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A large number of differential equations can be reduced to polynomial form. As was shown in
a number of works by various authors, one of the best methods for the numerical solution of
the initial value problem for such ODE systems is the method of Taylor series. In this article
we consider the Cauchy problem for the total linear PDE system, and then — a theorem
about the accuracy of its solutions by this method is formulated and proved. In the final
part of the article, four examples of total systems of partial differential equations to the
well-known two-body problem are proposed: two of them are related to the Kepler equation,
one to the motion of a point in the orbit plane, and the last to the motion of the orbit plane.
Keywords: Taylor series method, total linear PDE system, polynomial system, numerical
PDE system integration.

Introduction. Issues considering in this article are: the formulation of the Cauchy
problem for total systems of partial differential equations including polynomial and linear;
the Taylor series method; local error estimation for linear total Cauchy problem. As
examples, we consider four total polynomial systems to the elliptical two body problem.

Initial value problem (IVP or Cauchy problem for polynomial and linear
total systems). Consider the total system of partial differential equations [1] with the
initial conditions

afﬂj

ot,

Numerical methods for solving this problem are oriented to the general case when the
right-hand sides f, ; belong to the class of smooth or piecewise smooth functions. At the
same time, in many applied problems, for which numerical methods are developed, it is
quite possible to reduce the problem (1) to the case when the functions f, ; are algebraic
polynomials in 21, ..., 2, (by introducing the special additional variables [2, 3]). In these
cases, the obtained Cauchy problem is called polynomial, and it can be written as

ox; )
e Y Y awllets ) =w0s G Len v=1is (2)

me[1:L+1] i€l (m)

:f,,)j(l‘lw..7$n,t1,...,ts), .’L’j(to):l‘07j7 j:].,...7n, I/:].,...7S. (1)

r=(x1,...,2,) €C", i=(i1,...,in), T lef coexlnxg, w0, tys tow, Gujm € C,
i = i1+ tin, I(m)={i€ 2" |ir,...,in >0, [il=m}, Le[0:+o0).

This is IVP to total system of polynomial PDEs (or the total polynomial Cauchy
problem). For small 1, ..., x, the equations (1) one often linearizes and utilizes as first
approximations. In what follows we will write down the linear problem as
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or

_:au+AUx7 .r(to):]j(), 1/21,...757 (3)
at,
m:(xl,...,xn), $0:($071,...,$07n)60n,
ay = (1, aun) €C",  la,| = max |a;,
i€[1:n]

t= (tla e ats)a tO - (t0,17 .. 'atO,S) S Osa Al/ - (au,i,j)a Au.i,j5 € 07

denote its solution by (¢, to, zg) or z(t). In addition, we will utilize the designations

Okl x &
20 = T, m(() ) — Zo, |z| = ir&%};} |zil,  Op(to) = O, (to) X ... x Op, (to),
O,, (to) = {t € CS\(W € [1 vsl, g # )t =t0), [ty —tow| < pu}, (4)

Tarx(t, to, x0) = Z z§™ . 0Tya(t,to, m0) = 2(t,to, 7o) — Tar(t, to, o),

ml

m'szH!, =1, k= (k... ks,

p=1
M= (M,...,.M;) €[0:+0)°, p=(p1,...,ps) € (0,400)°,

where T); and §T); are the operators that put in correspondence the Taylor polynomial
Trx(t, to, z9) and the remainder 6Tax(t, to, zg) to the solution of the problem (3).
We denote as R(tg,xo0) = (Ri(to,20),-..,Rs(to,x0)), Ru(to,xo0), the vector radius of
convergence of the Taylor series and, instead, later in this paper as a domain where
Taylor series converge we will utilize O,(to) = O,, (to) X ... X O,,(ty), see above in (4)
and below in Proposition).

On the Taylor series method. The Taylor series method [4-8] for solving the
Cauchy problem (3) consists in constructing a table of approximate values z;, = z(t,,)
using the formula

Ty = TN, T (Tws Tw—1,Try_, ), wW=1,2,..., (5)

here
Nw = (Nw,17~ . ~7Nw,s) € (0 : OO)Sv T0 = tOv Tw = Tw—1 + hwv

Tw = (Tw,h' .. 7Tw,s)7 hw - (hw,h' . ~7hw,s) S 037

and h,, has to satisfy the inequalities
|hw | < Ru(Tw—1,%ry,_,), Vv=1,...,s. (6)

The calculation of each value of z, is called the step of the method, and h,, is called
the size of this step (or, briefly, the step). In the general case of integration along a curve
in C* all h,, are complex numbers, and points 7, lie on this curve. To calculate .,
for some given 7,, with high accuracy by formula (5), even for 7, from its domain of
convergence (see (5)), the number of steps may turn out to be large, which can cause a
fast accumulation of rounding errors and an increased processor time. That is why it is
advisable to use the steps as large as possible (in actual fact, one has to find all p, as large
as possible see (6) and Proposition).
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Local error estimation for linear total Cauchy problem.
Estimates. Now we turn to problem (3). In addition to (4), we will use also the
notation

n

n
(Azlfyx)l = Zal”i,jxjv pv=1/sy, sy =| Ay |lc= max Sviy  Svi = Z ‘al”i,j|7 (7)
n
j=1

i€[1:n]

i=1
b m
Tue™ = Z ok 0l e =" —Tyue”, p=12,....
m=0 :

Proposition. The solution z(t, ¢y, zo) of the problem (3) is holomorphic on O,, (to)
separately in ¢, and satisfies there the inequality

6T (¢, to, 20)| < (|zo| + |av|py)dTas, el 0w 1/pv. (8)
Proof. Because of

kg kv

k= (k1,...,ks), S = B = ghv = Abvg 4 AR la,, |(ARva)| < Jzlphe,
then
+oo
6Tt to, wo)| = | Y (Aba+ Al ay) (B, — to,)' /1| <
=M,
+oo
< (Jwol + lav|py) Z |(t — tO,V)/pV‘l /U= (|zo| + lav|pv) 5TMue‘tV7tO’VVpuv
I=M,+1

which is the required result.

Improving estimates: scaling transformations and choice of scaling factors.
The smaller s, = p, !, the better the estimates (8). In order to be able to improve these
estimates, it is natural to introduce a scaling transformation in (3):

rj = ay;, o5 >0, jell:n]. (9)
In connection with (9), we write down the Cauchy problem

Jy
% :bu+BVy7 y(to) = Yo, v=1,...,s, (10)
v
y:(y17~~~7yn)v y():(y&lw”vy()m)v bl/:(bl/,lv"'ﬂbl/7n)7 Bl/:(bl/,i,j)7
yi =a; 'z, bui=a; tays, by = o tajan g,

and will use the designations (see (7)):

n
pu(a) = ()’ su(a) = ig%};] sv,i(Q), Svi(a) = a;l Z ajlavijl, a=(ar,... an).

(11)
Using (8), one can easily prove that Proposition implies.
Corollary. The solution x(t,to,xo) of the problem (3) is holomorphic on O, 4)(to)
(see (4)) separately in t, and satisfies there the inequality

0T i(t, to, 0)| < i ([yo| + by lpw () 0Ty, eltr o l/ov(@), (12)
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Ability to select scaling factors aq, .. ., ay, to reduce the value s, («) makes Corollary
a real tool of automatically assigning a step size of integration with a priori guaranteed
local error estimation. The use of this corollary leads to the minimaz problem [6, 9-14].
For linear ODEs, we previously used the Perron’s theorem [6, 9, 10]. We use it here too.

Theorem (Perron). Let the matriz P = (p; ;) be positive, i. e. p;; > 0 for all
i,7 € [1 :n]. Then the following statements are true [12]:

a) there is a single eigenvalue N(P) of this matriz with the largest absolute value;

b) this eigenvalue is positive and simple, and the corresponding eigenvector can be
chosen positive;

¢) the following equality holds:

n

A(P)= min max Zpi7jxj/xi

T1,...,n>04€(1:
1 n>014€[1:n] =

R em ar k1. More general Frobenius theorem and other results about eigenvalues
and eigen-vectors of non-negative matrices can be found in [13].

R e m a r k 2. With any approach to choosing scaling factors (see (9)), it is worth
considering that in practical calculations it is enough to use their rough approximations
with a relative error about 10 percents, since Corollary remains true for any positive scale
factors, on the one hand, and, on the other hand, their small change (e. g. in the second
valid digit) will not lead to a noticeable deterioration in the estimate (12). In [6, 10],
devoted to the method of Taylor series for polynomial ODE systems (that is, for systems
(2) with s = 1), it was noted that in applications it is possible to restrict ourselves with
the Perron’s theorem by replacing the matrix A with a close matrix AT with positive
elements. Since when s # 1 the matrix A, is not square, this idea should be slightly
refined: one can supplement the matrix A, with a square nonzero matrix A} = (a@,,; ;) by
small modulo elements and then, instead A,, use A} = (|a,,; ;|). It is important here to
recall that the eigenvalues of a matrix depend continuously on its elements [14, 15].

Thus, in applications we can assume that |a,; ;| > 0 for all 4,5 € [1 : n], and
then as scaling factors ag,...,a, in Corollary it is natural to use the components of
a positive eigenvector o = (aj,...,a}) of the matrices A} = (|a,; ;|) corresponding to
its eigenvalue A(A}), maximum in absolute value.

Examples. Here we consider four total polynomial systems to the elliptic two-body
problem (from the Bregman thesis [16] and paper [17]), and then Corollary can be applied
to their linearized versions. First, we will consider the equations of the two-body problem
and their solution in relative Cartesian coordinates centered on the point mass m°. Next,
before considering the above four total systems, we give in the form of a table all the func-
tions and arguments used in them.

The considered examples may be of real interest to specialists in the field of mechanics,
astronomy, celestial mechanics, astrometry, and astrodynamics.

The equations of the two-body problem and their solution to the elliptic
case. Consider the equations of motion of a point mass m in a central Newtonian field of

mass m?, using relative Cartesian coordinates centered on the point mass m°:

§=—p&r™® (or &=m 0 =—p&r=®), i€[1:3],

and the general solution of these equations for the elliptic case:
&/a=A;V/1—e2sinE+ Bi(cosE —e), i€[1:3], r/a=(1—ecosE), (13)
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Ay = —sinwcos) — coswsinQ cosi, By = coswcos{) — sinwsin{)cosi,

Ay = —sinwsin + coswcosQcosi, By = coswsin§) + sinw cos {2 cosi, (14)
Az = coswsini, B3 = sinwsini,
E—esinE =M, M=DMy+n(t—ty), n=+/ula3, pw=~ym’+m), (15)

where a (semi-major axis), e (eccentricity), My (mean anomaly of the epoch tg), €
(longitude of the ascending node), 4 (inclination), w (pericenter argument) are Kepler’s
elements (arbitrary constants), and E (eccentric anomaly), M (mean anomaly) are
functions of time; 7 is Newtonian universal constant of gravitation.

Functions and arguments used. Next, we are going to write out four total
polynomial systems: two for solving Kepler’s equation and two for the coordinates and
velocities of the two-body problem. For the reader’s convenience, we give Table of the
main functions (placed there into rect) and arguments. The four total systems mentioned
above are numbered (see the column N in the Table) in an understandable way.

Table. Main functions and arguments

N Functions Arguments

1 o1 =FE|, pa=sinE, p3=cosE, pa=(1—ecosE)™ | mm=e, m=M

2 ,¢2:sinE, w3 =cosE, pa=(1—ecosE)"', | t1 =t t2 =a,
@520,71/2 ts = e, tas = My

p1=FE|,p2=sinE, p3=cosE, ps=(1 —ecosE)fl, t1 =t, ta = a,
3 Y5 = a71/27 w6 = (1 - 62)1/27 w7 = (1 - 62)71/27 t3 = €, ty = Mo
‘tps:&ng:ﬁz

9010253‘,

’

[pri=m],[prz=1p], |13 =1s3]
p1a = A1, w15 = A2, 16 = A3, 17 = B1, ¢18 = Ba, ts =1, te =,
4 w19 = Bs, w20 = A4 =sinwcosi, w21 = B4 = cosw cos i, tr = w

P22 = A5 = SiHQ, P23 = B5 = COSQ

To apply Corollary, it remains for the user to linearize the equations in the vicinity
of the initial data, then write out the matrix A} — AT and, finally, find the maximum
eigenvalue in absolute value and the corresponding positive eigenvector.

The first total polynomial system for Kepler’s equation. Here, Kepler’s
equation (15) is used in order to write out a total polynomial system that is satisfied by an
eccentric anomaly, considered as a function of eccentricity and mean anomaly. Assuming
(see Table) 1 = E, 3 =sinE, p3 = cosE, o4 = (1 —ecosE)™!, 71 = e, 9 = M and
using the equality ¢ — 71 sinp; = 7o as an implicit representation of ¢1(71,72), we get
the equations

o1 _ o1 _ dpa _ p2 _ o3 _ o
—871 P2$4, —872 P4, —871 P2P3¥4, —872 3P4, —871 P24,
(16)
s _ 4 _ 2 2 3 Oy _ 3
ory P2¥4, o = P3Py — T1P2Py, o T1P2P4-

The second total polynomial system for Kepler’s equation. Now we write out
a total system that satisfies the eccentric anomaly E, considered as a function of time ¢
and three Keplerian elements a, e, M. Assuming
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o1 =F, py=sinE, g3 =cosE, ¢4 = (1 —ecosE)"}, o5 =a"'/?,

tlzta t2:aa t3:67 2‘:4:]\4(%

and using equality o1 — t3sing; = t4 + \/uty 8/ 2(t1 — tp) as an implicit function
1(t1,ta, t3, t4) representation, we get the equations

%—fll = Vipapd, 2—2 = —WWPE’ %_2 B %—2 I
%—fj = V30108, %—fj = —W%W@gv %_(tp; = P293¥4, %—ﬁ = ¥3¥4,
%—f = — /2048, Z—f = WWPW?’ %_f = —3ea. %—fj R
38_224 — Jitypr ot Z_‘f; _ ?’W(gﬂwﬁzwg, %—ﬁ = 31 — tapiel, (17)
%—‘Z* = —t302¢%, %—fj =0, j=1,34, %—f = %@g

The first total polynomial system for the two body equations. The quantities

o1=E, @py=sinE, @3=cosE, ¢4=(1—ecosE)",
5 = (171/27 06 = (1 _ 62)1/2, o7 = (1 _ 62)71/27
or+i =&, P+ =mn, 1=1,2,3,
we consider as functions of time ¢; = t and elements t> = a, t3 = e, t4 = My and we assume
elements ),i,w as parameters. Using formulas (13)—(16) we obtain that these functions

satisfy the total system of partial differential equations (the equations for ¢4, ..., @5 and
(17) are the same):

8801 _ 3 8901 o 3\/ﬁ(t1 - tO) 5 8@1 o &pl .
or, ~ Viaes 5= 5 N Tl U ol 28
pr _ 5 Opy  3y/E(t —to) s Opa dpr
o1, ~ VHespaws, 5= 5 POPILS, G = Papan et = Pas,
Jps 3 Opz 3/t —to) 5 Ops o dps
o5, VHeaeas, 5= 5 L T T i
94 Doy 3/t —to) iy
—= = —\/litspaplpl, == = Svilt —to) t3papsl,  —— = @33 — t3paps,
oty Ot 2 8t3
a<p4 3 8@5 . (9(,05 1 3
o = —t ’ —:07 :17374u Y )
ot W Gy j 9, — 3%
Ops _ Opr ) O0vs 07 3
S TP, j=1,2,4, 5= ger _y
at] at] y J 3 Sy Ty (9153 3¥7, (9153 3¥7,
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0Yr4i
T — topapili(Aipsps — Bigs),

oty
Opr+i 3 5
ot (¢ = 13) Bi + paps Ai + 5 /lts — to)t2waps(Bipa — Aipaps),
0p74i
gt? = ta(Aipspapaps — Aitspaor — Bi(l + ©3¢04)),
dprti
AL tows(Aipeps — Bipa),
Oty
0v10+i
8t1+ = —(utspa305(Aipsps — Bipa)) — pies(Bivs + Aipas),
0P10+i

1 3
= 5\/ﬁ¢4@§(1‘1i<ﬁ6<ﬁ3 — Bip2) + 5#(151 — to)@i o8 [tapapa(Aipsps — Bipa) +
+ (Bips + Aipaps)],

Oto

8 .
glt(;ﬂ = VHQ30s (03 — t3ps04) (Aipsps — Bipa) —

— Va5 (2304 Bi + @apapeAi + tapapr Ai),
Jp10+
8754
The second total polynomaial system for the two body equations. We consider

the total system for p131; = Ai, w164 = By, @ = 1,2, 3, as functions of elements t5 = i,
te = Q, t = w. If, in addition to these auxiliary functions (see (14)), four more functions

= VI35 tsp2pa(Aivsps — Bips) — (Bips + Aipage)).

o0 = Ag =sinwcosi, (o1 = By = cosw cosi,
o2 = A5 =sin), a3 = Bs = cos )

are introduced, then the desired total system will be written in the form

39014 39014 89014

B—tg = —¥15, ot = —p17, Ot = Y16¥22,
17 017 17

a—tg = —¥18, ot~ = P14, ots = P19¥22,
15 15 15

8—t6 = P14, ot = —¥18, ot = —¥Y16¥23,
8828 = Y17, 88(?78 = P15, 88(?58 = —¥19¥23,
16 Jp16 dp16

Bts 0, o, P9 g e
Op19 _ 0 19 - 19 — om0

Otg ’ Oty ’ Ot ’
Op2 _ dp20 _ oo p20 _ -
Otg ’ Oty ’ Ot ’
D21 O a1

Ote 0, e U i )
Opas Opas Opas

g ot o,

ip23 _ a3 —0 Opasg —0

it R T T ot

118
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Conclusion. The main result of this article is the local guaranteed a priori error
estimate (12) for the solution of the Cauchy problem (3) for the total linear system
of partial differential equations using the Taylor series method (see consequently: equa-
tions (3), designations (4), formulas to the Taylor series method (5), inequality (8), scaling
transformation (9) (with (10)), designations (11), inequality (12), the Perron’s theorem,
the Remarks 1,2, inequality (12), and item just after Remark 2). In the final part of the
article, four examples of total systems of partial differential equations to the well-known
two-body problem are proposed: two of them are related to the Kepler equation, one to
the motion of a point in the orbit plane, and the last to the motion of the orbit plane.
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Ornenku B MeTojie psiaoB Teitsiopa A JuHENHBIX MOJMHBIX ¥ pUIl

JI. K. Babadocansry, U. IO. [lomoukasn, FO. FO. ITynvuesa

Cankr-Ilerepbyprckumii rocynapcTBeHHbIN yHUBepcuTeT, Poccuiickas Penepanus,
199034, Cankr-IlerepOypr, YuuBepcurerckas Hab., 79

s nutupoBanus: Babadzanjanz L. K., Pototskaya I. Yu., Pupysheva Yu. Yu. Estimates
for Taylor series method to linear total systems of PDEs // Becrauk Cankr-IlerepGyprckoro
yauBepcurera. [Ipukiaanas maremaruka. Uudopmaruka. [Iporeccsr ynpasaenns. 2020. T. 16.
Bom. 2. C. 112-120. https://doi.org/10.21638/11701/spbul0.2020.203

Bouiblioe KoauuecTBO 0OBIKHOBEHHBIX nuddepennnanbubix ypasaeruii (OLY) MoKHO cBec-
TH K TOJTMHOMUAJbHOU hopme. Kak 6bL10 mMOKazaHo B psifie pabOT PA3IUYHBIX ABTOPOB,
OJIHAM W3 JIYYIIUX METOJIOB YHCJIEHHOI'O PEIIeHUs 3aJadl HAvaIbHOIO MPUOJIMAKEHUS JJIst
takux cucrem OJIY sBasierca meron psamos Teitmopa. B mammoit pabore paccmarpuBaercs
MIPUMEHEHNE ITOT0 METOJa K PerneHnto 3aaaqn Ko fj1st Moo JIMHeTHOW crucTeMbl Tud-
depeHInaIbHBIX yPABHEHUH B YaCTHBIX NMPOM3BOAHBIX. [y obocHoBaHus 3ddEKTUBHOCTH
MOA0OHOTO TMOAX0Aa (POPMYIMPYETCsT U JOKA3BIBAETCSI TEOPEMa O TOYHOCTH PENIeHUsT STON
3a7a4un MeTosioM psamoB Teitopa. B mocaemqneit qactu ctarbu TPUBOASTCS U€THIPE TIPUMEpPA,
MJUTIOCTPUPYIOIIUX AJITOPUTM IIpUMeHeHusi Merozna Teiiopa B 3aiadax HeGECHON MeXxaHU-
ku. PaccmarpuBaioTcst oJIHBIE yPABHEHUST B YACTHBIX ITPOM3BO/IHBIX, OMUCHIBAIOIINE 3aaTy
nByx Tesi. IlepBeie nBe 3amadm orHOcaTcs K ypaBHenusim Kertepa. Tperbst 3amada omuch-
BaeT JBUKEHME TOYKHU B ILUIOCKOCTH opouThl. [lociiennsis 3a/1ada Kacaercst [IBHKEHUs CAMOI
IJIOCKOCTH OPOUTHI.

Karouesvie caosa: meron panos Teitnopa, rmorHble jtnHeitHbIe cucTemsbl Y pUll, mosmmHOMIAIB-
HbIEe CHCTEMBI, YNCJIEHHOe NHTerpupoBanue cucrem Y pUll.
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