function with simple zeros whose zero set coincides with

Λ, G /∈ H(E) (moreover, HG ∈ H(E) for an entire function H implies that H = 0), but

gλ := G
·−λ

∈ H(E) for any λ ∈ Λ. In what follows we will always omit the normalizing factor

G′(λ) and say that {gλ} is the system biorthogonal to {kλ}. Then the system {kλ}λ∈Λ is

a strong M-basis if and only if any two vectors h, h̃ such that

(3.1) (h, kλ) · (gλ, h̃) = 0, λ ∈ Λ,

are orthogonal, (h, h̃) = 0.

Without loss of generality (passing if necessary to some other spectral data (Tα, µα)) we

can assume that Λ ∩ T = ∅. Then we rewrite condition (3.1). Consider the expansions of

the vectors h, h̃ with respect to the de Branges orthonormal basis ktn(z)
‖ktn‖E

= (−1)nµ
1/2
n

π
· A(z)
z−tn

,

h(z) = π
∑

n

an(−1)n ·
ktn(z)

‖ktn‖
= A(z)

∑

n

anµ
1/2
n

z − tn
, {an} ∈ ℓ2,

h̃(z) = π
∑

n

bn(−1)n ·
ktn(z)

‖ktn‖
= A(z)

∑

n

bnµ
1/2
n

z − tn
, {bn} ∈ ℓ2.

Then (h, h̃) = π2
∑

n anbn. Equation (3.1) means that there exists a partition Λ = Λ1∪Λ2,

Λ1 ∩ Λ2 = ∅, such that (gλ, h̃) = 0 for λ ∈ Λ1 and (h, kλ) = 0 for λ ∈ Λ2. The second of

these equalities means simply that h(λ) = 0, λ ∈ Λ2, while the first one may be rewritten

as
(

G(z)

z − λ
, h̃

)

= π2
∑

n

bnG(tn)

A′(tn)µ
1/2
n (tn − λ)

= 0, λ ∈ Λ1.

Hence, we have a system of interpolation equations

(3.2) A(z)
∑

n

bnG(tn)

µ
1/2
n A′(tn)(z − tn)

= G1(z)S1(z),
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(3.3) A(z)
∑

n

anµ
1/2
n

z − tn
= G2(z)S2(z),

where G1, G2 are some entire functions with simple zeros and zero sets Λ1,Λ2 respectively,

such that G = G1G2, while S1 and S2 are some entire functions. Since G is the generating

function of an exact system of reproducing kernels, we have G/G∗ = B1/B2 for some

Blaschke products B1, B2. Next, we can assume that G1/G
∗
1, G2/G

∗
2 are also chosen to be

the ratios of two Blaschke products.

It should be mentioned that the above argument includes the case when the biorthogonal

system {gλ}λ∈Λ is incomplete: in this case we take G1 = G and G2 = 1, and equation (3.3)

becomes trivial.

Thus, we have proved the following proposition.

Proposition 3.1. Let H(E) be a de Branges space. Then H(E) does not have strong

M-basis property if and only if there exists an M-basis {kλ}λ∈Λ of reproducing kernels in

H(E) with the generating function G such that for some partition Λ = Λ1∪Λ2, Λ1∩Λ2 = ∅,

and for some spectral data (T, µ) for H(E) such that Λ1 ∩ T = ∅, there exist sequences

{an}, {bn} ∈ ℓ2 such that
∑

n anbn 6= 0 and equations (3.2)–(3.3) are satisfied for some

entire functions S1 and S2.

Comparing the values at the points tn in (3.2)–(3.3) we obtain the following important

relation: if S = S1S2 then

(3.4) S(tn) = A′(tn)anbn.

Remark 3.2. 1. It is worth mentioning that if we want to find an M-basis of reproducing

kernels which is not strong, then it is sufficient to find two non-orthogonal sequences

{an} and {bn} which satisfy (3.2)–(3.3). On the other hand, it is clear from the above

construction that if a function h is orthogonal to the system {gλ}λ∈Λ1 ∪ {kλ}λ∈Λ2 , then

equations (3.2)–(3.3) are satisfied with {an} = {bn}.

2. If {kλ}λ∈Λ is anM-basis, then the mixed system {gλ}λ∈Λ1∪{kλ}λ∈Λ2 is always complete

in the case when Λ1 or Λ2 is a finite set. So we need to consider only the partitions into

infinite subsets. Furthermore, if the system {gλ}λ∈Λ1 ∪{kλ}λ∈Λ2 is incomplete, then, under

some mild conditions on H(E), there is a strong asymmetry between the two sets: Λ1

should be a small (sparse) part of Λ (see [3, Theorems 1.2, 1.5]).

The following remark shows that in Proposition 3.1 we can always fix some spectral data

(T, µ) and consider only systems {kλ}λ∈Λ with Λ1 ∩ T = ∅.
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Remark 3.3. Assume that {kλ}λ∈Λ is an M-basis which is not strong. Then, perturbing

slightly the sequence Λ1, we may construct a new sequence Λ̃1 with Λ̃1 ∩ T = ∅ such that

{kλ}λ∈Λ̃1∪Λ2
is an M-basis, but the system {gλ}λ∈Λ̃1

∪ {kλ}λ∈Λ2 is not complete in H(E).

Indeed, let Λ1 = {λ1j} and let λ̃1j /∈ T be a perturbation of λ1j so small that 1/2 ≤
∏

j

∣

∣

∣

tn−λ̃1
j

tn−λ1
j

∣

∣

∣
≤ 2 for any n. It is easy to see that for sufficiently small perturbations the

equation (3.2) is stable under multiplication by
∏

j

z−λ̃1
j

z−λ1
j
:

G1(z)S1(z)

A(z)
·
∏

j

z − λ̃1j
z − λ1j

=
∑

n

G(tn)bn

µ
1/2
n A′(tn)(z − tn)

·
∏

j

tn − λ̃1j
tn − λ1j

.

Thus, we have an equation of the form (3.2) with G̃1(z) = G1(z)
∏

j

z−λ̃1
j

z−λ1
j

in place of G1

and with the same {bn} and S1, whence {gλ}λ∈Λ̃1
∪ {kλ}λ∈Λ2 is not complete in H(E). At

the same time, it is easy to show that sufficiently small perturbations preserve the property

to be an M-basis.

3.2. Outline of the proof. In Section 4 the sufficiency of (i) or (ii) for the strong M-

basis property is proved. As mentioned above, we need to show that equations (3.2)–(3.3)

do not have a nontrivial solution {an} = {bn}. While case (i) follows essentially from

comparing of the asymptotics along the imaginary axis, in case (ii) a subtler argument on

the asymptotics of the zeros of h and S is used.

The proof of the converse statement is more involved. It splits into four cases which will

be treated separately:

(I) infn µn = 0 and
∑

n µn = ∞;

(II) infn µn > 0, and there exists a subsequence nk such that dnk
= o(|tnk

|), k → ∞, and

dnk
& |tnk

|−N for some N > 0;

(III) infn µn > 0, and there exists a subsequence nk such that dnk
= o(|tnk

|−N) for any

N > 0 as k → ∞;

(IV) infn µn > 0, infn
dn
|tn|

> 0, and there exists a subsequence nk such that the converse

to the estimate (1.2) holds:

µnk
= o

(

∑

|tl|≤|tnk
|

µl + t2nk

∑

|tl|>|tnk
|

µl

t2l

)

, k → ∞.

The proof for the case (I) is given in Section 5. One of its ingredients is the following

result from [2, Theorem 1.1]: if
∑

n µn < ∞, then the de Branges space with the spectral

data (T, µ) contains an exact system of reproducing kernel with incomplete biorthogonal

system. Some extension of this result (with a simplified proof) is given in Section 9.
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Another ingredient is the following observation which says roughly that the strong M-

basis property for a de Branges space implies the same property for all spaces constructed

from a part of its spectral data. This observation will be also useful in the proofs of other

cases.

Proposition 3.4. Let H(E) be a de Branges space with the spectral data (T, µ) and
∑

n µn = ∞. Let T ◦ ⊂ T , let µ◦ = µ|T ◦, and let H(E◦), E◦ = A◦ − iB◦, be the de

Branges space constructed from the spectral data (T ◦, µ◦). If there exists an exact sys-

tem of reproducing kernels {k◦λ}λ∈Λ◦ in H(E◦) which is not a strong M-basis and whose

generating function G◦ satisfies

(3.5) |G◦(iy)| & |y|−N |A◦(iy)|, |y| → ∞,

for some N > 0, then there exists an M-basis of reproducing kernels in H(E) which is not

a strong M-basis.

It should be emphasized that in the statement of Proposition 3.4 the system {k◦λ}λ∈Λ◦

can have incomplete biorthogonal system (this version will be used in the proof of Case I)

or can be an M-basis but not a strong one.

The proofs for the cases (II)–(IV) consist of two steps. At the first step (Section 6),

in each of these cases we construct two real sequences {an} and {bn} with the following

properties:

(a) {an} ∈ ℓ1, {bn} ∈ ℓ1, an 6= 0, bn 6= 0;

(b)
∑

n anbn > 0;

(c) the entire functions h and S defined by

(3.6)
h(z)

A(z)
=

∑

n

anµ
1/2
n

z − tn
,

S(z)

A(z)
=

∑

n

anbn
z − tn

have infinitely many common real zeros {sk} such that dist(sk, T ) & |sk|−N , for some

N > 0.

(d) the function h satisfies |h(iy)| & |y|−1|A(iy)| (note that this estimate is trivially

satisfied if an > 0 for every n).

Existence of common zeros is the crucial part of the proof. Once such sequences are

constructed, we obtain an M-basis of reproducing kernels in H(E) which is not strong

by a certain perturbation argument. This method was suggested in [3]. The following

proposition (whose proof is given in Section 7) completes the proof of Theorem 1.1.
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Proposition 3.5. Let H(E) be a de Branges space with the spectral data (T, µ) such that
∑

n µn = ∞, and assume that there exist two sequences {an} and {bn} satisfying (a)–(d).

Then there exists an M-basis of reproducing kernels {kλ} in H(E) which is not a strong

M-basis and such that its generating function G satisfies |G(iy)| & |y|−N |A(iy)| for some

N > 0.

4. Sufficiency of (i) and (ii) in Theorem 1.1

In this section we will show that each of the conditions (i) and (ii) implies that any

M-basis in the corresponding de Branges space is a strong M-basis. The proofs of these

two cases will be essentially different.

Assume that H(E) does not have strong M-basis property. Then, by Proposition 3.1,

there exist a partition Λ = Λ1 ∪ Λ2 and a nonzero sequence {an} ∈ ℓ2 such that for some

entire functions S1 and S2 equations (3.2)–(3.3) hold with bn = an.

Consider the product of the equations (3.2)–(3.3),

(4.1) A2(z)

(

∑

n

anµ
1/2
n

z − tn

)(

∑

n

anG(tn)

µ
1/2
n A′(tn)(z − tn)

)

= G(z)S(z)

By (3.4), we have S(tn) = A′(tn)|an|
2 and hence

(4.2)
S(z)

A(z)
= R(z) +

∑

n

|an|2

z − tn
,

where R is an entire function.

4.1. (i)=⇒ Strong M-basis Property. The series

∑

n

G(tn)

A′(tn)(z − tn)

converges since
{

G(tn)

µ
1/2
n A′(tn)tn

}

∈ ℓ2 and {µ1/2
n } ∈ ℓ2. Let λ0 be an arbitrary zero of G. From

inclusion G(z)
z−λ0

∈ H(E) we deduce that

(4.3)
G(z)

A(z)
= c +

∑

n

G(tn)

A′(tn)(z − tn)
.

Then we may rewrite (4.1) as

(4.4)
∑

n

anG(tn)

µ
1/2
n A′(tn)(z − tn)

·
∑

n

anµ
1/2
n

z − tn
=

(

c+
∑

n

G(tn)

A′(tn)(z − tn)

)

·

(

R(z)+
∑

n

|an|2

z − tn

)

.
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Assume first that c = 0 in (4.3). Let us show that in this case the system {gλ}λ∈Λ is

orthogonal to a function B0 ∈ H(E),

B0 =
∑

n

µ1/2
n (−1)n ·

ktn
‖ktn‖

.

Indeed,
(

G(z)

z − λ
,B0

)

= π
∑

n

G(tn)

A′(tn)(tn − λ)
= 0, λ ∈ Λ,

and hence the system {gλ} is not complete. Thus c 6= 0.

It is a standard fact that if
∑

n
|cn|

1+|tn|
< ∞, then the Cauchy transform

∑

n
cn

z−tn
is a

function of Smirnov class (that is, a ratio g/h of two bounded analytic functions, where

h is outer) both in the upper half-plane C+ and in the lower half-plane C− (see, e.g., [14,

Part II, Chapter 1, Section 5]). We conclude that S/A and, hence, R is in the Smirnov

class both in C+ and C−. By M.G. Krein’s theorem (see, e.g., [14, Part II, Chapter 1]) R

is of zero exponential type. The left-hand side of (4.4) tends to zero along the imaginary

axis. So, R ≡ 0. Now we again use the fact that
∑

n µn <∞ to see that

∑

n

anµ
1/2
n

iy − tn
= O(|y|−1), |y| → ∞.

By (4.2) and (4.3) we have 1 . |(G/A)(iy)|, |y|−1 . |(S/A)(iy)|. On the other hand,

∑

n

anG(tn)

µ
1/2
n A′(tn)(iy − tn)

= o(1), |y| → ∞,

that contradicts to equation (4.4), since the right-hand side is ≍ |y|−1, while the left-hand

side is o(|y|−1), |y| → ∞.

4.2. (ii)=⇒ Strong M-basis Property. The proof consists of three steps.

Step 1. As in the previous proof, we prove first (using a different argument) that R ≡ 0

in (4.2). Let 2ϕ be a smooth increasing branch of the argument of ΘE on R (the phase

function for E, see Subsection 2.1). By (2.4), the derivative ϕ′ is bounded on R.

By [3, Lemma 5.1], R is at most a polynomial. If R is not identically zero, then it

follows from (4.2) that the zeros sn of S satisfy dist(sn, T ) → 0, |sn| → ∞. Note, however,

that the zeros of S2 do not depend on the choice of the spectral data. So for any other

spectral data (T̃ , µ̃) we have dist(sn, T̃ ) → 0, |sn| → ∞. However, since ϕ′ is bounded on

R, we have dist(T, T̃ ) & 0 (recall that T = {Θ = −1} and T̃ = {Θ = α} for some α ∈ T,

α 6= −1). We conclude that R ≡ 0.

Step 2. The function S vanishes only at the zeros of
∑

|an|2/(· − tn), and hence has

only real zeros. Note also that |S(iy)| & |y|−1|A(iy)|. If S2 has only finite number of real
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zeros, then |S1(iy)| & |y|−N |A(iy)| for some N > 0. This means that G1 is a polynomial

(the case excluded by Remark 3.2).

Thus, the Cauchy transforms
∑

n
anµ

1/2
n

z−tn
and

∑

n
|an|2

z−tn
have common zeros sn ∈ (tn−1, tn)

for n in some infinite set N . We will assume that sn → ∞.

Step 3. We have
∑

tk<tn

|ak|
2

sn − tk
+

|an|
2

sn − tn
+

∑

tk>tn

|ak|
2

sn − tk
= 0.

The first sum is greater than C
tn

for some C > 0. The last sum is o(t−1
n ). So, |an|2

∆n
≥ C

tn
,

where ∆n = tn − sn, i.e., ∆n ≤ |an|2tn
C

. On the other hand,

∑

k 6=n

akµ
1/2
k

sn − tk
+
anµ

1/2
n

sn − tn
= 0.

Furthermore,
∣

∣

∣

∣

∑

|tk|≤tn,k 6=n

akµ
1/2
k

sn − tk

∣

∣

∣

∣

.
1

tn

(

∑

|tk|≤tn

µk

)1/2

· ‖{an}‖ℓ2 .
µ
1/2
n

tn
,

and
∣

∣

∣

∣

∑

|tk |>tn

akµ
1/2
k

sn − tk

∣

∣

∣

∣

.
∑

|tk|>tn

µ
1/2
k

|tk|
· |ak| ≤

(

∑

|tk |>tn

µk

t2k

)1/2

· ‖{an}‖ℓ2 .
µ
1/2
n

tn
.

We conclude that |an|µ
1/2
n

∆n
. µ

1/2
n

tn
. On the other hand, µ

1/2
n

tn|an|
. |an|µ

1/2
n

∆n
and so 1

|an|
. 1 for

infinitely many indices n. We come to a contradiction.

5. Examples of M-bases which are not strong: case I.

5.1. Proof of Proposition 3.4. Let {k◦λ}λ∈Λ◦ be an exact system of reproducing kernels in

H(E◦) which is not a strong M-basis and let G◦ be its generating function. By Proposition

3.1 and Remark 3.3 there exists a partition Λ◦ = Λ◦
1 ∪ Λ◦

2 such that Λ◦
1 ∩ T

◦ = ∅ and

(5.1)

G◦
1(z)S

◦
1(z)

A◦(z)
=

∑

tn∈T ◦

b◦nG
◦(tn)

µ
1/2
n (A◦)′(tn)(z − tn)

,

G◦
2(z)S

◦
2(z)

A◦(z)
=

∑

tn∈T ◦

a◦nµ
1/2
n

z − tn

for some sequences {a◦n}, {b◦n} ∈ ℓ2 and some entire functions S◦
1 and S◦

2 . Here we do not

exclude the case when the system {g◦λ}λ∈Λ◦ is incomplete in H(E◦). In this case G◦
1 = G

and G◦
2 ≡ 1.
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Let H(E) be a de Branges space with the spectral data (T, µ). Then E = A− iB, where

ZA = T , and we can write A = A◦Ã with ZÃ = T̃ = T \ T ◦. Define an = a◦n, tn ∈ T ◦, and

an = 0, tn ∈ T̃ , and define bn analogously. Then, multiplying equations (5.1) by Ã and

using the fact that A′(tn) = (A◦)′(tn)Ã(tn), tn ∈ T ◦, we get

(5.2)

G◦
1(z)S

◦
1(z)Ã(z)

A(z)
=

∑

tn∈T

bnG
◦(tn)Ã(tn)

µ
1/2
n A′(tn)(z − tn)

,

G◦
2(z)Ã(z)S◦

2(z)

A(z)
=

∑

tn∈T

anµ
1/2
n

z − tn
.

Put G1 = G◦
1, G2 = G◦

2Ã, G = G1G2, and Λ = Λ◦ ∪ T̃ . Then equations (5.2) are of

the form (3.2)–(3.3) for the partition Λ1 = Λ◦
1 and Λ2 = Λ◦

2 ∪ T̃ of Λ. Hence the system

{gλ}λ∈Λ1 ∪ {kλ}λ∈Λ2 is incomplete.

It remains to show that the system {kλ}λ∈Λ is an M-basis in H(E). If {kλ}λ∈Λ is

incomplete, then there exists an entire function H such that GH = G◦ÃH ∈ H(E).

Hence, we have

G◦(z)Ã(z)H(z) = A(z)
∑

n

cnµ
1/2
n

z − tn
,

where {cn} ∈ ℓ2 and cn = 0 when tn ∈ T̃ . Dividing by Ã we have G◦(z)H(z) =

A◦(z)
∑

tn∈T ◦

cnµ
1/2
n

z−tn
, whence G◦H ∈ H(E◦), a contradiction with completeness of {k◦λ}λ∈Λ◦ .

It is also clear from the above that G/(·−λ) ∈ H(E) for any λ ∈ Λ, so G is the generating

function of an exact system of reproducing kernels in H(E).

Now assume that the biorthogonal system {gλ}λ∈Λ is incomplete in H(E). Let (U, ν),

U = {un}, be the spectral data for H(E) corresponding to the function Eα = (αE−E∗)/2

for some α ∈ T, α 6= −1. By the remarks in Subsection 2.3, since A /∈ H(E) and µ(R) = ∞,

there is no exceptional value α and, thus, ν(R) = ∞.

By the arguments from Subsection 3.1 (or from [2, Section 2]), there exists a sequence

{cn} ∈ ℓ2 and a nonzero entire function V such that

(5.3)
G(z)V (z)

Eα(z)
=

∑

n

cnG(un)

ν
1/2
n E ′

α(un)(z − un)
.

Comparing the residues, we see that V (un) = ν
−1/2
n cn and so V ∈ L2(ν). The function

Eα/A is in the Smirnov class in C+ and C− and |A(iy)/Eα(iy)| & |y|−1 (note that Eα

A
=

ΘE−α
1+ΘE

). Since |G◦(iy)| & |y|−N |A◦(iy)|, we have

|G(iy)| = |G◦(iy)Ã(iy)| & |y|−N |A(iy)| & |y|−N−1|Eα(iy)|.
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By Krein’s theorem we conclude that V is a polynomial. Since V ∈ L2(ν) and ν(R) = ∞,

we have V ≡ 0. �

Remark 5.1. It follows from the proof of Proposition 3.4 that the dimension of the orthog-

onal complement to the system {g◦λ}λ∈Λ◦

1
∪{k◦λ}λ∈Λ◦

2
in H(E◦) coincides with the dimension

of the orthogonal complement to {gλ}λ∈Λ1 ∪ {kλ}λ∈Λ2 in H(E). Indeed, there is a one-to-

one correspondence between sequences a◦n = b◦n satisfying (5.1) and sequences an = bn

satisfying (5.2).

Remark 5.2. Note that the condition |G◦(iy)| & |y|−N |A◦(iy)| was used only to prove the

completeness of the system biorthogonal to {kλ}λ∈Λ. Both equations (3.2)–(3.3) for some

partition of Λ and the completeness of {kλ}λ∈Λ follow without this assumption.

5.2. (I)=⇒ H(E) does not have StrongM-Basis Property. Since lim inf |n|→∞ µn = 0,

we may choose a subsequence T ◦ = {tnk
} such that

∑

k µnk
<∞, and let H(E◦) be the de

Branges space with the spectral data (T ◦, µ◦), µ◦ = µ|T ◦ (thus µ◦(R) <∞).

By Theorem 1.1 in [2] and its proof, there exists an exact system of reproducing kernels

{k◦λ}λ∈Λ◦ in H(E◦) whose generating function G◦ satisfies |G◦(iy)| & |y|−1|A◦(iy)| and such

that its biorthogonal system {g◦λ}λ∈Λ◦ is incomplete in H(E◦). For a simplified proof of

this (and slightly more general) statement see Proposition 9.1. Then by Proposition 3.4

there exists an M-basis of reproducing kernels in H(E) which is not a strong M-basis. �

6. Cases II, III and IV: construction of common zeros.

As it was explained in Subsection 3.1 we need to construct sequences {an}, {bn} ∈ ℓ2

(or, which is the same, two vectors h, h̃) and a generating function G of an M-basis of

reproducing kernels such that equations (3.2)–(3.3) hold and
∑

n anbn = (h1, h2) 6= 0.

By Proposition 3.4, it suffices to construct such example for any restriction µ◦ = µ|T ◦,

T ◦ ⊂ T , with additional restriction (3.5).

In this section we will make the first step and construct, in each of the cases (II)–(IV)

sequences {an}, {bn} satisfying conditions (a)–(d) from Subsection 3.2 with T replaced by

some N ⊂ T . In each of the cases, the existence of common zeros is proved by a certain

fixed point argument.

6.1. Case (II). Without loss of generality, we assume that T is a positive sequence. Pass-

ing to a subsequence, assume that |tnk
|−N . dnk

. |tnk
|k−6 and tnk+1

> 2tnk
.



SPECTRAL SYNTHESIS IN DE BRANGES SPACES 21

Put N = {nk} ∪ {nk + 1}. Let sk ∈ (tnk
, tnk+1

) be such that

µ
1/2
nk

∆l
k

=
µ
1/2
nk+1

∆r
k

, ∆l
k = sk − tnk

, ∆r
k = tnk+1 − sk.

We want to choose the coefficients (an)n∈N , (bn)n∈N in such a way that the Cauchy trans-

forms
∑

n∈N

anµ
1/2
n

z − tn
,

∑

n∈N

anbn
z − tn

vanish at the points sk. We assume that µnk+1 ≥ µnk
(otherwise, the construction should

be modified in an obvious way). Put

ank
=
rk
k2
, ank+1 =

1

k2
,

bnk
=

µ
1/2
nk

µ
1/2
nk+1

·
1

k2
=

∆l
k

∆r
kk

2
, bnk+1 =

qk
k2
.

The numbers rk, qk ∈ (1/2, 3/2) will be our free parameters. We have a system of equations














rkµ
1/2
nk

k2∆l
k
−

µ
1/2
nk+1

k2∆r
k

+
∑

n 6=nk,nk+1

anµ
1/2
n

sk−tn
= 0

rk
k2

·
∆l

k

∆r
kk

2 ·
1
∆l

k
− qk

k2
· 1
k2∆r

k
+

∑

n 6=nk,nk+1

anbn
sk−tn

= 0.

Let ε > 0 be a small number to be fixed later on. Since
tnk

k5dnk
→ ∞, we can start with

the sequence {tnk
} so sparse that

∑

l 6=k

µ
1/2
nl + µ

1/2
nl+1

|sk − tnl
|

.
ε

k5dnk

.

Furthermore, we can rewrite our system as














rk +
∆r

kk
2

µ
1/2
nk+1

·
∑

j 6=k

(

rjµ
1/2
nj

j2(sk−tnj )
+

µ
1/2
nj+1

j2(sk−tnj+1)

)

= 1,

rk − qk + ∆r
kk

4
∑

j 6=k

(

rjµ
1/2
nj

j4µ
1/2
nj+1(sk−tnj )

+
qj

j4(sk−tnj+1)

)

= 0.

The unperturbed system






rk = 1,

rk − qk = 0

has a unique solution rk = qk = 1. On the other hand,

∆r
kk

2

µ
1/2
nk+1

∑

j 6=k

( µ
1/2
nj

j2|sk − tnj
|

+
µ
1/2
nj+1

j2|sk − tnj+1|

)

. ε
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and

∆r
kk

4
∑

j 6=k

1

j4

( µ
1/2
nj

µ
1/2
nj+1|sk − tnj

|
+

1

|sk − tnj+1|

)

. ε

uniformly with respect to rj , qj ∈ (1/2, 3/2). This means that for sufficiently small ε, our

system has a unique solution rk, qk ∈ (1/2, 3/2).

Since an and bn are positive, conditions (a), (b) and (d) are clearly satisfied. It remains to

notice that 1 . µn . t2n (recall that
∑

µnt
−2
n <∞). Since dnk

≥ c|tnk
|−N for some c, N > 0,

we have sk−tnk
& s−N−1

k , the same is true for tnk+1−sk, whence dist(sk, T ) & |sk|−N−1. �

6.2. Case (III). The previous proof works as soon as we have a subsequence of intervals

dnk
with dnk

= o(|tnk
|) and dnk

& |tnk
|−N for some N > 0. The problem is with the case

where all short intervals are in fact extremely (super-polynomially) short. In this case we

cannot put the common zero in this interval if we want to have a separation condition

dist(sk, T ) & |sk|
−N . Therefore, we will choose the common zero outside this interval and

so an and bn cannot be taken positive for all n.

By Proposition 3.4 we can rarify our sequence T . So, without loss of generality, assume

that there exists a sequence of indices {nk} such that µnk
& 1, dnk

≤ |tnk
|−2 and tnk+1

>

2tnk+1. Moreover, let tnk
grow super-exponentially, namely, let k6tnj

< εtnk
when j < k for

some ε > 0. Assume additionally that µnk
≤ µnk+1. Then we construct common zeros sk

at the points tnk
− 1 (if µnk

> µnk+1, then the points tnk+1 + 1 should be taken as common

zeros). Put

(6.1)











ank
= rk

k2
, ank+1 = − 1

k2
·

µ
1/2
nk

µ
1/2
nk+1

(dnk
+ 1),

bnk
=

µ
1/2
nk

µ
1/2
nk+1

· 1
k2
, bnk+1 = qk

k2
.

We choose a0 = b0 = 10. Set N = {0} ∪ {nk} ∪ {nk + 1}. We have a system of equations

∑

n∈N

anµ
1/2
n

sk − tn
=

∑

n∈N

anbn
sk − tn

= 0,

and try to find a solution (rk, qk) of this system such that rk, qk ∈ (1/2, 3/2). Rewrite our

system using (6.1):















∑

l<nk

alµ
1/2
l

sk−tl
− rk

k2
µ
1/2
nk + 1

k2
µ
1/2
nk +

∑

l>nk+1

alµ
1/2
l

sk−tl
= 0

∑

l<nk

albl
sk−tl

− rk
k4

·
µ
1/2
nk

µ
1/2
nk+1

+ qk
k4

·
µ
1/2
nk

µ
1/2
nk+1

+
∑

l>nk+1

albl
sk−tl

= 0,
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or, equivalently,

(6.2)















rk = 1 + k2

µ
1/2
nk

·
(

∑

j 6=k

rj
j2

µ
1/2
nj

sk−tnj
−

∑

j 6=k

1
j2

µ
1/2
nj

(dnj+1)

sk−tnj+1
+

a0µ
1/2
0

sk−t0

)

rk − qk =
k4µ

1/2
nk+1

µ
1/2
nk

·
(

∑

j 6=k

rj
j4

µ
1/2
nj

µ
1/2
nj+1(sk−tnj )

−
∑

j 6=k

qj
j4

µ
1/2
nj

(dnj+1)

µ
1/2
nj+1(sk−tnj+1)

+ a0b0
sk−t0

)

where all the sums should be thought of as small perturbations of the block linear system

rk = 1, rk − qk = 0. The terms with l = 0 can be made arbitrary small by passing to

sufficiently sparse {nk} since µ
1/2
n = o(tn). In addition we can assume that

k4µ
1/2
nk+1

tnk
<

2−kεminj<k µ
−1/2
nj+1.

Next we want to estimate coefficients at rj in the first equation in (6.2). If j < k then

k2

µ
1/2
nk

·
µ
1/2
nj

|sk − tnj
|
.
k2µ

1/2
nj

sk
.
k2tnj

tnk

.
ε

k4
.

If j > k then

k2

µ
1/2
nk

·
µ
1/2
nj

|sk − tnj
|
.
k2µ

1/2
nj

tnj

<
j2µ

1/2
nj

tnj

. ε2−j.

Analogous estimates hold for coefficients at rj and qj in the second equation in (6.2) and for

the sum k2

µ
1/2
nk

·
∑

j 6=k
1
j2

µ
1/2
nj

(dnj+1)

sk−tnj+1
. Thus, if we define Akj as the coefficient at rj in the first

equation in (6.2) and Bkj and Ckj as the coefficients at rj and qj in the second equation

in (6.2), then we have
∑

k,j:k 6=j |Akj| + |Bkj| + |Ckj| . ε. The unperturbed system has

the solution rk = qk = 1. Hence, for sufficiently small ε we can find the solutions of the

perturbed system rk, qk ∈ (1/2, 3/2). As a consequence,
∑

n∈N anbn > 0.

It remains to show that the function h satisfies property (d). This is a nontrivial matter

since now an change the sign.

Proof of (d). By the construction of ank
and ank+1 we have

Dk := ank
µ1/2
nk

+ ank+1µ
1/2
nk+1 =

µ
1/2
nk

k2
(rk − 1 − dnk

) =
∑

l 6=nk,nk+1

alµ
1/2
l

sk − tl
−
µ
1/2
nk

k2
dnk

.

Choosing the sequence tnk
sufficiently sparse we can make the value of Dk as small as we

wish (uniformly for all values of rk and qk ∈ (1/2, 3/2). Thus, the series
∑

kDk converges

absolutely and its sum can be made as small as we wish. Thus, we can assume that

(6.3) a0µ
1/2
0 +

∑

k

Dk > 0.
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We have

h(iy)

A(iy)
=
a0µ

1/2
0

iy − t0
+
∑

k

( ank
µ
1/2
nk

iy − tnk

+
ank+1µ

1/2
nk+1

iy − tnk+1

)

=
a0µ

1/2
0

iy − t0
+
∑

k

Dk

iy − tnk

+
∑

k

ank+1µ
1/2
nk+1(tnk+1 − tnk

)

(iy − tnk+1)(iy − tnk+1)
.

Since dnk
= tnk+1 − tnk

≤ |tnk
|−2 and µnk+1 . t2nk

, we conclude that

∑

k

ank+1µ
1/2
nk+1(tnk+1 − tnk

)

(iy − tnk+1)(iy − tnk+1)
= O

( 1

y2

)

, |y| → ∞,

and so, by (6.3), |h(iy)| & |y|−1|A(iy)|. �

6.3. Case (IV). Without loss of generality we assume that T is a positive lacunary se-

quence. We know that (1.2) does not hold. Consider the case when there exists a subse-

quence of indices {nk} such that
∑

l<nk
µl & µnk

. We choose rapidly increasing sequences

of indices {nk} and {mk} such that

(6.4) nk−1 < mk < nk,

nk−1
∑

l=mk

µl > k6µnk
.

Put

al = µ
1/2
l ·

(nk−1
∑

p=mk

µp

)−1/2

·
1

k
, mk ≤ l ≤ nk − 1, ank

=
1

k2
.

Set N = ∪k[mk, nk]. We can start with {nk}, {mk} increasing so fast that

(6.5)
∑

n<mk , n∈N

anµ
1/2
n = o

(1

k
·
(

nk−1
∑

l=mk

µl

)1/2)

,
∑

n>nk, n∈N

anµ
1/2
n

tn
= o

( 1

ktnk

)

, k → ∞.

Let sk be the unique root of
∑

n
anµ

1/2
n

z−tn
in (tnk−1, tnk

). Then

(6.6)
∑

n<mk, n∈N

anµ
1/2
n

sk − tn
+

nk−1
∑

l=mk

alµ
1/2
l

sk − tl
+

µ
1/2
nk

k2(sk − tnk
)

+
∑

n>nk, n∈N

anµ
1/2
n

sk − tn
= 0.

From this we conclude that ∆nk
= tnk

− sk satisfies the estimate

(6.7)
µ
1/2
nk

k2∆nk

≥
1

tnk

nk−1
∑

l=mk

alµ
1/2
l + o

( 1

ktnk

)

=
1 + o(1)

ktnk

(nk−1
∑

l=mk

µl

)1/2

, k → ∞.

Using (6.4) we obtain that ∆nk
= o(tnk

), and applying (6.6) again and the estimate

infn
dn
tn
> 0 we get the estimate reverse to (6.7). Hence, ∆nk

≍
µ
1/2
nk

k
·

(

∑nk−1
l=mk

µl

)−1/2

· tnk
.
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It remains to find a positive sequence {bn}n∈N ∈ ℓ2 such that
∑

n∈N
anbn
z−tn

vanishes at the

points sk. We fix small positive bn, n /∈ N0 = {nk}, so that
∑

n∈N\N0
bn < ∞. The

parameters bnk
should satisfy the system of equations

(6.8)
−ank

bnk

∆nk

+
∑

j 6=k

anj
bnj

sk − tnj

+
∑

n∈N\N0

anbn
sk − tn

= 0.

Put uk = k2∆nk

∑

n∈N\N0

anbn
sk−tn

and rewrite our system as

bnk
− k2∆nk

∑

j 6=k

1

j2(sk − tnj
)
bnj

= uk.

Let us show that {uk} ∈ ℓ2. Indeed,
∑

n∈N\N0

anbn
sk−tn

. 1
tnk

and

|uk| .
k2∆nk

tnk

≍ kµ1/2
nk

·

( nk−1
∑

l=mk

µl

)−1/2

.
1

k
.

Next consider the coefficients at bnj
. If j > k, then tnj

≫ sk ≫ k2∆nk
. On the other hand,

if j < k, then
k2∆nk

|sk−tnj |
. 1

k2
. So, we can assume that

∑

k

k2∆nk

∑

j 6=k

1

j2(sk − tnj
)
<

1

100
.

This means that we can find a summable solution {bnk
} of equations (6.8). Clearly, {an}

and {bn} satisfy conditions (a)–(d).

The case when there exists a sequence of indices {nk} such that µnk
= o(t2nk

∑

l>nk

µl

t2l
),

k → ∞, can be treated analogously. �

7. Proof of Proposition 3.5

First, note that any function F ∈ H(E) is of the form F (z) = A(z)
∑

n
anµ

1/2
n

z−tn
, where

a = {an} ∈ ℓ2, whence

(7.1)

∣

∣

∣

∣

F (iy)

A(iy)

∣

∣

∣

∣

≤ ‖a‖ℓ2β(y), β(y) :=

(

∑

n

µn

t2n + y2

)1/2

.

Now let the functions h and S in (3.6) have infinitely many common zeros {sk} which

admit power-type separation from T , dist(sk, T ) & |sk|
−N for some N > 0. We will

factorize h and S as h = G2S2 and S = S1S2, where S2 is a product over some subsequence

of common zeros, and then will construct G1 as a small perturbation of S2.
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Let us construct zeros sk of S2 and s̃k = sk−1+δk of G1 inductively. Assume that s1 = s̃1,

s̃2, s2, . . . , s̃k−1, sk−1 are already constructed. Choose sk (a common zero of h and S) so

large that if we define δk by

δk =
1

(β(sk))1/2

k−1
∏

m=1

sm
s̃m

− sk−1,

then

s̃k = sk−1 + δk > 10sk−1 and sk > 10s̃k.

This is possible since β(y) → 0, |y| → ∞, but, at the same time, β(y) & |y|−1.

Now define

S2(z) =
∏

k

(

1 −
z

sk

)

, G1(z) =
∏

k

(

1 −
z

s̃k

)

,

and G = G1G2. It is clear that |S2(iy)| ≤ |G1(iy)| . |yS2(iy)|, |y| → ∞.

Assume first that G ∈ H(E) + zH(E). We need to show that G is a generating function

of an exact system (in particular, G /∈ H(E)) and that

(7.2)
G1(z)S1(z)

A(z)
=

∑

n

bnG(tn)

µ
1/2
n A′(tn)(z − tn)

.

An obvious estimate of infinite products shows that

∣

∣

∣

∣

G1(isk)

S2(isk)

∣

∣

∣

∣

≍
k
∏

m=1

sm
s̃m

≍ sk(β(sk))
1/2

by the construction of δk. By the property (d) from Subsection 3.2, |G2(iy)S2(iy)| =

|h(iy)| & |y|−1|A(iy)|. Hence,
∣

∣

∣

∣

G(isk)

A(isk)

∣

∣

∣

∣

≍

∣

∣

∣

∣

G1(isk)

S2(isk)

∣

∣

∣

∣

·

∣

∣

∣

∣

G2(isk)S2(isk)

A(isk)

∣

∣

∣

∣

&
1

sk

∣

∣

∣

∣

G1(isk)

S2(isk)

∣

∣

∣

∣

≍ (β(sk))
1/2,

whence G /∈ H(E). Furthermore, |G(iy)| = |h(iy)G1(iy)|/|S2(iy)| & |y|−1|A(iy)|, whence

G is the generating system of some exact system of kernels. The completeness of the

biorthogonal system {gλ}λ∈ZG
follows by the same arguments as in the proof of Proposition

3.4. If (U, ν) are some other spectral data for H(E) and V is the entire function from

(5.3), then V is at most polynomial whenever |G(iy)| & |y|−N |A(iy)|. Thus V ≡ 0, since

V ∈ L2(ν) and ν(R) = ∞ by the discussion in Subsection 2.3.

To get (7.2) note first that

H(z) =
G1(z)S1(z)

A(z)
−

∑

n

bnG(tn)

µ
1/2
n A′(tn)(z − tn)
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is an entire function, since the residues at the points tn coincide. Both summands are in

the Smirnov class in C+ and C−. Also |G1(iy)S1(iy)| . |yS(iy)| . |A(iy)|, while the sum

in the last formula at z = iy is o(1), |y| → ∞. By Krein’s theorem we conclude that H is

of zero exponential type and, finally, a constant. However,
∣

∣

∣

∣

G1(isk)S1(isk)

A(isk)

∣

∣

∣

∣

≍

∣

∣

∣

∣

S(isk)

A(isk)

∣

∣

∣

∣

·

∣

∣

∣

∣

G1(isk)

S2(isk)

∣

∣

∣

∣

. (β(sk))
1/2 → 0, sk → ∞,

and hence H ≡ 0.

Now assume that G does not belong to H(E) + zH(E). Recall that dist(sk, T ) & |sk|−N

for some N > 0. Then a simple estimate |G1(t)/S2(t)| . |t|2 dist (t, {sk})−1 implies that

|G(tn)| =
|h(tn)G1(tn)|

|S2(tn)|
. |h(tn)|(|tn| + 1)N+2,

whence
{

G(tn)

(|tn| + 1)N+2E(tn)

}

∈ L2(µ).

Thus choosing m zeros s̃1, . . . , s̃m of G1 and setting Pm(z) = (z − s̃1) . . . (z − s̃m) we

conclude by [9, Theorem 26] that G/Pm ∈ H(E) when m is sufficiently large. Take the

smallest m such that G/Pm /∈ H(E), but G/Pm+1 ∈ H(E). Then G̃ = G/Pm = G2G1/Pm

will be the required generating function satisfying (7.2) with G1/Pm in place of G1. The

completeness of {kλ}λ∈ZG̃
and of its biorthogonal family follow from the fact that |G̃(iy)| &

|y|−m−1|A(iy)|, |y| → ∞. �

8. De Branges spaces with strong M-basis property as Fock-type spaces

In this section we prove Theorem 1.2. The implication (i)=⇒(ii) is obvious.

8.1. Implication (ii)=⇒(iii). We will use the invertibility of Rπ/2. For other values of θ

the proof is analogous. We know that A(iz) ∈ H(E). So, iT = {itn} satisfies the Blaschke

condition
∑

n(1 + |tn|)−1 <∞. Moreover, {kλ}λ∈iT is a Riesz basis of reproducing kernels

in H(E) and hence in the corresponding model space. Therefore, iT is lacunary in both

half-planes C+ and C− (see, e.g., [23, Lemma D.4.4.2]).

We may assume that A(z) =
∏

n

(

1 − z
tn

)

and |tn| > 2. Furthermore,

(8.1)
π2

µn

=
∥

∥

∥

A(z)

z − tn

∥

∥

∥

2

≍
∥

∥

∥
Rπ/2

( A(z)

z − tn

)
∥

∥

∥

2

= π2
∑

k

|A(itk)|2

|A′(tk)|2µk|itk − tn|2
.
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Next we estimate A(itk)
A′(tk)

, tk ∈ [2K , 2K+1]:

∣

∣

∣

∣

A(itk)

A′(tk)

∣

∣

∣

∣

2

= 2|tk|
2
∏

l 6=k

∣

∣

∣

∣

1 − itk/tl
1 − tk/tl

∣

∣

∣

∣

2

& |tk|
2

because sups>0 #{tn : 2s ≤ |tn| < 2s+1} <∞.

From (8.1) we get

1

µn
&

∑

k

|tk|
2

µk|tk − itn|2
≍

∑

|tk|>|tn|

1

µk
+

1

|tn|2

∑

|tk|≤|tn|

|tk|
2

µk
.

So, 1
µn

&
∑

|tk |>|tn|
1
µk

. Now we make use of an elementary lemma from [7]:

Lemma 8.1. ([7, Lemma 5.9]) Let {cn} be a sequence of positive numbers.

(i) If there is a constant C such that
∑n−1

m=1 cm ≤ Ccn for n > 1, then there is a

positive constant δ such that cm/cn ≥ c2δ(m−n) whenever m > n.

(ii) If there is a constant C such that
∑∞

m=n+1 cm ≤ Ccn for every positive integer n,

then there is a positive constant δ such that cm/cn ≤ c2−δ(m−n) whenever m > n.

Applying Lemma 8.1 we conclude that µn ≤ C2−δ(m−n)µm, m > n, for some small δ > 0.

Analogously, µm

|tm|2 ≤ C2−δ(m−n) µn

|tn|2
, m > n. This gives us condition (1.2).

8.2. Implication (iii)=⇒(i). For simplicity we will assume that {tn} is a one-sided pos-

itive sequence. Put

Ω1 =

{

z : |z| ≤
t1 + t2

2

}

, Ωn =

{

z :
tn−1 + tn

2
< |z| ≤

tn + tn+1

2

}

.

For z ∈ Ωn we can estimate A(z):

|A(z)| ≍
|z|n−1

∏n−1
k=1 tk

·
|z − tn|

tn
.

Let ε be a sufficiently small positive number. Put

ϕ(r) = 2 log |A(ir)| + log µn, r ∈ ∪n[(1 − ε)tn, (1 + ε)tn],

and define ϕ(r) = ∞ for other values of r.

The polynomials are dense in the Fock spaces. Since they belong to H(E), we need only

to verify that ‖F‖L2(ν) ≍ ‖F‖E, F ∈ H(E), with ν = e−ϕ(|z|)dm(z). First we check that ν

is a Carleson measure for H(E), that is, ‖F‖L2(ν) . ‖F‖E, F ∈ H(E). We normalize our

measure to pass to an equivalent problem for the space H(T, µ) from [7] (see also Subsection
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2.2): νd(z) = |A(z)|2ν. We conclude from [7, Theorem 1.1] that νd is a Carleson measure

for H(T, µ). Indeed,

νd(Ωn) ≍
|tn|2

µn
,

∫

Ωn

dνd(z)

|z|2
≍

1

µn
.

The sequences t2n
µn

and µn grow exponentially and we obtain the result.

For the reader’s convenience we repeat the arguments from [7] here. Let f(z) =

A(z)
∑

n
anµ

1/2
n

z−tn
be an arbitrary function from H(E), ‖f‖2H(E) = π2

∑

n |an|
2. We have

to verify that
∫

C
|f(z)|2e−ϕ(|z|)dm(z) .

∑

n |an|
2. First,

∫

Ωn

∣

∣

∣

∣

∑

k

akµ
1/2
k

z − tk

∣

∣

∣

∣

2

dνd(z) .

∫

Ωn

dνd(z)

|z|2

(

∑

k<n

|ak|µ
1/2
k

)2

+ |an|
2 + νd(Ωn)

(

∑

k>n

|ak|µ
1/2
k

tk

)2

.
1

µn

(

∑

k<n

|ak|µ
1/2
k

)2

+ |an|
2 +

t2n
µn

(

∑

k>n

|ak|µ
1/2
k

tk

)2

.

Hence,
∫

C

|f(z)|2e−ϕ(|z|)dm(z) =
∑

n

∫

Ωn

∣

∣

∣

∣

∑

k

akµ
1/2
k

z − tk

∣

∣

∣

∣

2

dνd(z)

.
∑

n

1

µn

(

∑

k<n

|ak|µ
1/2
k

)2

+
∑

n

|an|
2 +

∑

n

t2n
µn

(

∑

k>n

|ak|µ
1/2
k

t2k

)2

.

Next we show that the first summand is bounded by C‖a‖2 (the estimate for the last

summand can be proved analogously). Indeed, Hölder’s inequality gives us that

∑

n

1

µn

(

∑

k<n

|ak|µ
1/2
k

)2

≤
∑

n

1

µn

(

∑

k<n

|ak|
2µ

1/2
k

)(

∑

k<n

µ
1/2
k

)

.
∑

k

|ak|
2
∑

n>k

µ
1/2
k

µ
1/2
n

. ‖a‖2.

Next we verify that ν is a reverse Carleson measure for H(E), that is, ‖F‖L2(ν) & ‖F‖E,

F ∈ H(E). We need to prove that
∫

C
|f(z)|2e−ϕ(|z|)dm(z) &

∑

n |an|
2. Put Dn = {z :

εtn/2 ≤ |z − tn| ≤ εtn}. We use the inequalities

∫

Dn

|f(z)|2e−ϕ(|z|)dm(z) &
ε2

µn

∫

Dn

∣

∣

∣

∣

∑

k

akµ
1/2
k

z − tk

∣

∣

∣

∣

2

dm(z)

≥
ε2

µn

∫

Dn

[

µn

t2nε
2
|an|

2 −
C

|z|2

(

∑

k<n

|ak|µ
1/2
k

)2

− C

(

∑

k>n

|ak|µ
1/2
k

tk

)2]

dm(z)

≥ ε4
[

1

ε2
|an|

2 −
C

µn

(

∑

k<n

|ak|µ
1/2
k

)2

− C
t2n
µn

(

∑

k>n

|ak|µ
1/2
k

tk

)2]

.



SPECTRAL SYNTHESIS IN DE BRANGES SPACES 30

Here the constant C depends only on the lacunarity constant infn tn+1/tn. Summing

up these estimates and using the estimates from above for
∑

n
1
µn

(

∑

k<n |ak|µ
1/2
k

)2

and

∑

n
t2n
µn

(

∑

k>n
|ak|µ

1/2
k

tk

)2

we get

∫

C

|f(z)|2e−ϕ(|z|)dm(z) ≥
∑

n

∫

Dn

|f(z)|2e−ϕ(|z|)dm(z)

≥ ε4
[

1

ε2

∑

n

|an|
2 − C

∑

n

|an|
2

]

.

If ε is sufficiently small, we obtain the result.

Finally, we may redefine ϕ(r) for r /∈ ∪n[(1 − ε)tn, (1 + ε)tn] to be finite, but very large,

and still have the comparability of the norms. �

9. M-bases of reproducing kernels with infinite defect

In this section we prove Theorems 1.3 and 1.4. It should be emphasized that the con-

struction of M-bases which are not strong in Theorem 1.1 is done in the reverse order:

first we produce a vector in H(E) with some special properties and then we construct the

corresponding system Λ. This method does not answer the question about the size of the

possible defect of a given nonhereditarily complete system.

We will need the following Proposition which slightly extends (and whose proof simplifies

the proof of) [2, Theorem 1.1].

Proposition 9.1. Let H(E) be a de Branges space with the spectral data (T, µ) and let
∑

n t
2N−2
n µn <∞ for some N ∈ N. Then there exists an exact system {kλ}λ∈Λ of reproduc-

ing kernels in H(E) such that its generating function G satisfies |G(iy)| & |y|−N |A(iy)|,

its biorthogonal system is incomplete and dim {gλ : λ ∈ Λ}⊥ = N .

Proof. Recall that every function f ∈ H(E) has the expansion f(z) = A(z)
∑

n
cnµ

1/2
n

z−tn
,

{cn} ∈ ℓ2. Since
∑

n t
2N−2
n µn < ∞, the mappings ϕl(f) =

∑

n cnt
l
nµ

1/2
n , 0 ≤ ℓ < N , are

bounded linear functionals on H(E). Furthermore,

ϕl(f) = 0, l = 0, 1, . . . , N − 1 ⇐⇒ lim
y→+∞

yl+1 f(iy)

A(iy)
= 0, l = 0, 1, . . . , N − 1.

Let {an} ∈ ℓ2 be such that {antn} /∈ ℓ2,
∑

n ant
l
nµ

1/2
n = 0 for l = 0, 1, . . .N −1, ant

N
n > 0

for all except a finite number of n and either the series
∑

n ant
N
n µ

1/2
n diverges to +∞ or it
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converges and
∑

n ant
N
n µ

1/2
n 6= 0. Put

G(z) = A(z)
∑

n

antnµ
1/2
n

z − tn
.

Then we have

lim
y→+∞

yl
G(iy)

A(iy)
= 0, l = 0, 1, . . .N − 1, lim inf

|y|→+∞
yN

∣

∣

∣

G(iy)

A(iy)

∣

∣

∣
> 0.

Since {an} ∈ ℓ2, but {antn} /∈ ℓ2, the function G does not belong to H(E), but gλ(z) =
G(z)
z−λ

∈ H(E). Without loss of generality (changing slightly the coefficients an if necessary)

we may assume that all zeros of G are simple and put Λ = ZG (note that Λ ∩ T = ∅ if

an 6= 0). By construction we have ϕl(gλ) = limy→+∞ yl G(iy)
A(iy)

= 0, l = 0, 1, . . .N − 1, for any

λ ∈ Λ. The functionals ϕl clearly are linearly independent, whence dim {gλ : λ ∈ Λ}⊥ ≥ N .

On the other hand, the set of functions f(z) = A(z)
∑

n
anµ

1/2
n

z−tn
, {an} ∈ ℓ2, which are

orthogonal to {gλ}λ∈Λ is parametrized by entire functions S such that

G(z)S(z)

A(z)
=

∑

n

anG(tn)

µ
1/2
n A′(tn)(z − tn)

(see Subsection 3.1 or [2, Section 2]). Since S is of zero exponential type (for the generating

function of an exact system of reproducing kernels the functions G/E and G∗/E are in

the Smirnov class in C+) and |S(iy)| = o(|A(iy)/G(iy)|), |y| → ∞, we conclude that S a

polynomial of degree at most N − 1. Hence, dim {gλ : λ ∈ Λ}⊥ ≤ N . �

Proof of Theorem 1.3. 1. Let T ◦ = {tnk
}, µ◦ = µ|T ◦, and let H(E◦) be the corresponding

de Branges space. By Proposition 9.1 there exists an exact system of reproducing kernels

{k◦λ}λ∈Λ◦ in H(E◦) whose generating function G◦ satisfies |G◦(iy)| & |y|−N |A◦(iy)| for some

N . Then, by Proposition 3.4, there exists an M-basis of reproducing kernels in H(E) which

is not a strong M-basis. By Remark 5.1 the defect of the partition Λ = Λ◦ ∪ T̃ (where

T̃ = T \ T ◦) is of dimension exactly N .

2. If T is power separated, then |tn| & |n|ρ for some ρ > 0. Hence, (ii) implies that for

some sequence of indices {nk} and for every N ∈ N we have
∑

k t
2N−2
nk

µnk
< ∞, and the

implication (ii)=⇒(i) is already contained in Statement 1.

To prove the converse, assume that µn & |tn|−M for some M > 0. By (2.4), the space

H(E) is of tempered growth. Then by [3, Theorem 5.3] there exists M = M(N) such that

for any exact system of reproducing kernels {kλ}λ∈Λ and for any partition Λ = Λ1 ∪ Λ2,

Λ1 ∩ Λ2 = ∅ one has def (Λ1,Λ2) ≤M . �
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In the proof of Theorem 1.4 we use the following technical lemma. As usual, for a

sequence Γ, we denote by nΓ its counting function: nΓ(r) = #{γ ∈ Γ : |γ| < r}. For an

entire function f we write nf in place of nZ(f).

Lemma 9.2. Let Γ be a lacunary sequence on R+ and let f be an entire function of zero

exponential type such that

(9.1)

∫ R

0

nf (r)

r
dr = o

(

∫ R

0

nΓ(r)

r
dr
)

, R → ∞

and f ∈ ℓ∞(Γ). Then f is a constant.

Proof. Let Γ = {xn}n∈N and xn+1/xn ≥ eγ > 1, n ≥ 1. Passing to a subsequence, we can

assume that xn+1/xn ≥ e2, x1 ≥ e2 and (9.1) is still valid. Set

Ωn =
{

z : e2n ≤ |z| < e2(n+1)
}

, pn = #(Zf ∩ Ωn),

and

N =
{

k ≥ 1 :
∑

n>1

e−npk+n ≥ 1
}

∪
{

k ≥ 2 : pk−1 + pk + pk+1 > 0
}

.

Finally, let

U(x) =

∫ e2x

0

nΓ(r)

r
dr =

∫ 2x

0

nΓ(es) ds.

Since nΓ(r) → ∞, r → ∞, and #(Γ ∩ Ωk) ≤ 1, we have x = o(U(x)), x→ ∞.

Given x ∈ Γ ∩ Ωk, k /∈ N , we have for some c <∞

|f(x)| =
∏

zn∈Zf

∣

∣

∣

∣

1 −
x

zn

∣

∣

∣

∣

≥
∏

|zn|<e2(k−1)

(

e2k

|zn|
− 1

)

·
∏

|zn|≥e2(k+2)

(

1 −
e2(k+1)

|zn|

)

≥ exp
[

#
{

zn : |zn| < e2(k−1)
}

−
∑

n>1

e−(n−1)pk+n

]

→ ∞, x → ∞.

(We use here that 1 − a2 > exp(−a) for 0 < a < 1/e). Thus, the set Γ \ ∪k∈NΩk is finite.

Hence,

nΓ(e2(k+1)) ≤ #{l : 2 ≤ l ≤ k, pl−1 + pl + pl+1 > 0}

+ #{l : 1 ≤ l ≤ k,
∑

n>1

e−npl+n ≥ 1} +O(1)

≤ nf

(

e2k
)

+ nf

(

e2(k+1)
)

+ nf

(

e2(k+2)
)

+
∑

1≤l≤k

∑

n>1

e−npl+n +O(1)

≤ 3nf

(

e2(k+2)
)

+
∑

n>1

e−nnf

(

e2(k+n+1)e−n
)

+O(1), k → ∞.



SPECTRAL SYNTHESIS IN DE BRANGES SPACES 33

Set

V (x) =

∫ e2x

0

nf(r)

r
dr =

∫ 2x

0

nf (es) ds+O(1), x→ ∞.

By the hypothesis, V (x) = o(U(x)), x→ ∞. Then, integrating the previous inequality, we

get

U(k) ≤ 3V (k + 2) +
∑

n>1

e−nV (k + n+ 1) +O(1), k → ∞.

Since nΓ(r) ≤ 1
2

ln r for large r, we have

U(k + n) = U(k) +

∫ 2(k+n)

2k

nΓ(er) dr ≤ U(k) + (2k + n)n.

Since for any ε > 0 we have V (k+n) ≤ εU(k+n) for sufficiently large k, we conclude that

U(k) ≤ 4εU(k) + cεk + O(1), k → ∞,

for an absolute constant c. Recall that ε is an arbitrary positive number and k = o(U(k)),

k → ∞. Thus, we come to a contradiction. �

Proof of Theorem 1.4. We split the sequence T into three disjoint parts T = T 0 ∪ T 1 ∪ T 2

with the following properties:

(i) Both T 0 and T 1 are positive lacunary sequences.

(ii)
[

tn
2
, 2tn

]

∩ T 1 = ∅ for any tn ∈ T 0, and
[

tn
2
, 2tn

]

∩ T 0 = ∅ for any tn ∈ T 1.

Additionally assume that

(iii) nT 0(r) = o(nT 1(r)), r → ∞.

The proof will consist of several steps. We will successively define the measure µ on the

sets T 0, T 1 and T 2.

Step 1. Construction of a complete system of reproducing kernels with in-

complete biorthogonal of infinite defect. To define the measure µ on T 0, we may

apply to T 0 the following result proved in [5, Theorem 4.2] (see the beginning of the proof

of Theorem 4.2 in [5], where a reformulation in terms of the systems of reproducing kernels

is given):

For any increasing sequence T 0 ⊂ R there exists a measure µ0 =
∑

tn∈T 0 µnδtn such that

the de Branges space H(E0), E0 = A0 − iB0, with the spectral data (T 0, µ0) contains an

exact system of reproducing kernels with the generating function G0, whose biorthogonal

system has infinite-dimensional orthogonal complement.
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In [5, Theorem 4.2] it is essential that the space H(E0) had some additional properties,

and its proof is rather involved. Below (Step 2) we present an explicit construction of µ0

and G0 using a simplified version of the construction from [5, Theorem 4.2].

It follows both from the construction in [5] and from our arguments in Step 2 that

µn ≤ 1, tn ∈ T 0, and, furthermore, that

(9.2)

∣

∣

∣

∣

A0(z)

G0(z)

∣

∣

∣

∣

≤ C2|W (z)|

(

|z|2 + 1

|Im z|

)2

, z /∈ R,

for some entire function W of zero exponential type and with real zeros, such that nW (r) =

o(nT 0(r)), r → ∞ (see [5, inequality (4.4)]).

Step 2. An explicit construction of µ0 and G0. Let A0 be the canonical product

of zero genus with the zero set T 0. Then we may choose a zero genus canonical product D

with lacunary real zeros such that ZD ∩ T 0 = ∅, for any N > 0,

|D(tn)| . |tn|
−N |(A0)′(tn)|, tn ∈ T 0,

and |D(iy)| . |y|−N |A0(iy)| on one hand, and

|A0(z)/D(z)| . |W (z)|, dist (z,ZD) ≥ 1,

where W is an entire function satisfying nW (r) = o(nT 0(r)), r → ∞, on the other hand.

Put

G0(z) = A0(z)
∑

tn∈T 0

tnD(tn)

(A0)′(tn)(z − tn)
= zD(z), z ∈ C,

µn =
n2|D(tn)|2

|(A0)′(tn)|2
. 1, tn ∈ T 0,

and define the de Branges space H(E0), E0 = A0 − iB0, with the spectral data (T 0, µ0),

µ0 = (µn). Then it is easy to see that G0 /∈ H(E0), g0λ = G0/(·−λ) ∈ H(E0), λ ∈ Λ0, where

Λ0 is the zero set of G0. Furthermore, dim {g0λ : λ ∈ Λ0}⊥ = ∞ because for the bounded

functionals ψl(f) = limy→+∞ yl+1f(iy)/A0(iy), l ≥ 0 (see the proof of Proposition 9.1), on

H(E0) we have ψl(g
0
λ) = 0, λ ∈ Λ, by the choice of the function D.

It remains to prove thatG0 is the generating function of a complete system of reproducing

kernels in H(E0). If it is not the case, then there exists an entire function H such that

HG0 ∈ H(E0). Hence, H is of zero exponential type, its growth is majorized by that of

A0/D away from the zeros of A0 and D, and, thus, by the growth of the entire function

W , i.e., nH(r) = O(nW (r)) = o(nT 0(r)), r → ∞. Finally,

∑

tn∈T 0

|tnD(tn)H(tn)|2

µn|(A0)′(tn)|2
=

∑

tn∈T 0

t2n|H(tn)|2

n2
<∞,
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whence, H(tn) → 0, tn ∈ T 0, n → ∞. Applying Lemma 9.2 to Γ = T 0 and f = H we

conclude that H ≡ 0.

Step 3. Defining the measure µ on T 1. Let µ1 be defined on T 1 by µn = 1, tn ∈ T 1.

Consider the de Branges space H(Ẽ) with the spectral data (T 0 ∪ T 1, µ0 + µ1). Let (T̃ , µ̃)

be some other spectral data for H(Ẽ) sufficiently close to (T 0 ∪ T 1, µ0 + µ1). We claim

that

µ̃
(

[tn − 1, tn + 1]
)

& 1, tn ∈ T 1.

Indeed, let tn ∈ T 1. It follows from simple estimates of the derivative of the inner function

ΘẼ based on formula (2.4) that |Θ′
Ẽ

(t)| ≍ 1, |t − tn| ≤ 2. Hence, if the spectral data

(T̃ , µ̃) correspond to some α sufficiently close to −1 (recall that we assume canonically

that (T 0 ∪ T 1, µ0 + µ1) correspond to α = −1), then there exists a point t̃n ∈ T̃ in the

interval [tn − 1, tn + 1] such that |Θ′
Ẽ

(t̃n)| ≍ 1.

Step 4. Defining the measure µ on T 2. We can choose the spectral data (T̃ , µ̃) in

Step 3 so that additionally T̃∩T 2 = ∅. Now we take µn for tn ∈ T 2 to be very small positive

numbers. Namely, if we denote by H(E) the de Branges space with the spectral data (T, µ)

and by ΘE the corresponding inner function, we need to choose µn for tn ∈ T 2 so small that

for some other spectral data (U, ν) for H(E) there exists a point un ∈ [t̃n−1, t̃n+1]∩U with

|Θ′
E(un)| ≍ 1. This is clearly possible since adding to µ a small point mass at some point

x perturbs very slightly the solutions of the equation ΘE(t) = β ∈ T and the derivative

|Θ′
E(t)| outside a small neighborhood of x.

Thus, we have constructed a de Branges space H(E) with the spectral data (T, µ) such

that for some other spectral data (U, ν) for H(E) we have ν([tn − 2, tn + 2]) & 1, tn ∈ T 1

(recall that ν({un}) = 2π/|Θ′
E(un)| ≍ 1). If E = A− iB, then we can write A = A0A1A2,

where A0, A1 are canonical products of zero genus with the zero sets T 0 and T 1, respectively,

and A2 is some entire functions with the zero set T 2.

Step 5. Construction of the set Λ. By construction, the space H(E0) contains

an exact system of reproducing kernels {k0λ}λ∈Λ0 with the generating function G0 whose

biorthogonal system has infinite-dimensional orthogonal complement, and, thus, there ex-

ists an infinite-dimensional subspace of vectors a0 = {a0n} ∈ ℓ2 such that

G0
1(z)S

0
1(z)

A0(z)
=

∑

tn∈T 0

a0nG
0(tn)

µ
1/2
n (A0)′(tn)(z − tn)

,
S0
2(z)

A0(z)
=

∑

tn∈T 0

a0nµ
1/2
n

z − tn

for some entire functions S0
1 and S0

2 depending on a0. Multiplying these equations by A1A2

as in the proof of Proposition 3.4, we conclude that the system {kλ}λ∈T 1∪T 2 ∪{gλ}λ∈Λ0 has

an infinite-dimensional orthogonal complement in H(E). Put Λ = Λ0 ∪T 1 ∪T 2. It is clear
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that the system {kλ}λ∈Λ is an exact system of reproducing kernels in H(E) (see Remark

5.2) and G = G0A1A2 is its generating function.

Step 6. Completeness of the biorthogonal system. It remains to show that the

system {G/(· − λ)}λ∈Λ biorthogonal to {kλ}λ∈Λ is complete in H(E). We cannot apply

Proposition 3.4 since we do not have the condition |G0(iy)| & |y|−N |A0(iy)| for some

N > 0 (it is a crucial property of the construction in [5] or in Step 2 that G0/A0 decreases

super-polynomially along the imaginary axis). We apply another argument from [5].

Let (U, ν), U = {un}, be the spectral data for H(E) constructed above. They correspond

to the function Eα = αE−E∗ for some α ∈ T, α 6= −1. By the arguments from Subsection

3.1, the system {G/(·−λ)}λ∈Λ is incomplete in H(E) if and only if there exists a sequence

{cn} ∈ ℓ2 and a nonzero entire function V such that

G(z)V (z)

Eα(z)
=

∑

n

cnG(un)

ν
1/2
n E ′

α(un)(z − un)
,

where V (un) = ν
−1/2
n cn and V ∈ L2(ν). Since

G

Eα
=
G0

A0
·
A

Eα
=
G0

A0
·

1 + ΘE

ΘE − α

and A0/G0 satisfies (9.2), we conclude that |V (z)| . (|z| + 1)N |W (z)|/|Im z|M , for some

M,N > 0. Here we used the fact that 1 − |ΘE(z)| ≥ (1 + |z|2)−1Im z, z ∈ C+. Now it

follows from standard estimates based on the Jensen formula (see, e.g., [5, Section 4] for

details) that the counting function nV satisfies
∫ R

0

nV (r)

r
dr = o

(
∫ R

0

nW (r)

r
dr

)

, R → ∞.

Since nW (r) = o(nT 0(r)) and T 0 is lacunary, we conclude, using (iii), that nV (r) =

o(nT 1(r)), r → ∞.

Also, since V ∈ L2(ν) and ν([tn − 2, tn + 2]) & 1, tn ∈ T 1, we have inf [tn−2,tn+2] |V | . 1.

Thus, by Lemma 9.2, V is a constant, and, finally, V ≡ 0, since ν(R) = ∞. This proves

the completeness of the biorthogonal system. �
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