Conformational and Phase Transitions in DNA—Photosensitive Surfactant Solutions: Experiment and Modeling


1 Faculty of Physics, Department of Molecular Biophysics, Saint Petersburg State University, Petredvorets, Ulyanovskaya str. 1, 198504 St. Petersburg, Russia
2 Experimental Physics, Institute of Physics and Astronomy, University of Potsdam, Karl-Liebknecht-str. 24/25, 14469 Potsdam-Gohl, Germany
3 Faculty of Biology, Department of Biophysics, Lomonosov Moscow State University, Leninskie Gory 1/12, 119991 Moscow, Russia
4 A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory 1/40, 119991 Moscow, Russia

Received 11 July 2014; accepted 7 October 2014
Published online 10 October 2014 in Wiley Online Library (wileyonlinelibrary.com). DOI 10.1002/bip.22575

ABSTRACT:
DNA binding to trans- and cis-isomers of azobenzene containing cationic surfactant in 5 mM NaCl solution was investigated by the methods of dynamic light scattering (DLS), low-gradient viscometry (LGV), atomic force microscopy (AFM), circular dichroism (CD), gel electrophoresis (GE), flow birefringence (FB), UV–Vis spectroscopy. Light-responsive conformational transitions of DNA in complex with photosensitive surfactant, changes in DNA optical anisotropy and persistent length, phase transition of DNA into nanoparticles induced by high surfactant concentration, as well as transformation of surfactant conformation under its binding to macromolecule were studied. Computer simulations of micelles formation for cis- and trans-isomers of azobenzene containing surfactant, as well as DNA-surfactant interaction, were carried out. Phase diagram for DNA-surfactant solutions was designed. The possibility to reverse the DNA packaging induced by surfactant binding with the dilution and light irradiation was shown. © 2014 Wiley Periodicals, Inc. Biopolymers 103: 109–122, 2015.

Keywords: DNA-surfactant complexes; light-induced DNA de-compaction; phase diagram; DNA volume and persistent length

This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of any preprints from the past two calendar years by emailing the Biopolymers editorial office at biopolymers@wiley.com.

INTRODUCTION
Manipulation with high molecular DNA and investigation of its conformational possibilities after the addition of different compounds into the solution not only provide new knowledge about the structure and molecular basics of functions of the main biopolymer, but also allow to find a new approach for the construction of nanosystems having peculiar properties. Indeed, due to the unique charge density, chain rigidity, and double stranded structure of nucleic acid with hydrophobic bases inside the helix and hydrophilic sugar-phosphate carcass with high negative charge outside