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Abstract: Novel mixed matrix dense and supported membranes based on biopolymer sodium alginate
(SA) modified by fullerenol were developed. Two kinds of SA–fullerenol membranes were investigated:
untreated and cross-linked by immersing the dry membranes in 1.25 wt % calcium chloride (CaCl2)
in water for 10 min. The structural and physicochemical characteristics features of the SA–fullerenol
composite were investigated by Fourier-transform infrared (FTIR) and nuclear magnetic resonance (NMR)
spectroscopic methods, scanning electron (SEM) and atomic force (AFM) microscopies, thermogravimetric
analysis (TGA), and swelling experiments. Transport properties were evaluated in pervaporation
dehydration of isopropanol in a wide concentration range. It was found that the developed supported
cross-linked SA-5/PANCaCl2 membrane (modified by 5 wt % fullerenol) possessed the best transport
properties (the highest permeation fluxes 0.64–2.9 kg/(m2 h) and separation factors 26–73,326) for the
pervaporation separation of the water–isopropanol mixture in the wide concentration range (12–90 wt %
water) at 22 ◦C and is suitable for the promising application in industry.

Keywords: mixed matrix membrane; sodium alginate; polyhydroxylated fullerene; pervaporation;
isopropanol dehydration

1. Introduction

The development of sustainable processes has drawn increasing attention worldwide.
Membrane processes characterized by environmental friendliness, cost-effectiveness with low energy
consumption, compact equipment, and mild operating conditions are contemporary and advanced
separation technologies and can also contribute to sustainable processes. One of the most promising
and actively developing membrane technologies applicable for the separation of low molecular
weight substances is pervaporation. This technique is also an alternative to traditional separation
methods since it allows for the separation of azeotropic and isomer mixtures, closely boiling substances,
and thermally sensitive compounds by selecting a specific membrane and without using additional
chemical reagents, which is complicated by conventional processes (for example, distillation or
extraction) and energy-intensive. Pervaporation has received special attention for dehydration
purposes (the selective removal of water from other components, namely, alcohol and solvents) [1].
The recovery of alcohols to pure form and free from traces of water is necessary due to the promising
application of several alcohols as a promising alternative fuel for cars that successfully compete with
gasoline in the energy market. The most common model system for membrane investigation in
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pervaporation dehydration is the isopropanol–water mixture that contains an azeotrope (12 wt %
water–88 wt % isopropanol) [2]. The separation by conventional methods of this system requires the
additional separating agent of benzene or cyclohexane (to break the azeotropic mixture) with the
subsequent distillation. With such a strategy, it is almost impossible to separate cyclohexane from
alcohol. However, it is necessary to use membranes based on biopolymers with tailored transport
characteristics to further develop pervaporation as a sustainable process. This work is devoted to the
development of pervaporation membranes based on sodium alginate.

Sodium alginate (SA) is an important biopolymer derived from vegetable sources (from algae by
treatment with NaOH). This polymer is actively used in the biomedical field (for the production of
drug delivery systems, in wound dressings and tissue regeneration) [3,4]; food industry (thickeners
and gelling agents in foodstuffs); textiles and paper industries [5]; cosmetics as alginate masks, etc. due
to its high biocompatibility, solubility in water, low toxicity, ability to form stable aqueous hydrogels,
and film-forming properties. Sodium alginate is also actively applied in membrane technology as
a polyelectrolyte [6–8] and for the preparation of membranes for fuel cell applications [9], vapor
permeation [10–12], nanofiltration [13,14], ultrafiltration [15], and pervaporation [16–20].

One of the main disadvantages of pristine SA membranes for pervaporation dehydration
is the relatively low stability of the membranes, especially in feed solutions with a high water
content. To improve physicochemical and transport properties of the SA membranes, various
efforts are applied by cross-linking of the membranes [19,21,22], chemical modifications [5], blending
with other polymers [14,23–25], and the development of mixed matrix membranes (MMMs) (the
formation of organic–inorganic composites). Modifiers such as metal oxides [21,26–28], attapulgite
nanorods [19], covalent organic frameworks [29,30], glycogen [22], zeolites [18,31], metal–organic
frameworks [20,32–35], etc. have been used to develop hybrid SA membranes. In particular,
one of the most promising directions of polymer modification (in the development of MMMs) is the
introduction of carbon nanoparticles into the polymer matrix. In earlier studies, their relevance and
improvement of the pervaporation characteristics were demonstrated for the polymer membranes based
on polysulfone [36], polyphenylene oxide [37,38], polyphenylene isophthalamide [38–40], and polyvinyl
alcohol [41–43]. Despite the prospects of this direction, the literature review has demonstrated that
there are a limited number of works on the modification of SA membranes by carbon nanoparticles,
namely, SA modification has been carried out only by graphene, graphene oxide, and functionalized
multiwalled carbon nanotubes. The authors of [44,45] used modified (decorated by magnetite (Fe3O4)
nanoparticles and chitosan-wrapped, respectively) multiwalled carbon nanotubes (MWCNT) as fillers
for SA membranes for pervaporation dehydration. The supported (on the polyacrylonitrile porous
substrate) SA/MWCNT-Fe3O4 (2 wt %) membrane exhibited excellent separation performance for
ethanol dehydration (10 wt % water) at 76 ◦C: 2.2 kg/(m2 h) and 1870 separation factor [44], while
dense SA membrane containing 2 wt % of CS-wrapped MWCNT demonstrated 6419 separation factor
and 0.23 kg/(m2 h) permeation flux for pervaporation separation of water–isopropanol (10/90 wt %) at
30 ◦C [45]. Suhas et al. developed graphene-loaded sodium alginate nanocomposite membranes for
pervaporation isopropanol dehydration [46]. At the lowest concentration of graphene (2 wt %) the
hybrid membrane separation performance was optimum (permeance value of 3122 GPU and separation
factor of 4623) for separation of water–isopropanol (10/90 wt %) at 30 ◦C. In [47], pristine graphene
oxide (pGO) and reduced graphene oxide (rGO) nanosheets were incorporated into the sodium alginate
matrix. It was shown that rGO-filled (1.6 wt %) membranes exhibited improved separation factor
(1566) and an unusual change in permeation flux (1.7 kg/(m2 h)) in pervaporation dehydration of
90 wt % ethanol aqueous solution at 76 ◦C. In [48], graphene oxide quantum dots (GOQDs) were used
as a modifier to develop a novel nanocomposite SA membrane for ethanol dehydration. The obtained
nanocomposite membrane possessed improved permeation flux (2.4 kg/(m2 h)), which was increased by
60% compared with the pristine SA membrane and 1152 separation factor in pervaporation dehydration
of 90 wt % ethanol aqueous solution at 77 ◦C. The authors in [49] developed a SA membrane for efficient
water permeation and water/alcohol separation by the incorporation of zwitterionic graphene oxides
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(PSBMA@GO) nanosheets into the polymer matrix. The MMMs with PSBMA@GO (2.5 wt %) exhibited
much higher separation performance (2.1 kg/(m2 h) permeation flux and 1370 separation factor in the
pervaporation of 90 wt % ethanol aqueous solution at 77 ◦C) compared with membranes based on pure
SA and on a composite with unmodified GO. Thus, the previous studies demonstrated the prospects
of carbon nanoparticle application as modifiers for the development of hybrid SA membranes with
improved characteristics. However, it should be noted that there is no information on SA modification
by fullerene and its water-soluble derivatives, although this modification can significantly improve the
transport properties of polymer membranes [42,43,50–52].

The aim of the present work was to study the effect of the introduction of polyhydroxylated fullerene
(fullerenol) to SA on the transport and physicochemical characteristics of membranes. This carbon
particle was chosen due to the presence of polar groups (hydroxyl groups –OH). These groups
are expected to contribute to better dispersion of fullerenol in the hydrophilic polymer matrix
and to lead to surface membrane functionalization and cross-linking of polymer chains during the
modification process. Two types of SA-based membrane containing fullerenol were developed:
dense and supported (composite) membranes. Supported membranes were developed to increase
the permeation flux due to the formation of a thin dense selective layer on a porous commercial
substrate from polyacrylonitrile, which provided mechanical strength. The developed membranes were
used without additional treatment and by applying cross-linking by immersing the dry membranes
in 1.25 wt % calcium chloride (CaCl2) in water for 10 min. The structural and physicochemical
characteristics of the SA–fullerenol mixed matrix membranes were investigated by Fourier-transform
infrared (FTIR) and nuclear magnetic resonance (NMR) spectroscopic methods, scanning electron (SEM)
and atomic force (AFM) microscopies, thermogravimetric analysis (TGA), and swelling experiments.
Transport properties were evaluated in the pervaporation dehydration of isopropanol in a wide
concentration range. However, it should be noted that the developed membranes based on SA may be
applied in any pervaporation dehydration process.

2. Materials and Methods

2.1. Materials

Sodium alginate (SA) with the viscosity of 0.09 Pa·s in the form of powder (manufactured by
Jiangsu Benefit Ocean Technology Co. Ltd., Lianyungang, China) obtained from OOO “BIOPROD”
(St. Petersburg, Russia) was used as the membrane material. Polyhydroxylated fullerene (fullerenol)
C60(OH)22–24 (Fullerene Technologies, St. Petersburg, Russia) was used for SA modification.
Isopropanol (i-PrOH) (Vekton, St. Petersburg, Russia) and the chemical for the cross-linking of
membranes, calcium chloride (CaCl2), were used without additional treatment.

A hydrophilic commercial porous membrane based on polyacrylonitrile (PAN, Institute
“Leibniz-Institut für Polymerforschung Dresden”, Dresden, Germany) was used as the membrane
substrate for the preparation of supported membranes with a thin selective top layer.

2.2. Membrane Preparation

2.2.1. Dense Membranes

The membranes were prepared according to the following procedure: 1 wt % SA solution was
prepared by dissolving a determined amount of the polymer in water and stirring for 4 h at 45 ◦C.
Then, fullerenol dispersion (0–10 wt % of C60(OH)22–24 with respect to the polymer weight) was added
to the SA solution, followed by ultrasonic treatment at ambient temperature. Dense membranes were
prepared by pouring a polymer solution or polymer/fullerenol composite into a Petri dish followed by
solvent evaporation in an oven at 40 ◦C for 24 h. The maximal concentration of fullerenol was 10 wt %
in the polymer matrix, as above this concentration, it resulted in poor dispersion of fullerenol into the
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polymer matrix and membrane defectiveness. The dense membrane thickness was measured by a
micrometer and was found to be 25 ± 3 µm.

2.2.2. Supported Membranes

To increase the permeability of dense membranes, supported membranes with a thin dense selective
layer deposited on the porous substrate were prepared by casting SA solution or its SA/fullerenol (5%)
composite onto the surface of the porous substrate based on polyacrylonitrile (PAN) and drying at
room temperature for 24 h to evaporate the solvent. The application of the PAN substrate decreased
the thickness (to 600 ± 100 nm) of the top selective polymer layer, increasing membrane permeability
and providing the mechanical strength of this thin dense layer, which was prepared according to the
procedure described for dense membranes.

The developed dense and supported membranes based on SA and the SA/fullerenol composite
were used without additional treatment (untreated) and were subjected to chemical cross-linkage for
the application of membranes for the pervaporation separation of more diluted solutions. The most
commonly used cross-linking method [26,53] was applied: immersing the dry membranes in 1.25 wt %
calcium chloride (CaCl2) in water for 10 min. All cross-linking treatments were carried out at ambient
temperature with the subsequent washing of cross-linked membranes with deionized water. Figure 1
demonstrates schematically the methods for preparation and cross-linking of dense and supported
membranes based on the polymer SA and its composites with fullerenol.
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Figure 1. The scheme of preparation and cross-linking of dense and supported membranes based on
sodium alginate (SA) and its composite SA–fullerenol.

The denotations of developed SA membranes and the preparation conditions are given in Table 1.
To simplify the designation of membranes, the fullerenol concentrations (3, 5, 7, and 10 wt %) are
indicated as a number, the applied commercial PAN substrate for the preparation of supported
membranes is written through a slash and an abbreviation of an additional cross-linking agent is
indicated in the form of a superscript.

Table 1. Developed membranes based on sodium alginate (SA).

Membrane Type Thickness,
µm

Content of
Fullerenol,

wt %
Cross-Linking Method

SA-0 dense 25 0 -
SA-3 dense 25 3 -
SA-5 dense 25 5 -
SA-7 dense 25 7 -

SA-10 dense 25 10 -
SA-0CaCl2 dense 25 0 1.25 wt % calcium chloride (CaCl2)
SA-5CaCl2 dense 25 5 1.25 wt % calcium chloride (CaCl2)

SA-0/PANCaCl2 supported 0.6 0 1.25 wt % calcium chloride (CaCl2)
SA-5/PANCaCl2 supported 0.6 5 1.25 wt % calcium chloride (CaCl2)
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2.3. Fourier Transforms Infrared Spectroscopy (FTIR)

To determine the structural changes during the modification of SA by fullerenol, FTIR spectroscopy
was performed on a spectrometer—IRAffinity-1S (Shimadzu, St. Petersburg, Russia) using an attenuated
total reflectance (ATR) accessory (PIKE Technologies, Moscow, Russia) in the range of 649–4000 cm−1

at 25 ◦C with 40 scans and a resolution of 2 cm−1.

2.4. Nuclear Magnetic Resonance (NMR)

NMR study of the membranes was conducted with a Bruker Avance III 400 WB NMR spectrometer
(Bruker, Ettlingen, Germany) (magnetic field of 9.4 T) using a 4-mm CP/MAS probe. Larmor frequency
for investigated nuclei 13C was 100.64 MHz. Samples were loaded into a zirconium oxide 4 mm rotor
spun at 12.5 kHz. Liquid tetramethylsilane (TMS) was used as an external reference for 13C nuclei.
{1H}13C CP/MAS NMR spectra were acquired with 8192 scans, 2 ms contact time, and 5 s relaxation.

2.5. Scanning Electron Microscopy (SEM)

The inner structure of the prepared SA membranes was studied by scanning electron microscopy
(SEM) with Zeiss Merlin SEM (Carl Zeiss SMT, Oberhochen, Germany). The membranes were
not sputtered to keep the sample’s surface morphology unchanged and were observed using low
accelerating voltage of 1 kV and a low electron beam current of 100 pA to prevent surface charging
and modification during SEM imaging. The membrane was submerged in liquid nitrogen for about
one minute and was fractured perpendicular to the surface in the liquid nitrogen after reaching the
Leidenfrost point [54]. After crushing, the sample was removed from liquid nitrogen and dried in air
for 5 min.

2.6. Atomic Force Microscopy (AFM)

NT-MDT NTegra Maximus atomic force microscope (NT-MDT Spectrum Instruments, Moscow,
Russia) with standard silicon cantilevers with a rigidity of 15 N·m−1 in tapping mode was used to
study the surface topography of the SA membranes.

2.7. Thermogravimetric Analysis (TGA)

To evaluate the thermochemical properties of the membranes, the thermogravimetric analysis
(TGA) was carried out using a Thermobalance TG 209 F1 Libra (Netzsch, Leuna, Germany) (resolution
of 0.1 µg over the entire weighing range, balance drift—less than 5 µg/hour). Samples (~2 mg) were
placed in the pans of the TGA instrument and analyzed over the temperature range 37–720 ◦C with the
heating speed of 10 ◦C/min under an inert argon atmosphere.

2.8. Swelling Measurement

The equilibrium swelling degree (sorption) was studied in water and the azeotropic
water–isopropanol mixture by a gravimetric method at 20 ◦C for untreated and cross-linked membranes
based on SA and SA–fullerenol composite. Membranes of known weight were immersed in weighing
bottles containing water or the azeotropic water–isopropanol mixture and were weighted from time to
time until the weight of the swelling films remained constant.

The swelling degree (sorption) (S) was calculated by the following Equation (1):

S =
ms −mo

mo
(1)

where ms (g) is the weight of a swollen membrane and mo (g) is the weight of a dry membrane.
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2.9. Pervaporation Experiment

The transport properties of the developed membranes were studied using a laboratory cell in
the steady-state regime at 22 ◦C in the stirring regime (Figure 2). The compositions of permeate and
feed were analyzed by gas chromatography using Chromatek Crystal 5000.2 (Chromatec, Nizhny
Novgorod, Russia) gas chromatograph equipped with the “Hayesep R” column and a thermal
conductivity detector.

Polymers 2020, 12, x FOR PEER REVIEW 6 of 25 

 

The transport properties of the developed membranes were studied using a laboratory cell in 

the steady-state regime at 22 °C in the stirring regime (Figure 2). The compositions of permeate and 

feed were analyzed by gas chromatography using Chromatek Crystal 5000.2 (Chromatec, Nizhny 

Novgorod, Russia) gas chromatograph equipped with the “Hayesep R” column and a thermal 

conductivity detector. 

 

Figure 2. The scheme of the pervaporation setup. 

The permeation flux J (kg/(m2 h)) of membranes was determined to be the amount of liquid 

transported through a unit of the membrane area per hour and was calculated as [55]: 

𝐽 =
𝑊

𝐴 · 𝑡
 

(2) 

where W (kg) is the component weight that permeated the membrane; A (m2) is the effective 

membrane area; and t (h) is the measurement time. 

The separation factor (β), the pervaporation separation index (PSI), and component permeances 

(P/l) were calculated to evaluate the effectiveness of pervaporation separation of the isopropanol–

water mixture using developed SA membranes.  

The separation factor (β) was calculated as [56]: 

𝛽 =

𝑦𝑖
𝑦𝑗⁄

𝑥𝑖
𝑥𝑗⁄

 
(3) 

where yi and yj are the weight fractions of components i and j in the permeate and xi and xj are the 

weight fractions of components i and j in the feed. 

The pervaporation separation index (PSI) was calculated as: 

𝑃𝑆𝐼 = 𝐽 ∙ (𝛽 − 1) (4) 

The permeance P/l is a component flux normalized for the driving force calculated according to 

the work of R.W. Baker et al. [56] as: 

𝑃

𝑙
=

𝑗𝑖
𝑝𝑖𝑓 − 𝑝𝑖𝑝

 (5) 

where ji is the partial flux of the i component; l is the membrane thickness; and 𝑝𝑖𝑓 and 𝑝𝑖𝑝 are the i 

component vapor pressures of the feed and the permeate, respectively. The component permeances 

were expressed in common gas permeation units (GPU) (1 GPU = 1 × 10−6 cm3 (STP)/cm2 s cm Hg; 1 

m3 m/m2 s kPa = 1.33 × 108 GPU). 

Figure 2. The scheme of the pervaporation setup.

The permeation flux J (kg/(m2 h)) of membranes was determined to be the amount of liquid
transported through a unit of the membrane area per hour and was calculated as [55]:

J =
W
A·t

(2)

where W (kg) is the component weight that permeated the membrane; A (m2) is the effective membrane
area; and t (h) is the measurement time.

The separation factor (β), the pervaporation separation index (PSI), and component permeances
(P/l) were calculated to evaluate the effectiveness of pervaporation separation of the isopropanol–water
mixture using developed SA membranes.

The separation factor (β) was calculated as [56]:

β =
yi/y j

xi/x j
(3)

where yi and yj are the weight fractions of components i and j in the permeate and xi and xj are the
weight fractions of components i and j in the feed.

The pervaporation separation index (PSI) was calculated as:

PSI = J·(β− 1) (4)

The permeance P/l is a component flux normalized for the driving force calculated according to
the work of R.W. Baker et al. [56] as:

P
l
=

ji
pi f − pip

(5)
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where ji is the partial flux of the i component; l is the membrane thickness; and pi f and pip are the i
component vapor pressures of the feed and the permeate, respectively. The component permeances
were expressed in common gas permeation units (GPU) (1 GPU = 1 × 10−6 cm3 (STP)/cm2 s cm Hg;
1 m3 m/m2 s kPa = 1.33 × 108 GPU).

Each measurement was performed at least three times to ensure good accuracy of the transport
parameters, and the average value was recorded for later analysis. The mean accuracy for the transport
parameters was as follows: ±0.4% for water content in the permeate and ±8% for permeation flux for
the dense membranes; ±0.3% for water content in the permeate and ±5% for permeation flux for the
supported membranes.

3. Results

The effect of fullerenol introduction into the SA matrix on the membrane transport properties was
studied in the pervaporation dehydration of isopropanol. Two types of membranes were developed:
dense and supported. These mixed matrix membranes were characterized by different methods of
analysis. The obtained data are presented in the current section.

3.1. The Development and Investigation of Dense Membranes

3.1.1. Pervaporation Performance of Dense SA Membranes

Pervaporation experiments for SA membranes were carried out for the separation of the
water–isopropanol mixture. As pervaporation is described by a solution–diffusion mechanism
(three stages: sorption, diffusion, and desorption), it is necessary to evaluate the interaction and
affinity between SA and feed components of various polarity (water and isopropanol). One of the
most widely-used and fast approaches is the use of Hansen’s Solubility Parameters including the
determination of three major types of the intermolecular interactions: dispersion (δd), polar (δp),
and hydrogen bonding (δh) [57], which affects membrane diffusion and permeability. The total
solubility parameter (δt) can be calculated from these parameters [58]. Literature data on the Hansen’s
solubility parameters for SA, water, and isopropanol were used to evaluate the compatibility of SA to
the feed components (Table 2).

Table 2. Hansen’s Solubility Parameters.

Polymer and Solvents Hansen Solubility Parameters [MPa1/2]
References

δd δp δh δt

Sodium alginate - - - 37 [58]
Water 15.5 16 42.3 47.8 [59]

Isopropanol 15.8 6.1 16.4 23.6

The value of distance parameter (∆) is required to evaluate the affinity between two components
(polymer and solvent) using the partial solubility parameters of pure solvents and polymer [60]. The δd

values for water and isopropanol are relatively the same, while δp and δh differ considerably (Table 2).
This indicates that the interactions between SA and the solvent mainly depend on the parameters of the
polar and hydrogen bonds, while the dispersion parameter almost does not affect these interactions [60].
In the literature, we could locate the data only for the total solubility parameter for SA [58], and there
were no calculations and estimations for individual parameters δd, δp, and δh. Nevertheless, the total
parameters of SA and solvents could be evaluated. The relative similarity of the total parameters of
solvent and SA determines the potential polymer dissolution in the solvent and, at the same time,
a higher degree of the solvent’s sorption in the polymer [57,61]. ∆δt for SA and water (10.8) is lower
compared with isopropanol (∆δt = 13.4), which suggests that the SA membrane has a high affinity to
water and would exhibit the highest selectivity properties (confirmed by the pervaporation data). It is
also worth noting that water’s larger δh parameter compared to isopropanol is the most important
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factor affecting the solubility of SA with ionized COOH groups [58] (confirmed by swelling data,
Table 5).

Pervaporation experiments for untreated SA membranes were carried out for the separation
of azeotropic water (12 wt %)—isopropanol (88 wt %) mixture because of the low stability of
non-cross-linked membranes in aqueous solutions. The application of the cross-linking method for SA
and SA–fullerenol membranes allows using them for pervaporation separation of the water-isopropanol
mixture in a wide concentration range (12–100 wt % water in the feed). This was performed to test the
performance and stability of the developed membranes in the presence of water excess, which could
easily occur in industrial processes.

The transport properties of untreated dense SA and SA–fullerenol (3, 5, 7, 10 wt %) membranes
in the pervaporation separation of azeotropic water–isopropanol (12/88 wt %) mixture at 22 ◦C are
presented in Figure 3.
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Figure 3. The dependence of permeation flux on fullerenol content in the SA membrane in pervaporation
of azeotropic water (12 wt %)—isopropanol (88 wt %) mixture at 22 ◦C. Water content in the permeate
for all membranes was 99.99 wt %.

It was demonstrated that all SA membranes were highly selective with respect to water (99.99 wt %
water content in the permeate), while permeation flux significantly increased up to 5 wt % fullerenol in
the SA matrix (SA-5 membrane) and decreased for the SA-7 and SA-10 membranes (Figure 3). This effect
was also confirmed by the NMR data for SA-based membranes (NMR crystallinity data, Table 3), where
it was shown that the introduction of 5 wt % fullerenol into the SA matrix led to structuring of the SA
membrane, which contributed to an increase in the permeability of the SA-5 membrane. The decrease
in the permeation flux for SA-7 and SA-10 membranes to a greater extent can be associated with the
existence of an impenetrable volume due to the presence of agglomerates of carbon modifiers that
created an impenetrable space for penetrants through the SA-7 and SA-10 modified membranes (shown
by SEM data, Figure 7d,e).

Table 3. The crystalline phase content for untreated and cross-linked membranes.

Membranes Crystalline Phase, %

SA-0 40
SA-5 53
SA-10 41

SA-0CaCl2 58
SA-5CaCl2 41

Based on the obtained pervaporation data for the separation of the azeotropic water–isopropanol
mixture, it was demonstrated that the SA membrane modified by 5 wt % fullerenol (SA-5) possessed
the best transport characteristics (the highest permeation flux). Thus, to apply this membrane in
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the pervaporation separation of water–isopropanol mixture in a wide concentration range, SA-5 and
SA-0 membranes were cross-linked by immersing in 1.25 wt % calcium chloride (CaCl2) aqueous
solution for 10 min. The membrane based on pristine polymer was also cross-linked for a comparison
with the properties of the modified SA-5CaCl2 membrane.

The transport properties for untreated and cross-linked by calcium chloride SA and SA–fullerenol
(5%) membranes (SA-0CaCl2 and SA-5CaCl2) (i.e., permeation flux, water content in the permeate,
component permeances, separation factor, and pervaporation separation index (PSI)) in the
pervaporation of a water–isopropanol mixture (12–100 wt % water) are presented in Figure 4.Polymers 2020, 12, x FOR PEER REVIEW 9 of 25 
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Figure 4. The dependence of (a) permeation flux and water content in the permeate, (b) water and
isopropanol permeances, (c) separation factor, and (d) pervaporation separation index (PSI) on water
content in the feed during pervaporation of the water–isopropanol mixture at 22 ◦C for untreated and
cross-linked SA and SA–fullerenol (5%) membranes.

It was demonstrated that the untreated SA-0 membrane was applicable for the pervaporation
separation to 50 wt % water in the feed, while the introduction of 5 wt % fullerenol into the SA
matrix (SA-5) allowed for this membrane to be applied to up to 70 wt % water in the feed, which also
confirmed the cross-linking effect of SA by fullerenol (in accordance with the swelling degree data,
Table 5). For higher water concentrations, the SA-0 and SA-5 membranes lost integrity (Figure 4a).
The cross-linking by CaCl2 of the membranes made it possible to use membranes over the entire
concentration range of the water–isopropanol mixture (12–90 wt % water) as well as to test these
membranes for pure water penetration (Figure 4a). Additionally, the cross-linking of the SA membrane
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(SA-0CaCl2) led to an insignificant decrease in the permeation flux and an increase in selectivity (higher
water content in the permeate) compared to the untreated SA-0 membrane. The cross-linked membrane
modified with fullerenol (SA-5CaCl2) had an increased permeation flux and water content in the
permeate compared to the cross-linked SA-0CaCl2 and the untreated SA-5 membranes (Figure 4a) due
to structural and morphology changes (SEM, AFM data, Figure 8). This effect is related to the fact that
fullerenol also acts as a modifier and a cross-linker of the SA membrane and eliminates the cross-linking
effect of calcium chloride, which was also confirmed by NMR data.

The pervaporation performances of the developed membranes were also represented in terms
of component permeances, separation factor, and PSI in Figure 4b,c,d, respectively. It was shown
that water permeance followed the same trend, demonstrating the highest values for the SA-5CaCl2

membrane, while the isopropanol permeance was minimal for this membrane (Figure 4b). The values
of the separation factor and PSI for the SA-5CaCl2 membrane were close to the SA-5 membrane up
to 50 wt % water in the feed, and after increased, demonstrating the better transport properties of
the cross-linked modified membrane (Figure 4c,d). Thus, the developed cross-linked SA membrane
modified by 5 wt % fullerenol (SA-5CaCl2) had the optimal transport properties (the highest permeation
flux and selectivity) for the pervaporation separation of the water–isopropanol mixture in a wide
concentration range. However, a further increase in performance is required for application in industry,
which can be achieved by the development of the supported membranes presented in Section 3.2.
The change of transport characteristics of SA-based membranes after modification and cross-linking can
be explained by changes in structure, morphology, and surface topography, which were investigated
by a different method of analysis and presented in Section 3.1.2.

3.1.2. Structure and Physicochemical Properties Investigation

The structural characteristics of untreated and cross-linked SA membranes modified by fullerenol
were studied by FTIR and NMR spectroscopies as well as scanning electron (SEM) and atomic force
(AFM) microscopies.

FTIR spectra for untreated membranes based on sodium alginate (SA-0) and sodium
alginate–fullerenol (5 or 10 wt %) (SA-5 and SA-10) are presented in Figure 5.

The FTIR spectrum of the unmodified SA-0 membrane demonstrated primary absorption bands
at 3228, 1595, 1410 cm−1, 2914–2845, and 1020–1095 cm−1, which corresponded to the stretching of the
hydroxyl group, symmetric and asymmetric stretching of the carboxylate group, and the stretching of
aliphatic C–H and C–O bonds, respectively [26,34,62,63]. After the introduction of 5 wt % fullerenol
into the SA matrix, some characteristic band changes were observed: (1) the decrease in peak intensity
at 3228 cm−1 was assigned to the reduction of –OH groups, (2) the significant decrease of peak intensity
at 2915, 2847 (corresponding to the stretching of aliphatic C–H and C–O bonds), and 1535 cm−1,
and (3) the shift peaks at 1595 and 1085 cm−1 to the to lower wavenumbers (1590 and 1082 cm−1)
compared with the spectrum of the pure SA membrane may be related to the overlapping peaks of
sodium alginate and fullerenol characteristic peaks (corresponding to stretching of C=C and C–O
bonds [64]). These changes in the peak positions and relative intensities increased with increasing
fullerenol content in the SA membrane from 5 to 10 wt %. This may indicate that the formation of the
hydrogen bonds between the fullerenol and SA caused strong interfacial interactions [65].

The spectra of cross-linked membranes based on SA and composite SA–fullerenol (5%) (SA-0CaCl2

and SA-5CaCl2) are presented in Figure 6. Through FTIR spectroscopy, it was shown that the cross-linking
by CaCl2 did not significantly influence the structural properties of SA membranes. The cross-linking
of SA-0 with calcium cations led to the increased hydrophilicity of the membranes (which is expressed
by an increase in the extension band assigned to –OH groups) (Figure 6) and to the ionic interaction
of polymer chains with Ca2+ with the formation of electronegative cavities [26], resulting in the
cross-linking of SA chains in the structure of an “egg box” [53]. This was also confirmed by the
differences in spectrum bands: the peak shift to 1583 cm−1 (corresponding to the asymmetric and
symmetric stretching of –COO− associated with carboxylic acid salts) and the significant increase in
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the peak intensity at 1085 cm-1 (related to the C–C and C–O stretching) for the SA-0CaCl2 membrane,
which could also be attributed to the presence of the cross-linking of polymer chains [66].Polymers 2020, 12, x FOR PEER REVIEW 11 of 25 
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Figure 6. The FTIR spectra for the SA-0CaCl2 and SA-5CaCl2 membranes.

The FTIR spectra for the SA-0CaCl2 and SA-5CaCl2 membranes showed no significant changes in
the structure for the SA-5CaCl2 membrane (modified by 5 wt % fullerenol and cross-linked with calcium
chloride) compared to the SA-0CaCl2 membrane, in addition to a significant reduction in the band
assigned to the –OH groups.

Through the NMR method, it was shown that the spectra of the developed membranes
corresponded to previously published spectra of sodium alginate [67], which was a linear copolymer
consisting of homopolymer blocks of munnuronate (M) and guluronate (G) (Figure S1) [68]. The 13C
CP/MAS NMR spectra of the untreated and cross-linked SA and SA–fullerenol membranes are
presented in Figure S2. The peak in the range of 170–185 ppm (corresponding to carbon atoms under
number 6 in the structure of SA (Figure S1)) was characterized by inhomogeneous broadening in
the spectra for those cross-linked by CaCl2 membranes when compared to the spectra of untreated
membranes. These changes in spectra related to the cross-linked polymer blocks around calcium ions.
However, the introduction of fullerenol into the SA matrix led to a decrease in the cross-linking
effect of calcium chloride and reduced the linked number of polymer blocks. In the spectral
range of 91–108 ppm (corresponding to carbon atoms under number 1 in the structure of polymer
(Figure S1)), an inhomogeneously broadened spectral line was observed for the developed membranes.
Through analogy with the results of the NMR studies of cellulose samples, the presence of amorphous
and crystalline phases in the membranes in this range can be assumed [69]. It should be emphasized
that crystallinity calculated from the NMR data determines the contributions from chain segments,
which are included in small and defective crystals and is based on segment conformations or packing
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regularity without the long-range order required for wide angle X-ray diffraction (WAXD) analysis [70].
Moreover, the values of crystalline phase content from the NMR data are often much higher than
for WAXD data because of the additional inclusion of crystallites that are too small and disordered
to contribute to crystalline diffraction [70]. The lines in the range of 91–108 ppm were decomposed
into two components to analyze the quantitative change of these phases and was estimated according
to the area ratio of the received lines components percentage ratio (crystalline phase percentage).
The crystalline phase content for untreated and cross-linked SA and SA–fullerenol (5%) membranes is
presented in Table 3.

The untreated and cross-linked membranes should be considered separately in terms of different
mechanisms of formation and, as a consequence, of the explanation of the obtained data.

For the untreated membranes, the data in Table 3 demonstrate that the fraction of the
crystalline phase sharply increases with the introduction of 5 wt % fullerenol into the SA matrix (for
SA-5 membrane), and again decreases for the SA-10 membrane. An increase in crystallinity for the
untreated SA-5 membrane means structuring of the SA matrix by fullerenol, creating crystalline phases
near the modifier molecule, which contributes to the more amorphous state of the membrane matrix.
This effect caused increased permeability for untreated SA-5 membrane compared to the pristine
SA-0 membrane.

In the case of the cross-linking of SA membranes by calcium chloride, the polymer chains
were formed in the structure of an “egg box” [53,66] (confirmed by FTIR data, Figures 5 and 6).
Thus, cross-linked SA-0CaCl2 membrane becomes stable in water (83% swelling degree in water, Table 5)
and possesses lower permeation flux compared to the untreated SA-0 membrane (Figure 4) due to
the strong cross-linking effect and rigid structure (TGA data, Figure 9). The introduction of fullerenol
eliminates the effect of cross-linking and structuring of the SA matrix by calcium chloride for the
SA-5CaCl2 membrane due to the fact that fullerenol itself acts as a cross-linker. This is reflected in
the decrease of the crystalline phase content for this membrane when compared to the SA-0CaCl2

membrane (Table 3), resulting in the significant increase in permeability for the modified membrane.
At the same time, it retains the cross-linking structure of the membrane. The confirmation of this
effect has also been noted by the wide unresolved spectral lines in the range of 58–90 ppm, which
corresponds to carbon atoms under numbers 2–5 in the structure of SA, where the position of the peaks
for the blocks of munnuronate (M) and guluronate (G) can be significantly different [67]. By changing
the peak positions that correspond to carbon atoms in the same SA structural positions (Table S1),
it can be concluded that the largest changes are observed for peaks G4 and G5 of the cross-linked
membranes, which may correspond to the participation of these blocks in the cross-linking mechanism.
At the same time, for the cross-linked SA-0CaCl2 membrane, the peak corresponding to carbon atoms in
the M5 position shifts strongly, which indicates that the units of munnuronate (M) can also participate
in the cross-linking mechanism. However, for the SA-5CaCl2 membrane (the introduction of 5 wt %
fullerenol into the SA matrix and cross-linking by CaCl2), the blocks of munnuronate (M) are practically
excluded from this mechanism, which indicates a decrease in the effect of cross-linking with calcium
chloride due to the presence of fullerenol.

The inner morphology and the surface topography of the untreated and cross-linked membranes
based on SA and its composite with fullerenol were studied by SEM and AFM. The results are presented
in Figures 7 and 8, respectively.
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The cross-sectional and surface SEM micrographs and AFM images with a scan size of 30 × 30 µm
for the untreated SA and modified membranes are presented in Figure 7.

The SEM micrographs (Figure 7) demonstrated that the cross-sectional and surface structure
of dense SA membrane significantly changed with the fullerenol introduction into the SA matrix.
The membrane based on pristine SA possessed a smooth and plain structure in the cross-section
and surface, while the modification of the SA membrane by fullerenol led to the appearance of the
plastic deformations in the form of “knolls” on surfaces and “grooves” on the cross-sections, which
significantly increased with the rise of fullerenol content in the SA matrix. All these modifications can
provide significant changes in transport properties when compared to a pristine SA membrane.

For the comparison with the untreated membranes, the inner morphology and the surface
topography of cross-linked SA-0CaCl2 and SA-5CaCl2 membranes were also studied by SEM and AFM.
The cross-sectional and surface SEM micrographs and AFM images with a scan size of 30 × 30 µm for
SA-0CaCl2 and SA-5CaCl2 membranes are presented in Figure 8.

It was demonstrated that the cross-linking of SA-0 and SA-5 membranes by calcium chloride (CaCl2)
led to the significant changes in the inner and surface morphology of the membranes. The SA-0CaCl2

membrane had a pronounced roughness structure of the cross-section and surface (Figure 8a) when
compared with the untreated SA-0 membrane (Figure 7a). The modification of SA by 5 wt % fullerenol
and cross-linking by CaCl2 greatly enhanced the asymmetric roughness and heterogeneity of the
SA-5CaCl2 membrane morphology.

The roughness characteristics of the SA and SA–fullerenol membrane surfaces were calculated
based on AFM images (Figures 7 and 8) in terms of the root-mean-squared surface roughness (Rq)
and average roughness (Ra) (Table 4), these characteristics may strongly affect the sorption of the
separated feed components on the membrane surface during pervaporation separation and the
membrane permeability.
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Table 4. Surface parameters of dense SA and SA–fullerenol membranes.

Membranes Ra, nm Rq, nm

SA-0 7.2 ± 2 10.2 ± 3
SA-3 25.2 ± 3 33.8 ± 4
SA-5 32.8 ± 3 42.6 ± 4
SA-7 46.9 ± 5 59.7 ± 5
SA-10 67.3 ± 5 84.8 ± 6

SA-0CaCl2 11.2 ± 3 15.9 ± 4
SA-5CaCl2 45.7 ± 5 59.1 ± 5

It was demonstrated that the introduction of fullerenol into the SA matrix led to the significant
increase of the surface roughness of membranes. The values of Ra (average surface roughness) for
the untreated hybrid membranes were 3.5–9.4 times higher when compared to the average surface
roughness of the pristine SA membrane (7.2 nm) (Table 4). The application of cross-linking by CaCl2 for
SA and SA–fullerenol (5%) membranes (SA-0CaCl2 and SA-5CaCl2) also led to an increase in the surface
roughness Ra of 1.6 and 1.4 times when compared to the SA-0 and SA-5 membranes, respectively.
It provided a larger surface membrane area for contact with the separated mixture, leading to facilitated
sorption of feed components and faster penetration of the components through the membrane, resulting
in a significant improvement in membrane permeability. Additionally, the increase in the surface
roughness of membranes was in accordance with the SEM data.

According to SEM, AFM, and the pervaporation data, during the modification of SA membranes,
fullerenol was evenly distributed in bulk and on the surface of the SA membranes.

Thermal stability of the developed untreated and cross-linked SA-based membranes was
investigated by TGA. The resulting thermograms (TG) and their derivatives (DTG) (indicating
the dependence of rate of weight change on temperature) for fullerenol, SA-0, SA-5 and cross-linked
SA-0CaCl2, and SA-5CaCl2 membranes are presented in Figure 9.
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Figure 9. (a) TG and (b) DTG curves for fullerenol, SA-0, SA-5 and cross-linked SA-0CaCl2 and
SA-5CaCl2 membranes.

For all membranes, three distinct weight-loss stages were observed (Figure 9a,b). The first stage
of weight loss occurred between 37 and 240 ◦C, corresponding to the evaporation of the physically
absorbed water molecules [45]; the second stage between 240 and 390 ◦C, corresponded to thermal
decomposition of carboxyl and hydroxyl groups; and the third stage over 400 ◦C was attributed to
the degradation of the SA backbone [29]. Compared with the untreated SA-0 and SA-5 membranes,
the cross-linking SA-0CaCl2 and SA-5CaCl2 membranes demonstrated a lower weight loss at the
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temperature from 240 to 400 ◦C, which confirmed a deeper cross-linking of polymer chains (more rigid
structure). It is also worth noting that the membranes modified by fullerenol (SA-5 and SA-5CaCl2) are
slightly more thermally stable (less weight loss) when compared to membranes based on pure sodium
alginate (SA-0 and SA-0CaCl2).

To explain the transport properties of the developed membranes, the swelling degree of the
SA-based membranes was studied in water and the separated azeotropic mixture (water/isopropanol
(12/88 wt %)) (Table 5).

Table 5. Swelling degree of SA-based membranes in water and the water (12 wt %)–isopropanol
(88 wt %) mixture.

Membranes
Swelling Degree

in Water (S),
%

Swelling Degree in the
Azeotropic Mixture (S),

%

SA-0 - 15
SA-3 - 13
SA-5 - 12
SA-7 - 14

SA-10 - 19
SA-0CaCl2 83 48
SA-5CaCl2 77 24

It was demonstrated that untreated membranes collapsed in water, while the application of the
cross-linking method stabilized them in pure water. Swelling degrees in the water (12 wt %)–isopropanol
(88 wt %) mixture of untreated SA-0 and modified membranes were close in value due to the small
content of water in the studied azeotropic mixture. The cross-linking of membranes led to the more
pronounced difference in the swelling degree in the azeotropic mixture for the SA-0CaCl2 and SA-5CaCl2

membranes due to the more significant differences in the structure. The decrease of swelling degree
of the SA-5CaCl2 membrane compared to the SA-0CaCl2 membrane indicated the cross-linking of SA
chains not only by CaCl2, but also by fullerenol.

3.2. The Development and Investigation of Supported Membranes

An increase in the productivity of the developed dense cross-linked SA-0CaCl2 and SA-5CaCl2

membranes for the prospective application in industrial dehydration processes is possible by reducing
the thickness of the membrane. This problem can be solved by preparing supported membranes,
which consist of a thin dense selective layer based on SA and its composite deposited on a porous
substrate, to ensure high-performance pervaporation. Porous membranes based on polyacrylonitrile
(PAN) were chosen as a substrate, which provided good mechanical strength and did not limit the
mass transfer of the components through the membrane.

The morphology and the surface topography of the cross-linked SA-0/PANCaCl2 and SA-5/PANCaCl2

membranes were also studied by SEM and AFM. SEM micrographs of the cross-section and surface
and AFM images of the SA-0/PANCaCl2 and SA-5/PANCaCl2 membranes are presented in Figure 10.
The cross-sectional SEM micrographs of the supported SA-0/PANCaCl2 and SA-5/PANCaCl2 membranes
were identical.
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Figure 10. The cross-sectional SEM micrograph (a) and SEM micrographs of surface and AFM images
of cross-linked supported (b,d) SA-0/PANCaCl2 and (c,e) SA-5/PANCaCl2 membranes.

The SEM cross-sectional micrograph demonstrates a uniform structure of the top thin dense
selective SA–fullerenol (5%) layer and excellent adhesion of it to the porous PAN substrate. Based on
the SEM data, the thickness of the selective layer was found to be approximately ~600 nm. This was
also demonstrated by the SEM micrographs where the surface of the upper thin dense layer of the
supported SA-5/PANCaCl2 membrane was rougher when compared to the SA-0/PANCaCl2 membrane.
This was also confirmed by the roughness surface parameters (Ra and Rq), which were calculated for
the SA-0/PANCaCl2 and SA-5/PANCaCl2 membranes based on AFM images (Table 6).

Table 6. Surface parameters of the supported SA-0/PANCaCl2 and SA-5/PANCaCl2 membranes.

Membranes Ra, nm Rq, nm

SA-0/PANCaCl2 3.8 ± 2 5.1 ± 2
SA-5/PANCaCl2 7.6 ± 3 10.8 ± 4
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It was found that compared to the SA-0/PANCaCl2 membrane, for the SA-5/PANCaCl2 membrane,
the root-mean-squared surface roughness (Rq) and average roughness (Ra) (Table 6) increased up to
10.8 and 7.6 nm, respectively. This effect was related to the introduction of fullerenol into the SA matrix
and could lead to the rise in permeability for the modified membrane. The surface roughness of the
cross-linked supported SA-0/PANCaCl2 and SA-5/PANCaCl2 membranes decreased by 2.9 and 6 times
when compared to the cross-linked dense SA-0CaCl2 and SA-5CaCl2 membranes, which was more likely
due to the effect of the application of a PAN substrate for a thin dense selective hybrid layer (~600 nm).

To evaluate the transport properties, the supported SA-0/PANCaCl2 and SA-5/PANCaCl2 membranes
were tested in the pervaporation separation of water–isopropanol mixture in a wide concentration
range (12–100 wt % water). Pervaporation data, in terms of permeation flux, water content in the
permeate, component permeances, separation factor, and PSI are presented in Figure 11.
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Figure 11. The dependence of (a) permeation flux and (b) water content in the permeate, (c) water
and isopropanol permeances, (d) separation factor and PSI on water content in the feed during
pervaporation of water–isopropanol mixture at 22 ◦C for cross-linked supported SA-0/PANCaCl2 and
SA-5/PANCaCl2 membranes.

The developed supported cross-linked membranes possessed increased permeation flux
(0.5–3.8 kg/(m2 h) for SA-0/PANCaCl2 and 0.6–5.7 kg/(m2 h) for SA-5/PANCaCl2) compared with
dense cross-linked membranes (0.2–0.5 kg/(m2 h) for SA-0CaCl2 and 0.2–1.2 kg/(m2 h) for SA-5CaCl2)
(Figure 4a). Moreover, the permeation flux of the modified supported SA-5/PANCaCl2 membrane was
superior by ~1.5 times to the permeation flux of the SA-0/PANCaCl2 membrane based on the pure
polymer (Figure 11a). All developed membranes (dense and supported) had similar values of water
content in the permeate.
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Additionally, the supported cross-linked membranes had increased water permeance
(14,554–26,034 GPU for SA-0/PANCaCl2 and 18,844–38,338 GPU for SA-5/PANCaCl2) compared with
dense cross-linked membranes (4400–5287 GPU for SA-0CaCl2and 6884–16,280 for SA-5CaCl2). The water
permeance for the supported SA-5/PANCaCl2 membrane had the same trend as that of the supported
SA-0/PANCaCl2 membrane. These were relatively at the same level of values, and sharply increased
at 90 wt % water in the feed, while isopropanol permeance was slightly increased over the entire
concentration range (Figure 11c). Additionally, it should be noted that the water permeances for both
supported membranes slightly decreased with the rise to 50 wt % water content in the feed, and a
decrease in selectivity was observed. This may be due to the plasticizing effect of the membrane
in the presence of water, which led to membrane swelling, resulting in non-selective penetration.
The separation factor and PSI were larger in value for the SA-5/PANCaCl2 membrane when compared
to the SA-0/PANCaCl2 membrane (Figure 11d). This also indicated the effectiveness of the developed
modified by fullerenol membrane for the use in pervaporation dehydration. Thus, the developed
supported cross-linked SA-5/PANCaCl2 membrane (modified by 5 wt % fullerenol) had the best
transport properties (the highest permeation flux and selectivity) for the pervaporation separation of a
water–isopropanol mixture in a wide concentration range and is suitable for the promising application
in industry.

3.3. Comparison of Performance with SA-Based Membranes

Table 7 demonstrates a comparison of the transport properties of SA-5CaCl2 and SA-5/PANCaCl2

membranes developed in this work and the SA-based membranes described in the literature for
pervaporation dehydration of isopropanol in terms of the permeation flux and the separation factor
under conditions close to the present study. Additionally, in the present study, the pervaporation
dehydration of isopropanol (12 wt % water) was carried out with the use of commercial membrane
PERVAP™ 1201 from Sulzer Chemtech, which was the cross-linked supported membrane used
primarily for the dehydration of mixtures up to 80 wt % water [71].

Table 7. Comparison of transport properties of SA-based membranes for isopropanol dehydration.

Membranes
Thickness of

Selective Layer,
µm

Water Content
in the Feed,

wt %

Temperature,
◦C

Permeation
Flux,

kg/(m2 h)

Separation
Factor (β) Reference

SA-5CaCl2 25 12 22 0.240 73,326 This study
SA-5/PANCaCl2 0.6 12 22 0.641 73,326 This study
PERVAP™ 1201 - 12 22 0.028 73,326 This study

Alg-chitosan-wrapped MWCNT (2%) 50 10 30 0.218 6419 [45]
Alg-phosphomolybdic acid (10%) 50 10 30 0.282 9028 [72]

Alg-phosphotungstic acid modified by
ammonium carbonate (10%) 50 10 30 0.316 8991 [73]

Alg-3-aminopropyl triethoxysilane
(APTEOS)/TEOS (30%) 50 5 30 0.044 17,253 [74]

Alg-gelatin (10%) 45 10 30 0.085 4277 [75]

It was demonstrated that the developed dense SA-5CaCl2 membrane exhibited the highest
separation factor and was slightly inferior in permeation flux when compared to the some modified
dense SA-based membranes obtained in previous studies (Table 7). Moreover, the development of
the supported SA-5/PANCaCl2 membrane improved both transport parameters, namely, providing
the highest separation factor and the permeation flux for the pervaporation separation of an
isopropanol–water (88/12 wt %) mixture (Table 7). It was demonstrated that the permeation flux
of the developed SA-5/PANCaCl2 membrane was ~23 times higher with the same level of selectivity
(separation factor of 73326) compared to the commercial PERVAP™ 1201 membrane in pervaporation
for the separation of an azeotropic isopropanol–water (88/12 wt %) mixture at 22 ◦C (Table 7), which
confirmed the promising application of this developed supported SA-5/PANCaCl2 membrane in industry
for dehydration processes (e.g., wastewater treatment and purification of chemicals).
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4. Conclusions

In this study, novel dense and supported mixed matrix membranes based on biopolymer sodium
alginate modified by fullerenol were developed. Two types of SA and SA–fullerenol membranes were
prepared: untreated (without additional treatment) and cross-linked by CaCl2.

For the untreated fullerenol-modified membranes, the formation of the hydrogen bonds between
fullerenol and SA was found by FTIR spectroscopy. For the 1.25 wt % CaCl2 water solution cross-linked
SA and SA–fullerenol (5%) membranes, the organization of polymer chains in the “egg box” structure
was demonstrated by NMR and FTIR. Moreover, the introduction of 5 wt % fullerenol in the SA matrix
was found to decrease the cross-linking effect of CaCl2 and reduce the linked polymer blocks in the
SA-5CaCl2 membrane.

The modification of the SA matrix by fullerenol greatly enhanced the surface roughness confirmed
by SEM and AFM. This effect was more pronounced for the cross-linked SA and SA–fullerenol (5%)
membranes. It was also demonstrated that the use of the cross-linking method ensured the stability
of the SA and SA–fullerenol (5%) membranes in pure water, which was confirmed by the sorption
experiments. The strong cross-linking effect and a more rigid structure of the developed cross-linked
membranes were confirmed by TGA data when compared to the untreated membranes.

Transport properties of developed membranes were evaluated in the pervaporation dehydration
of isopropanol. For the untreated dense membranes, it was shown that in the pervaporation separation
of the azeotropic water (12 wt %)–isopropanol (88 wt %) mixture, the SA membrane modified by
5 wt % fullerenol (SA-5) possessed the highest permeation flux due to the structuring of SA membrane,
as confirmed by the NMR data. The cross-linking with CaCl2 of SA-0 and SA-5 membranes allows for
the application of these membranes in pervaporation for the separation of water–isopropanol mixtures
in a wide concentration range (12–90 wt % water) including for pure water penetration. The modified
cross-linked dense SA-5CaCl2 membrane exhibited the best transport characteristics (higher stability,
permeation flux, and selectivity) compared to the untreated SA-5 membrane due to the significant
structural changes caused by the introduction of fullerenol into the SA matrix, which acted as the
modifier and cross-linker agent with simultaneous application of CaCl2.

To increase the performance of the best modified dense cross-linked SA-5CaCl2 membrane for
pervaporation dehydration of isopropanol, the novel cross-linked supported membrane consisting of
top thin dense selective layer based on SA-fullerenol (5%) composite deposited on a PAN substrate
(SA-5/PANCaCl2) was developed. It was shown that the modified supported SA-5/PANCaCl2 membrane
was superior in permeation flux ~23 times to the commercial PERVAP™ 1201 membrane (intended for
dehydration up to 80 wt.% water) with the same level of selectivity in the pervaporation separation
of an azeotropic isopropanol–water (88/12 wt %) mixture. Thus, the SA-5/PANCaCl2 membrane is
promising for use in industrial processes of dehydration.
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Figure S1: Schematic representation of a linear chain of alginate with the blocks of munnuronate (M) and guluronate
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decomposition into the corresponding components, Table S1: The chemical shifts of components in the NMR
spectra of the developed membranes.
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