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Abstract—Zircon fission track analysis was carried out for Mesoproterozoic to Lower Paleozoic sedimentary
rocks of the South-Verkhoyansk sector of the Verkhoyansk fold-and-thrust belt. The age of thrusting stages
was constrained in this region. The early stage of deformations dated as 160 Ma, the main stage dated as from
70 to 90 Ma. Thermal history modeling on apatite allowed us to establish the youngest stage of erosion from
20 to 30 Ma, which indirectly indicates the reactivation of tectonic processes in the region at the boundary of
Paleogene and Neogene. The degree of heating of the rocks increases in the east direction, and if in the frontal
zone the fission tracks were annealed only in apatite, then in the Sette-Daban zone fission tracks were
annealed both in apatite and in zircon.
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INTRODUCTION
The South Verkhoyansk sector is included in the

Verkhoyansk fold-and-thrust belt and is located in its
southern part (Fig. 1). The sector extends roughly
from north to south along the Aldan River, separated
from the Siberian Platform by a range of frontal
thrusts. This sector consists of three tectonic zones
characterized by different deformations and rocks of
various age [8]. The Verkhoyansk fold-and-thrust belt
formed under great coeval Late Mesozoic tectonic
events such as the collision of the Siberian paleoconti-
nent with the Kolyma–Omolon terrane located east of
it and accretion processes along the Okhotsk active
continental margin [3, 8, 11]. The age of deformations
is constrained by the following data.

(1) The fold-and-thrust structure of the Siberian
southeastern margin is cut by granites with a crystal-
lization age of 92–123 Ma obtained by 40Ar/39Ar dat-
ing [34].

(2) The Priverkhoyansk foredeep formed in the
frontal zone of the Verkhoyansk fold-and-thrust belt
in the Late Jurassic–Early Cretaceous [6, 32, 38]; it
was filled with clastic material removed from the Sibe-
rian Platform [2, 16].

(3) Single apatite fission track dates in the Kyllakh
zone that evidence erosion of the thrust sheets 70–
80 Ma [1, 9, 40].

These data make it possible to approximately esti-
mate the age of the deformation stages. For a more
detailed analysis of thrust and deformation processes,
we used: apatite (AFT) and zircon fission tracks (ZFT)
dating. This method helps to date the cooling stages of
minerals commonly related to areas of uplift and ero-
sion and determine the erosion rate. In addition, using
of differences in the closure temperatures of apatite and
zircon and the method of thermal modeling allows
specifying the burial depths and thermal history of the
sedimentary complexes.

Terrigenous complexes containing apatite and zir-
con are abundant in the Verkhoyansk fold-and-thrust
belt. The formation processes of the fold-and-thrust
structures, well-defined on maps on a scale of 1 :
1000000 or larger [13], resulted in large uplifts and
their subsequent erosion, recorded by the track sys-
tems.

The investigation objective is to establish:
(1) age of deformations in the South Verkhoyansk

sector;
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Fig. 1. Geological map of study area and its position on tectonic map of Northeast Asia (using data of [8, 10, 11, 13]). Tectonic
zones: (K) Kyllakh, (SD) Sette-Daban, (SV) South Verkhoyansk. Numerals mark frontal thrusts on the margin of Siberian Plat-
form: (1) Kyllakh, (2) Ebeike-Khayata. (1) Jurassic and Cretaceous; (2) Carboniferous and Permian; (3) Ordovician–Silurian–
Devonian; (4) Vendian and Cambrian; (5) Middle and Upper Riphean; (6) Lower Riphean; (7) overthrusts; (8) marginal suture
of Siberian Platform; (9) sampling points. 
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Fig. 2. Position of studied samples in composite stratigraphic sections of Kyllakh and Sette-Daban zones in South Verkhoyansk
region (using data of [7, 10, 13, 15] as amended). Names of formations and groups (columns). Formations composed mainly of
rocks: carbonate (gray), terrigenous (white). (1, 2) Fission track analysis in (1) apatite (AFT); (2) zircon (ZFT). 
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(2) burial depth and amplitude of erosion of rocks
in different parts of the South Verkhoyansk sector;

(3) variations in thickness and structure of the
Paleozoic sedimentary basin in the transition zone
from the shelf of the Siberian paleocontinent to its
slope according to the erosion rate data.

GEOLOGY

The South Verkhoyansk sector consists of three
tectonic zones: the Kyllakh, Sette-Daban, and South
Verkhoyansk [8]. The Kyllakh zone is traced along the
margin of the platform and consists of Riphean, Ven-
dian, Cambrian, and Ordovician terrigenous–carbon-
ate sedimentary rocks. The Sette-Daban zone occu-
pies the axial position of the South Verkhoyansk sector
and consists mainly of Vendian, Lower, and Middle
Paleozoic carbonate deposits. The South Verkhoyansk
zone is dominated by Upper Paleozoic–Mesozoic ter-
rigenous rock sequences. The study area is located in
the central part of the South Verkhoyansk sector of the
Verkhoyansk fold-and-thrust belt and covers the Kyl-
lakh and Sette-Daban zones.

The studied part of the sedimentary section includes
Riphean and Lower Paleozoic deposits (Fig. 2). The
Lower Riphean sedimentary rocks of the Uchur Group
outcrop in the core of the Gornostakh anticline and on
the Ebeike-Khayata and Kyllakh ridges. They consist of
multicolored mostly terrigenous and terrigenous–car-
bonate sediments. The bottom of the Uchur Group is
dominated by arkose and oligomictic sandstone, while
its top in the Gornostakh anticline is dominated by ter-
rigenous–carbonate cyclites. Analysis of the sedimen-
tary structures has shown that the Uchur Group was
deposited in near shore conditions in the intracratonic
basin, which deepened eastward and received material
from platform areas [5, 30].

Middle Riphean sedimentary rocks, which uncon-
formably overlap Lower Riphean strata, are widespread
within the Kyllakh zone (Fig. 2). Clastic rocks predom-
inate in the Talyn Formation at the bottom of the Aim-
chan Group and in the Totta Formation, marking the
beginning of the Kerpyl Formation and a new sedimen-
tation cycle. Other Middle Riphean formations (Svet-
lyi, Malgin, and Tsipanda) are composed mainly of car-
bonate rocks. The Talyn Formation consists largely of
quartz horizontally and cross-bedded sandstone with
well-sorted rounded grains. In the Talyn, the predomi-
nant shallow sea settings were replaced by deeper water
by the beginning of the deposition of the Svetlyi forma-
tion. In the Totta Formation, quartz and subarkose
poorly sorted sandstone are replaced upward the section
by finer-grained sandstone and shale.

The Upper Riphean deposits begin with the clay–
carbonate sequence of the Lakhanda Group. The
Upper Riphean sandstones in the study area are
GEOTECTONICS  Vol. 52  No. 6  2018
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observed only in the overlying Ui Group. Abundant
sandstone, immature in the composition of clastic
fraction, were deposited under relatively deep-water
conditions in a rift setting [10, 30, 31]. The most
complete sections of the Ui Group occur in the west-
ern limb of the Gornostakh anticline and in the
hanging walls of regional overthrusts.

Vendian deposits overlying various Riphean for-
mations with an angular unconformity and deep ero-
sion consist of shallow-marine quartz sandstone,
dolomite, and limestone, which form the groundmass
of the section. Late Vendian–Early Cambrian rifting
in the eastern margin of the Siberian paleocontinent
led to the formation of a passive margin [31]. Lime-
stone, marl, and argillite were deposited there in the
Cambrian. Further east, shelf sediments are replaced
by deep-water slope deposits of the Middle and Upper
Cambrian and Lower Ordovician, which are replaced
upsection again by shallow carbonate strata of the
Middle and Upper Ordovician, Silurian, and Lower
Devonian [7, 14].

SAMPLING

Sampling for fission track analysis was carried out
from natural outcrops of Riphean, Vendian, and
Lower Paleozoic terrigenous rocks in the Belaya River
basin along the roughly EW-trending profile, which
crosses the Kyllakh and Sette-Daban zones across
their strike. Data are given on the location and age for
the studied sandstone samples (Table 1; Figs. 1, 2).

The selected sandstone samples cover a strati-
graphic interval from the Lower Riphean to the Ordo-
vician. Lower and Middle Riphean strata were sam-
pled in the Kyllakh zone, in the hanging walls of the
Kyllakh and Ebeike-Khayata overthrusts, and also
within the Gornostakh anticline (Fig. 1). The eastern
limb of the anticline is overlain by complexly
deformed Vendian–Lower Paleozoic strata of the
Sette-Daban zone, from which Vendian, Cambrian,
and Ordovician rock samples were taken. In general,
zircon tracks were studied in 11 samples; in five sam-
ples for apatite tracks (Table 1; Fig. 2).

RESEARCH METHODS

238U fission track dating is used to determine the
rock age below the closure temperature of the track
system in U-bearing minerals, of which zircon and
apatite are the most popular for studying the exhuma-
tion history of fold-and-thrust belts [21, 24]. The great
importance of these minerals is related to their wide-
spread occurrence in various igneous, metamorphic,
and sedimentary rocks, as well as to the high uranium
and thorium concentrations. The closure temperature
of the track system is estimated at ~110°С for apatite
and at ~240 ± 30°С for zircon [26, 39].

The minerals were dated by the conventional
method with using an external detector and ζ-calibra-
GEOTECTONICS  Vol. 52  No. 6  2018
tion [25, 28]. Rock crushing and mineral separation
for fission track dating were recovered at the Institute
of Precambrian Geology and Geochronology, Rus-
sian Academy of Sciences (St. Petersburg, Russia);
specimen mounting and fission track dating were per-
formed at the Laboratory of Thermochronology and
Archaeometry, Heidelberg University (Heidelberg,
Germany). The samples were irradiated in the
research reactor FRM II (Munich, Germany) in the
presence of a glass neutron dosimeter with known ura-
nium content (CN1 and CN5 [18]) together a Durango
[36] and a Fish Canyon tuff [37] age standards for apa-
tite and zircon, respectively. All track ages were calcu-
lated as central ages [12, 23] with an error of ±1σ. All
ages and radial plots were calculated and drawn using
computer code TRACKKEY software [20, 22]. The
ζ-value of 345 ± 13 for CN5 (apatite) and 123.5 ± 6 for
CN1 (zircon) were gained using Durango apatite and
Fish Canyon zircon age standards.

In contrast to classical geochronology, when the
measured age corresponds to the mineral crystalliza-
tion age, the apatite fission track system retains infor-
mation about the mineral cooling process in the tem-
perature range between the complete disappearance
and relative stability of the tracks [35]. This tempera-
ture range is a partial annealing zone, corresponding
to 60–110°C for apatite [25]. Quantitative estimation
of the temperature–time conditions that control fis-
sion track annealing in apatite makes it possible to
interpret the ages, taking into account the relationship
of the decreasing track length and density with the
thermal history of a sample [27, 33]. In our study, we
performed the estimation by numerical modeling in
the HeFTy software [29].

FISSION TRACK DATING DATA

The results of apatite and zircon fission track dat-
ing (AFT and ZFT) are given in Tables 2 and 3 and
Fig. 3. The apatite track ages occur in a narrow range
of 67.5–86.5 Ma, whereas the zircon track ages are in
a wide range from 90 to 572 Ma. All obtained age val-
ues can be subdivided into four groups:

(1) ≥273 Ma,

(2) ≈162 Ma,

(3) 115–131 Ma,

(4) ≤92 Ma.

The >273 Ma group includes four samples taken
from the Kyllakh and Ebeike-Khayata ridges (Fig. 2,
samples SM-14-10, SM-14-11, Ch-15-51, and
Ch-15-52). All four samples are characterized by a
wide age range of individual grains, reaching 2.5 Ga.
Values more ancient than the sedimentary stratum
characterize source areas. The age values mostly cor-
respond to the range of 200–800 Ma and thus can be
interpreted as partially annealed tracks. In samples
SM-14-10 and SM-14-11 from the Kyllakh ridge, the
spread of age values in some grains is wider and the
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Table 1. Summary data on sandstone samples from South Verkhoyansk sector

(AFT) Apatite fission track dating, (ZFT) zircon fission track dating; (f/g) fine-grained, (m/g) medium-grained, (c/g) coarse-grained;
(pn) Pioner Formation, (kl) Kyllakh Formation, (blg) Bilegichen Formation, (tl) Talyn Formation, (sv) Svetlyi Formation, (tt) Totta
Formation, (jud) Yudoma Group, (ul) Ulakh Group. Stratigraphic location of samples (Fig. 2).

Sample Sample location N E
Absolute 

elevation, m
Rock type Rock age Method

Kyllakh Ridge
SM-14-10 Kyllakh Ridge, 

Aldan River

61°34′03.6″ 135°33′26.3″ 180 c/g sandstone R2 tt AFT

ZFT

SM-14-11 Kyllakh Ridge, 

Aldan River

61°34′30.5″ 135°33′17.5″ 140 m/g sandstone R2 tl AFT

ZFT

Ebeike-Khayata Ridge
Ch-15-51 Belaya River, 

Ebeike-Khayata Ridge

61°43′36.5″ 136°23′47.9″ 990 c/g sandstone R1 kl ZFT

Ch-15-52 Belaya River, 

Ebeike-Khayata Ridge

61°42′8.8″ 136°21′45.3″ 520 c/g sandstone R2 blg ZFT

Gornostakh anticline
SM-14-02 Svetlyi Cr., 

Gornostakh anticline

61°21′21.9″ 137°07′48.3″ 710 m/g sandstone R1 pn ZFT

SM-14-03 Svetlyi Cr., 

Gornostakh anticline

61°22′03.0″ 137°11′20.8″ 630 m/g sandstone R2 tt AFT

ZFT

SM-14-07 Belaya River near 

Gornostyl River mouth

61°27′50.9″ 136°58′53.1″ 460 f/g sandstone R2 tt AFT

ZFT

Ch-15-36 Svetlyi Cr., 

Gornostakh anticline

61°21′46.9″ 137°09′20.0″ 650 m/g sandstone R2 tl ZFT

Ch-15-38 Svetlyi Cr., 

Gornostakh anticline

61°22′0.1″ 137°10′18.7″ 650 f/g sandstone R2 sv ZFT

Sette-Daban zone
SM-14-01 Belaya River near 

Suordakh River mouth

61°22′25.8″ 137°19′05.8″ 550 c/g sandstone V jud AFT

ZFT

S-15-24 Belaya River near 

Setan’ya River mouth

61°24′03.4″ 137°43′17.2″ 610 Calcareous 

sandstone

Є2 ul ZFT

411 Rozovyi Cr.–Right 

Sakhara River

60°56′30.0″ 137°34′30.0″ 900 Calcareous 

sandstone

O2 ZFT

Table 2. Apatite fission track dates

(ρs) Spontaneous track density of 238U, (Ns) number of counted spontaneous fission tracks, (ρi) induced track density of 235U,
(Ni) number of counted induced fission tracks, (P (χ2)) chi-square probability in percentage.

Sample Grains, pcs
ρs (Ns)

(×106 cm–2)

ρi (Ni)

(×106 cm–2)
P (χ2)

Age, Ma

± 1σ
Average track length, μm 

(number of tracks)

Kyllakh Ridge
SМ-14-10 3 5.15 (40) 14.54 (113) 96 86.5 ± 16.3 –

SМ-14-11 12 7.76 (458) 24.45 (1443) 99 77.7 ± 5.2 13.6 ± 0.74 (19)

Gornostakh anticline
SМ-14-03 20 5.22 (380) 16.03 (1167) 100 76.4 ± 5.4 –

SМ-14-07 17 2.43 (178) 8.77 (644) 99 67.5 ± 6.3 13.2 ± 0.72 (15)

Sette-Daban zone
SМ-14-01 20 3.71 (256) 11.26 (777) 99 80.1 ± 6.6 13.1 ± 0.65 (13)



CONSTRAINING AGE OF DEFORMATION STAGES IN THE SOUTH-WESTERN PART 639

Table 3. Zircon fission track dates

(ρs) Spontaneous track density of 238U, (Ns) number of counted spontaneous fission tracks, (ρi) induced track density of 235U,
(Ni) number of counted induced fission tracks, (P (χ2)) chi-square probability in percent.

Sample Grains, pcs
ρs (Ns)

(×106 cm–2)

ρi (Ni)

(×106 cm–2)
P(χ2)

Age, Ma

±1σ U, g/t

Kyllakh Ridge
SМ-14-10 20 230.1(1832) 14.2 (113) 76 424 ± 46 113.60

SМ-14-11 10 195.1 (531) 8.8 (24) 94 572 ± 123 65.57

Ebeike-Khayata Ridge
Ch-15-51 16 189.9 (1037) 18.5 (101) 99 273 ± 31 140.43

Ch-15-52 14 204.1 (825) 18.1 (73) 72 300 ± 40 132.66

Gornostakh anticline
SМ-14-02 20 99.8 (1520) 23.16 (352) 97 115.5 ± 8.9 174.46

SМ-14-03 20 101.8 (1370) 20.9 (281) 80 130.8 ± 11.1 169.34

Ch-15-36 20 120.9 (1400) 26.1 (301) 98 124.9 ± 10.0 187.14

Ch-15-38 21 121.8 (947) 26.2 (204) 98 124.9 ± 11.4 205.38

Sette-Daban zone
SМ-14-01 20 130.2 (1443) 21.37 (237) 92 162.3 ± 13.8 170.66

S-15-24 16 138.4 (975) 41.6 (293) 5 89.6 ± 8.7 300.70

411 21 104.1 (1071) 30.5 (314) 54 92.4 ± 7.6 236.19
average age is more ancient than in samples Ch-15-51
and Ch-15-52 from the Ebeike-Khayata Ridge
(Tables 2, 3). These data indicate that the studied Kyl-
lakh samples underwent less intensive heating than the
Ebeike-Khayata samples.

The samples from the 162 and 115–130 Ma age
groups are characterized by a much lower dispersion
and are regarded as having undergone heating above a
closure temperature of the zircon track system after
sedimentation of host terrigenous rocks. These ages
were established in five samples: one sample from the
western part of the Sette-Daban zone and four sam-
ples from the Gornostakh anticline. The obtained age
range is interpreted as the time when the samples
cooled below the closure temperature of the zircon
track system.

Age determinations of 67–92 Ma were obtained in
two samples from the Sette-Daban zone in zircon and
in five samples from the Kyllakh and Sette-Daban
zones in apatite. The distribution features of the track
ages of individual grains in these samples indicate that
the obtained determinations represent the age of cool-
ing of samples below the closure temperature of the
track systems. All grains belong to the same age popu-
lation. The zircon track ages reach 90 and 92 Ma,
while the apatite track ages are in the range of 67.5–
86.5 Ma. The difference in ages is likely related to dif-
ferent closure temperatures of the track systems in
apatite and zircon.

The obtained numerical modeling data based on the
apatite track length distribution in three samples are
evidence for two-stage cooling of the samples (Fig. 4).
GEOTECTONICS  Vol. 52  No. 6  2018
The first stage corresponds to the obtained ages of 70–
80 Ma for apatite and is characterized by rapid cooling
from 100–120°C to about 60°C. The whole region was
not subjected to thermal events until the beginning of
the second stage of about 30 Ma.

The second stage, recorded in the range of 20–
30 Ma, is characterized by rapid cooling from about
50–60°C to temperatures characteristic of the Earth’s
surface.

DISCUSSION

The obtained apatite and zircon track dates make
allow conclusions on the age of uplift of the region and
related deformation stages, as well as the amplitude of
erosion of overthrust plates. Most samples were taken
within a relatively small range of heights from 460 to
710 m above sea level (Table 1; Fig. 5); only two sam-
ples (SM-14-10 and SM-14-11) were taken at heights
of 900–990 m and two samples (Ch-15-51 and 411) at
heights of 140–180 m, respectively (Table 1; Fig. 1).
These samples occur at a considerable distance from
each other in different tectonic structures and proba-
bly for this reason, the track age is independent of the
hypsometric position of the sample, in contrast to
many regions of the Earth [17, 19].

Age of Deformations

In the studied structures of the western part of the
South Verkhoyansk sector, the deformation track age
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Fig. 3. Radial diagrams and histograms of age distribution for representative samples from Kyllakh Ridge (SM-14-11), Gornostakh
anticline (Ch-15-36), and Sette-Daban zone (411) dated by zircon fission tracks and sample from Gornostakh anticline (SM-14-01)
dated by apatite fission tracks. Radial diagrams show measurement accuracy of individual grains along X axis and their standard error
along Y axis [22]. Histograms indicate peak values calculated in HeFTy software [29]. 
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Fig. 4. Thermal modeling results obtained in HeFTy software [29]. (a) Diagram of thermal evolution from apatite fission track
dating data. (APAZ) Apatite partial annealing zone. Statistical probability (according to [29]): (1) good, 50%; (2) acceptable, 5%;
(3) optimal. (b) Length distribution of confined fission tracks in apatite. 
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Fig. 5. Age intervals according to fission track dating data
on samples from Kyllakh and Sette-Daban zones.
(SV) South Verkhoyansk zone. (1–4) ZFT age intervals:
(1) track system not detected; (2) 162 Ma; (3) 115–131 Ma;
(4) younger than 92 Ma; (5–6) AFT age intervals: (5) 80–
90 Ma; (6) 65–80 Ma. 
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can only be subdivided into three age groups (Table 4;
Fig. 6):

(1) 162 Ma,

(2) 115–130 Ma,

(3) 67–92 Ma.

The beginning of thrusting in this region is defined
by a Vendian sandstone sample from the western part
of the Sette-Daban zone (SM-14-01), which is char-
acterized by the most ancient ZFT date of 162 ± 14 Ma.
Interpretation of this age as a tectonic event is also

confirmed by the 40Ar/39Ar dates of metamorphosed
schists from the Sette-Daban zone [40]. The second
thrusting phase occurred in the range of 115–130 Ma,
which is reflected in the ZFT dates of samples from
the Gornostakh anticline. ZFT ages of 90–92 Ma for
the Cambrian and Ordovician samples reflect the last
and, apparently, major phase of uplifting and erosion
of the mountain system, which lasted to about 70 Ma,
recorded by AFT ages. The apatite fission track dates
are similar everywhere: from 86 to 67 Ma. This means
that uplifting and erosion occurred in this age range
almost simultaneously throughout the studied region.
A slight westward rejuvenation of AFT ages (Table 4)
is observed on the border of the Kyllakh and Sette-
Daban zones, which can be explained by earlier exhu-
mation of the interior of the fold-and-thrust belt.

According to thermal apatite modeling with track
length data (Fig. 4), exhumation above the closure iso-
therm in apatite occurred in two stages. The first
phase, corresponding to the AFT dates, is the forma-
tion of a major overthrust with subsequent erosion of
mountain structures. The second phase is less pro-
nounced in the inversion models and is limited to the
age range of 20–30 Ma. Within the Kyllakh zone,
there are no geological evidence for events of this age,
but in the Lower Aldan depression located further
north, the sequence of conglomerates with a thickness
of a few hundreds of meters was deposited in the Oli-
gocene, approximately corresponding to the age of the
considered phase [4].

Amplitude of Erosion
The amplitude of erosion can be estimated by tak-

ing into account the closure temperatures for different
Table 4. Summary table of fission track dating data, Ma

Method

Kyllakh zone

Kyllakh Ridge Ebeike-Khayata Ridge

AFT
86.5

77.7
No data

ZFT Not reestablished
thermal systems. With a constant heat flow and absence
of large intrusions, the closure temperature of the fis-
sion track system corresponds to a certain depth. In
the considered region, Mesozoic and Cenozoic intru-
sions are absent or they occur as sporadic basic dikes
[13, 15]; they could not have considerably affected the
average heat f low values. Larger granite intrusions,
which could have caused variations in heat f low, are
located further to the east of the Sette-Daban zone at
a distance of more than 40 km from the easternmost
sampling point. Taking this into account, the geother-
mal gradient is assumed to be max 30°С/km.
GEOTECTONICS  Vol. 52  No. 6  2018

Sette-Daban zone
Gornostakh anticline

west east west east

67.5 76.4 80.1 No data

No data

115.5

124.9

130.8

162.3
92.4

89.6
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Fig. 6. Schematic section through Kyllakh and Sette-Daban zones along Belaya River with AFT and ZFT dating results, con-
structed using data of [10, 13, 32]. (1–4) Riphean: (1) undivided, (2) lower, (3) middle, (4) upper; (5) Vendian and Cambrian;
(6) Ordovician–Devonian; (7) Jurassic; (8) faults; (9) sampling points with AFT and ZFT ages. 
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With this geothermal gradient, when the apatite

fission track system is reset, and the zircon track sys-

tem is not reset in the same sample, it means that the

sample was heated to a temperature of 110–240°C and

uplifted from a depth of approximately 3.5–8 km. If

the zircon track system is also reset in this sample,

then the upper limit is early metamorphic facies or
40Ar/39Ar mica ages. In turn, if the apatite fission track

system is not reset in this sample, then it means that

the sample was not heated above 110°С, and the

amplitude of erosion reached max ~3.5 km.

Our paleogeographic profile shows the relation-

ships applied to the study area (Fig. 7), indicating the

location of the apatite and zircon fission track anneal-

ing zones and the ages when these zones were inter-

sected by the corresponding samples. At present, all

samples were on the Earth’s surface and, therefore,

their burial depths shown in the profile characterize

the amplitude of erosion. The zircon fission track sys-

tem has not been reset in the frontal part of the fold-

and-thrust belt. This is indicative of rock heating

below the temperature of ~240 ± 30°С necessary for

zircon fission track annealing. The samples taken on

the Ebeike-Khayata Ridge are characterized by some

rejuvenation of zircon ages, but this is no more than

the samples entering the zone of partial fission track

annealing. The data obtained from apatite track dating

on the Kyllakh Ridge show more intensive heating

than the closure temperature in apatite ~110 ± 30°C.

Hence, in the frontal part of the Verkhoyansk fold-

and-thrust system, vertical motion along the over-

thrusts, and, accordingly, the uplifting and amplitude

of erosion was within ~3.5–8 km with a temperature
GEOTECTONICS  Vol. 52  No. 6  2018
gradient of 30°C/km and maximum of 10 km with a
gradient of 25°C/km.

Taking into account that the thickness of the Riph-
ean–Lower Cambrian section observed in the western
part of the Kyllakh zone and overlapping the studied
samples is no more than 2 km, at least 1.5–2 km of
sediments were located above them in the Mesozoic,
which corresponds approximately to the total thick-
ness of the Cambrian and Ordovician sections cur-
rently known only in the frontal thrust over the
Ebeike-Khayata Ridge [7, 13].

Hence, the obtained AFT and ZFT dates suggest
that before overthrusting and related uplifting, the
Cambrian and Ordovician sequences overlay the
entire western part of the Kyllakh zone and probably
the southeastern part of the Siberian Platform adja-
cent to the frontal overthrusts.

In the eastern part of the Kyllakh zone in the Gor-
nostakh anticline, sandstone was heated above the
closure temperature in apatite and zircon. The
obtained ages indicate that the Lower and Middle
Riphean samples crossed the closure isotherm of the
fission track system in zircon in the 115–130 Ma inter-
val and crossed the apatite isotherm about 70 Ma.
Consequently, this part of the Riphean section was
buried deeper than 8 km, depending on the tempera-
ture gradient, but no more than 10–14 km, because
these complexes did not undergo greenschist meta-
morphism. Since the thickness of the Riphean strata
overlapping these samples does not exceed 3 km, they
should be overlain by Vendian–Paleozoic sedimentary
rocks with a thickness from 5–6 to 10–11 km and
despite of the fact that the Gornostakh anticline is
ascribed to the Kyllakh zone in the recent structure, a
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considerable part of it was overlapped by sediments
comparable in thickness to the Paleozoic strata of the
Sette-Daban zone (Fig. 2) [7, 13, 15]. Hence, the area
of transition from relatively thin shelf sediments of the
Siberian Paleocontinent to thicker slope facies was
located further west of the core of the Gornostakh
anticline.

In the Sette-Daban zone, the difference in ZFT
ages between samples SM-14-01 and S-15-24 (Table 1)
can be interpreted as a result of variations in a thick-
ness of the section and in the amplitude of erosion in
a particular part of the sedimentary basin. A much
higher thickness of the sedimentary section to the east
is evidenced by the fact that more eastern samples 411
and S-15-24 crossed the closure isotherm of track sys-
tem in zircon 70 Ma later than the Vendian sample
SM-14-01 (Table 1). In addition, Ordovician rocks in
the central part of the Sette-Daban zone, where sam-
ple 411 is taken, were subjected to initial greenschist
metamorphism, indicating a deeper position of sam-
ple 411 in the sedimentary section when the uplifting
and erosion processes began. Hence, the amplitude of
erosion of the Paleozoic section within the Sette-
Daban zone from west to east increased by a minimum
of 5 km (Fig. 7).

CONCLUSIONS

The study demonstrates the potential for apatite
and zircon fission track dating in reconstructing the
tectonic history of overthrust systems, as well as in
investigating the structure of paleobasins. The basic
research results are as follows:

(1) The data on Kyllakh zircons are indicative of a
systematic eastward increase in the burial depth of
sedimentary complexes, which is directly related to an
increase in their thickness. The thickness of the sedi-
mentary cover and burial depth increased the most
rapidly in the recent Gornostakh anticline, which can
be due to location of the transition zone from the shelf
of the Siberian Paleocontinent to its slope.

(2) Overthrusting in the South Verkhoyansk sector
began about 160 Ma ago and lasted for at least about
70 Ma. The available data are not detailed enough to
establish whether the process was continuous or step-
wise. The process was most likely stepwise with a
m
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Fig. 7. Geological section reconstructed from AFT and
ZFT data along Belaya River before Late Jurassic–Creta-
ceous deformations. Groups: (uc) Uchur (Lower Riph-
ean); (am) Aimchan (Middle Riphean), (kr) Kerpyl
(Middle Riphean); (lh) Lakhanda (Upper Riphean),
(us) Ui (Upper Riphean). Kerpyl Group formations:
(tt) Totta, (ml) Malga, and (zp) Tsipanda. (1) Position of
samples in section; (2) time when samples crossed corre-
sponding isotherms; (3) approximate depth of greenschist
metamorphism front and isotherms of closure tempera-
tures of fission track systems in apatite and zircon (110 and
240°С, respectively), according to [26, 39]. 
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major phase at 90–70 Ma. During the major deforma-
tion phase, the age is rejuvenated from the inner
(Sette-Daban) zone to the outer (Kyllakh) zone.

(3) Outcropping of sedimentary complexes and
their erosion in the Oligocene are likely related to the
final formation of fold-and-thrust structures in the
western part of the South Verkhoyansk sector of the
Verkhoyansk fold-and-thrust belt.
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