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Abstract Using numerical simulations of the general atmospheric circulation during boreal winter,
statistically confident evidences are obtained for the first time, demonstrating that changes in the solar
activity (SA) in the thermosphere at heights above 100 km can influence propagation and reflection
conditions for stationary planetary waves (SPWs) and can modify the middle atmosphere circulation below
100 km. A numerical mechanistic model simulating atmospheric circulation and SPWs at heights 0-300 km
is used. To achieve sufficient statistical confidence, 80 pairs of 15-day intervals were extracted from an
ensemble of 16 pairs of model runs corresponding to low and high SA. Results averaged over these intervals
show that impacts of SA above 100 km change the mean zonal wind and temperature up to 10% at altitudes
below 100 km. The statistically confident changes in SPW amplitudes due to SA impacts above 100 km reach
up to 50% in the thermosphere and 10-15% in the middle atmosphere depending on zonal wavenumber.
Changes in wave amplitudes correspond to variations of the Eliassen-Palm flux and may alter dynamical and
thermal SPW impacts on the mean wind and temperature. Thus, variable conditions of SPW propagation
and reflection at thermospheric altitudes may influence the middle atmosphere circulation, thermal
structure, and planetary waves.

Plain Language Summary Atmospheric large-scale disturbances, for instance planetary waves,
play a valuable role in atmospheric general circulation, influencing its dynamical and thermal conditions.
Solar activity might significantly change the mean temperature at heights above 100 km and alter conditions
of wave propagation and reflection in the thermosphere. In the present study, we perform numerical
simulations to obtain statistically confident results showing noticeable response of atmospheric circulation
at altitudes below 100 km to impacts of solar activity above 100 km.

1. Introduction

Atmospheric large-scale waves, for example, planetary waves (PWs), play significant roles in the middle and
upper atmosphere dynamics, contributing to energy transport between atmospheric levels (e.g., Holton,
1975). The impetuous development of numerical technologies contributes to the evolution of models of gen-
eral atmospheric circulation, which are increasingly capable of more and more accurate descriptions of var-
ious aspects of atmospheric motions. This leads to increasing interest in detailed understanding of the
dynamical and thermal effects made by atmospheric waves of different scales. Nowadays, numerous studies
are devoted to modeling the different effects of wave interactions in the atmosphere (e.g., Becker & Vadas,
2018; Chang et al., 2014; Liu et al., 2004; Wang et al., 2017).

Solar activity (SA) experiences cyclic variations with the period of about 11 years (e.g., Hathaway, 2010),
affecting thermal and dynamical features of the atmospheric circulation. It leads to significant changes in
the propagation of PWs at different atmospheric layers (Arnold & Robinson, 1998; Geller & Alpert, 1980;
Koval et al., 2018a; Liu & Richmond, 2013). SA effects may influence the PW propagation and reflection con-
ditions in the middle atmosphere. This was confirmed by Chanin (2006), who compared data of 45-year mea-
surements of the thermal structure of the middle atmosphere with numerical simulations. Krivolutsky et al.
(2015) also investigated SA effects using numerical modeling. Analyses of the long-term wind measurements
in the region of mesosphere and lower thermosphere showed correlations between PW activity and solar
radio flux Fio7 (Jacobi et al., 2008). Significant changes of the PW activity were disclosed when analyzing
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the responses of the annual mean temperature and its seasonal variations to the solar 11-year cycle (Gan
et al., 2017). Partial reflection of PWs propagating from the troposphere to the lower thermosphere could
also affect the middle atmosphere circulation (e.g., Lu et al., 2017). Changes in conditions of PW reflection
at mesosphere and lower thermosphere altitudes may be connected with considerable changes in wind and
temperature gradients at different SA levels (e.g., Koval et al., 2018b). Amid other factors influencing the PW
propagation to the thermosphere, the stratospheric sudden warming events (e.g., Cullens et al., 2015) could
be mentioned.

The middle and upper atmosphere model (MUAM) was extended to simulate the general circulation and
PWs at heights from the troposphere up to 300-400 km (Pogoreltsev et al., 2007). Simulations with the
MUAM by Koval et al. (2018a, 2018b) revealed substantial changes in general circulation and PWs at heights
above 100 km due to SA variations. Below 100 km, the results of simulations by Koval et al. (2018a, 2018b)
have no sufficient statistical confidence and do not allow making reliable conclusions about SA influence on
dynamics of the middle atmosphere.

In this study, we extended the number of MUAM runs and obtained statistically confident results showing
substantial response of the upper stratospheric and mesospheric dynamics to SA changes at heights above
100 km. Simulations with the MUAM were performed at altitudes 0-300 km with inclusion of SA effects cor-
responding to different SA at altitudes above 100 km. In this way, we avoid the direct solar radiation impacts
on the middle atmosphere (e.g., Kodera & Kuroda, 2002) and purified possible dynamical coupling of the
thermosphere and the middle atmosphere through PW-mean flow interactions. The most interesting conclu-
sion is that impacts of SA changes on the thermosphere above 100 km can significantly influence the mean
wind, temperature, and PW amplitudes at altitudes below 100 km, which was, for the first time, confirmed at
significance level of 95%. These results of simulations for extended number of the MUAM runs are essential
for further understanding of mechanisms of SA impacts on the dynamics of the middle atmosphere. We have
not found such statistically confident simulations in the literature.

2. Numerical Model and Methodology

To obtain changes in the global circulation and PW parameters in the middle atmosphere, numerical simu-
lations with the nonlinear mechanistic MUAM model (Pogoreltsev, 2007; Pogoreltsev et al., 2007) were per-
formed. This model is developed on the basis of the finite differences Cologne Model of the Middle
Atmosphere-Leipzig Institute for Meteorology (COMMA-LIM) described by Frohlich et al. (2003). The key
characteristics and physical processes involved in the model were discussed by Gavrilov et al. (2005) and
by Koval et al. (2018a). In particular, the MUAM includes a parameterization of thermal and dynamical
effects produced by a spectrum of nonorographic internal gravity waves (GWs; e.g., Gavrilov, 1997) and of
mountain waves (Gavrilov & Koval, 2013). Horizontal grid of the MUAM involves 64 X 36 nodes in longitude
and latitude, respectively. In the current MUAM version, the log-isobaric vertical grid has 56 levels spanning
heights from the ground to 300 km. The simulation in time has the step of 225 s. PW amplitudes near the
ground are set using distributions of geopotential height taken from the 55-year Japanese reanalysis data
set (Kobayashi et al., 2015) averaged over years 2005-2014 for January.

The MUAM includes standard radiation schemes (Frohlich et al., 2003) for the rates of solar heating and
infrared cooling due to the main absorbing and emitting atmospheric gas species. Also, the model accounts
for turbulent and molecular viscosity and thermal conduction, as well as ion drag. In the thermosphere, the
MUAM includes an extended parameterization of ultraviolet heating with fluxes of solar radiation and
absorption coefficients for different gas species and different spectral intervals taken from the model by
Richards et al. (1994).

The MUAM includes thermal and dynamical GW effects, which are necessary for proper simulations of the
general circulation in the upper and middle atmosphere (Andrews et al., 1987). Such GWs have subgrid
scales and should be parameterized. The MUAM involves different GW parameterizations (Zarubin &
Pogoreltsev, 2014). For GWs with phase speeds of 5-30 m/s, a Lindzen-type parameterization (Lindzen,
1981) is used. For GWs having phase speeds of 30-125 m/s, which are important in the thermosphere, the
MUAM includes a kind of spectral parameterization (Yigit & Medvedev, 2009). It uses 15 spectral wave com-
ponents having periods between 40 min and 3 hr. The MUAM includes also a parameterization of stationary
orographic GWs (Gavrilov & Koval, 2013).
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The stages of obtaining steady-state MUAM solutions from initial windless conditions include maintaining
constant geopotential heights at the ground in 30 beginning model days and triggering the heating daily var-
iations starting from the 120th day. After the 300th day, seasonal variations of solar heating are included.
Test simulations performed by Pogoreltsev et al. (2007) revealed that stages described above allow the model
to reach a steady-state condition by the 300th day. Therefore, the 301st-390th days are considered as char-
acteristic for December-February.

As an indicator of different SA levels, the MUAM radiation block uses the solar flux of radio waves with the
10.7 cm wavelength (F;q 7). The Fyq 7 flux is cyclically changed with periods about 11 years (Tapping, 1987).
These changes correlate with changes in the Wolf number; therefore, the Fyq 7 flux is a common SA charac-
teristic. Based on the measurements throughout six last solar cycles in the Royal Observatory of Belgium
(ROB) (2013), Koval et al. (2018a, 2018b) chose the values of F;o 7 = 220, 130, 70 sfu for the high, medium,
and low SA levels, respectively (1 sfu = 107% W/(m® Hz)).

As far as the main goal of this paper is considering thermospheric effects of SA variations, minimum and
maximum values of F;,,; were specified at heights above 100 km. Below 100 km, the same value of F;
= 130 sfu (matching to the medium SA) was specified in all MUAM runs. To account for the impact of
ionized components on the neutral gas movement for different SA, ionospheric conductivities and their tem-
poral, longitudinal, and latitudinal inhomogeneities (Shevchuk et al., 2018) were involved into the MUAM
(see Koval et al., 2018b). Ion drag and geomagnetic torque were calculated taking parameters from the IRI-
Plus ionospheric model (Gulyaeva et al., 2002) and from the NRL-MSISE model of the neutral atmosphere
(Picone et al., 2002). They were implemented into the MUAM at 23 nodes of vertical grid above 100 km tak-
ing into account diurnal variations.

To interpret the simulated PW characteristics of all analyzed PW modes, the altitude-latitude distributions of
the quasi-geostrophic zonal-mean refractivity index squared (RI?) were calculated (e.g., Albers et al., 2013).
According to PW theory, regions of positive RI* values can be considered as waveguides, within which PWs
can propagate. In regions of a negative RI%, the waves should be attenuated (e.g., Dickinson, 1968; Matsuno,
1970). For further diagnostics of PW propagation, the Eliassen-Palm (EP) flux was calculated (e.g., Andrews
etal., 1987). The EP flux directed upward corresponds to the PW heat flux directed to the north, although the
southward EP flux corresponds to the northward wave momentum flux. Used formulas were discussed by
Gavrilov, Koval, et al. (2018). In addition, EP flux divergence was calculated, which determines the accelera-
tion of zonal-mean stream produced by PWs (Andrews et al., 1987).

To achieve sufficient statistical confidence, 16 pairs of the model runs for low and high SA were performed.
The background conditions in all MUAM runs were the same. However, the dynamics of the atmosphere is
sensitive to the phases of vacillations between PWs and the mean wind in the stratosphere and to variations of
initial conditions (e.g., Gray et al., 2003; Yoden, 1990). Initial perturbations together with PW phases depend
on the model day of inclusion of daily variations of solar heating mentioned above in the course of the MUAM
initialization, which varies between 120 and 135 with the step of 1 day in the simulated ensemble of 16 pairs
of the MUAM runs. From each MUAM run, the same temporal interval between the middle of December and
the end of February was extracted. For calculating the mean global circulation and PW characteristics, this
interval was divided into five 15-day subintervals. For each subinterval, amplitudes and phases of PW modes
having zonal wavenumbers m = 1-4 at zero frequencies were estimated using Fourier transform with the
least squares fitting longitude-time structure of hydrodynamic fields. In the present study, we call these
PWs the conventional term “stationary planetary waves” (SPWs). SPW with zonal wavenumbers m = 1-4
are designated as SPW1-4 thereafter. To estimate SA influences, for each of 16 pairs of the MUAM runs
for high and low SA, the differences between the temperature, mean wind, and SPW amplitude at each grid
point were obtained and averaged over altitude-latitude cluster containing nine adjacent grid points. This
gives 720 individual differences (16 runs * 5 subintervals * 9 grid points) for usage of the Student's paired ¢ test
(e.g., Rice, 2006). This methodology let us get statistically confident differences at 95% significance level
between the mean values of SPW amplitudes under high and low SA at almost all heights below 100 km.

3. Results of Simulations

To investigate the thermospheric SA impact on the middle atmosphere circulation and SPWs, we analyzed
sets of 720 differences in the atmospheric parameters and in amplitudes of SPWs between respective pairs of
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model runs in the vicinity of each grid point at low and high SA levels extracted from eighty 15-day subin-
tervals (see section 2). Besides improving statistical confidence, this approach allowed us to smooth out
influences of intense dynamical perturbations, for example, stratospheric sudden warming events arising
in individual model runs.

3.1. Changes in SPW Amplitudes

Amplitudes of SPWs at each latitude and altitude were obtained for all eighty 15-day subintervals using least
squares fit of longitude dependence of hydrodynamic fields with sinusoidal components having different
zonal wavenumbers m at zero frequency. According to properties of the Fourier transform at limited time
intervals, obtained amplitudes contain actual contributions from PWs with periods longer than 15 days.
Geopotential height amplitudes of the SPW modes with m = 1-4 for the high SA level averaged over eighty
15-day subintervals are shown in the left panels of Figures 1 and 2 for geopotential altitude ranges 0-300 and
0-100 km, respectively. Structures and magnitudes of simulated SPW amplitudes in Figures 1 and 2 are in
general agreement with satellite measurements (e.g., Forbes et al., 2002; Mukhtarov et al., 2010; Xiao
et al., 2009) and with our previous simulations (Koval et al., 2018b).

Corresponding RI? and EP fluxes for SPW modes with m = 1-4 for high SA at altitudes 0-100 km are
represented in the left panels of Figure 3. At heights 30-60 km, waveguides with RI*> > 0 exist in the win-
ter (northern) hemisphere, where the mean zonal wind is eastward (see the left panel of Figure 5a). In the
summer (southern) hemisphere, the mean zonal wind is directed to the west at altitudes 30-60 km, and
regions with RI* < 0 prevent upward PW propagation from below. This may explain why SPW amplitudes
at altitudes 30-60 km are maximum in the winter (northern) hemisphere in the left panels of Figures 1
and 2.

According to recent views, SPWs might be generated in the lower atmosphere. In winter, they can propagate
upward-southward along the waveguides with positive RI* represented in the left panels of Figure 3.
Therefore, EP flux vectors are directed mostly upward and southward in the northern middle atmosphere
at altitudes below 80-90 km. At altitudes above 60 km, the mean zonal wind become eastward in the sum-
mer hemisphere (see Figure 5a), and waveguides with RI> > 0 span both hemispheres in the left panels of
Figure 3. Therefore, SPW modes can penetrate into the Southern Hemisphere, and amplitudes of all SPW
modes become comparable in both hemispheres at altitudes above 100 km (see the left panels of Figure 1
). SPW1 mode has the largest amplitudes at latitudes 60-70°N and heights 50-60 km in the left panel of
Figure 2a. SPW waveguides for larger zonal wavenumber in the lower left panels of Figure 3 become nar-
rower and are shifted toward lower latitudes in the Northern Hemisphere. Accordingly, the amplitude max-
ima of SPW modes having larger m in the left lower panels of Figures 2c and 2d are located at lower latitudes
compared to Figure 2a.

Changes in the thermospheric parameters produced by SA impacts can modify configurations of the SPW
waveguides and, hence, can change their spatial structures and amplitudes. Average differences in the
SPW amplitudes for high and low SA are depicted in the right panels of Figures 1 and 2. These differences
are relatively small and require statistical verifications. Numerical experiments showed that sufficient statis-
tical confidence could be obtained only for the differences averaged over nine nearby nodes of the MUAM
altitude-latitude grid. In this case we have 720 pairs of simulated amplitudes (16 MUAM runs * 5 time sub-
intervals * 9 nearby grid nodes) in the vicinity of each grid node. Regions, where paired Student's ¢ tests gave
the probabilities of nonzero differences at significance level o > 95%, are hatched with horizontal lines in the
right panels of Figures 1 and 2. One could notice that obtained differences in SPW amplitudes for high and
low SA are statistically reliable in almost all altitude-latitude regions.

In the right panels of Figure 1, the differences at geopotential heights above 100 km are similar to those
obtained and discussed in our previous study (Koval et al., 2018a) and are caused by modifications of the
thermospheric mean temperature and wind by changing SA (see section 3.2). The right panels of Figure 2
reveal that SA impacts in the thermosphere can also make modifications of SPW amplitudes at altitudes
below 100 km. Magnitudes of the differences in the right panels of Figure 2 can reach up to 10-15% of the
peak values in the respective left panels of Figure 2 in the northern middle atmosphere depending on wave-
number. At high and middle latitudes of the Northern Hemisphere, SPW1 amplitudes at heights below 40—
50 km are commonly larger at high SA. Between heights 50-70 km at high northern latitudes, SPW1
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Figure 1. Altitude-latitude distributions of geopotential height amplitudes (in geopotential meters) at high SA (left) and their differences from those at low SA
(right) for SPW modes with zonal wavenumbers m = 1-4 (a-d, respectively) averaged for eighty 15-day intervals taken from 16 pairs of the MUAM runs. Solid
lines show zero levels. Hatched areas indicate regions, where the nonzero differences have statistical confidence less than 95% according to the paired ¢ test.

amplitudes are smaller at high SA in the right panel of Figure 2a. For SPW2-SPW4 modes in the right panels
of Figures 2b-2d the regions of negative differences at altitudes 50-80 km are smaller than those for SPW1
mode in the right panel of Figure 2a.
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Figure 2. The same as Figure 1, but for altitudes 0-100 km.

In Figure 2, the main changes in SPW amplitudes match with variations of respective EP fluxes in Figure 3.
Northward and downward directed vectors of EP flux differences in the right panels of Figure 3 are opposite
to the main directions of respective EP fluxes of SPW modes in the left panels of Figure 3 and may reflect
modifications in SPW propagation conditions at different SA levels. This can explain negative values of
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Figure 3. Normalized refractivity index squared (shaded) and vectors of the EP fluxin 10 “ m /52 (arrows) for SPW having m = 1-4 (a-d, respectively) at high SA

(left), also their differences from those at low SA (right). Solid lines show zero levels.

differences in the SPW amplitudes within the respective regions of the right panels of Figure 2. Positive SPW
amplitude differences in the right panels of Figure 2 generally correspond to the southward and upward
directions of the vectors differences of EP flux in the right panels of Figure 3.
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Figure 4. Altitude-latitude distributions of the mean zonal wind in m/s (a, left) and temperature in K (b, left) at high SA,
also their differences from the low SA (right panels) in middle December-February averaged for 16 MUAM runs. Solid
lines show zero levels.

Besides RI? and EP flux structures, significant influence on SPWs propagating from below may have their
partial reflection at the lower thermosphere heights (e.g., Lu et al., 2017). For example, negative values of
the SPW1 amplitude differences at high and middle northern latitudes and altitudes 40-80 km in the right
panel of Figure 2a are accompanied by their positive differences at heights above 100 km in the respective
right panel of Figure 1a. For SPW2-SPW4 modes, negative amplitude differences at high northern latitudes
at heights above 100 km in the right panels of Figures 1b-1d correspond to positive differences in their
amplitudes at high northern latitudes at altitudes below 100 km in the right panels of Figures 2b-2d. This
behavior can be explained by better reflection of SPW2-SPW4 modes compared to SPW1 at high SA in
the lower thermosphere.

Substantial impacts on SPW amplitudes may come from wave-mean flow and wave-wave nonlinear interac-
tions. For instance, SPWs can be generated in the atmosphere beyond the waveguides shown in the left
panels Figure 3, where many EP flux vectors are originated in the regions with negative RI*.

3.2. Changes in the Zonal Circulation

The left panels of Figures 4a and 4b show, respectively, latitude-altitude dependences of the mean tempera-
ture and zonal wind at geopotential heights 0-300 km averaged over the interval from the middle
December-February and over 16 MUAM runs at high SA. At altitudes below 100 km, they correspond to
semiempirical models of temperature (Picone et al., 2002) and zonal wind (e.g., Drob et al., 2008; Jacobi
et al., 2009). The right panels of Figures 4a and 4b show respective differences between high and low SA
impacts in the thermosphere. The right panel of Figure 4b shows the mean temperature differences, which
can reach up to 800 K. The MUAM contains the hydrostatic equation and the state equation of ideal gas,
which relate atmospheric pressure and density with temperature. Therefore, temperature changes shown in
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Figure 5. The same as Figure 4, but for altitudes 0-100 km.

Figure 4b give respective changes in atmospheric pressure and density. Our analysis revealed that variations
of temperature, pressure, and density simulated with the MUAM match to the MSISE standard
atmosphere model.

The right panel of Figure 4a shows that magnitudes of the mean zonal wind are stronger (up to 50%) at alti-
tudes higher than 180 km and weaker at 140-180 km at high SA level in both hemispheres. Koval et al.
(2018Db) interpreted this behavior to be associated with solar flux influence on meridional temperature gra-
dients. For example, in the Northern Hemisphere, increasing northward temperature gradient between 140
and 180 km at high SA corresponds to decrease in the eastward wind speed and to negative wind differences
in the right panel of Figure 4a. This corresponds to classical theory of “the thermal wind” (e.g., Gill, 1982).

Figure 5 reproduces Figure 4 but for the altitude range 0-100 km. For estimating the statistical confidence of
the differences showed in the right panels of Figures 4 and 5, the paired Student's ¢ test was used. For the
respective pairs of the MUAM runs under low and high SA at every latitude-altitude grid point there are
921,600 pairs of wind components and temperature values (16 model runs * 900 two-hour outputs * 64 long-
itude nodes). At significance level a = 95% the mean differences in temperature and zonal wind are satisfied
to the hypothesis of their nonzero values at all grid points in the right panels of Figures 4 and 5.

The right panels of Figure 5 reveal that the mean differences of the zonal wind and temperature due to ther-
mospheric SA impacts are smaller at heights below 100 km than those above 100 km in Figure 4. They can
reach 3-4 m/s and 3 K at altitudes 40-100 km at high northern latitudes. This illustrates that variations of
thermospheric parameters at heights above 100 km due to SA variations can influence the mean flow in
the middle atmosphere as well. At heights 40-100 km, average temperature differences have maximum mag-
nitudes at high and middle latitudes of the Northern Hemisphere in the right panel of Figure 5b. The mean
wind and temperature differences are smaller at altitudes 30-60 km of the summer (southern) hemisphere,
where RI* < 0 and SPW propagation from below is suppressed (see Figure 3)
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Other researchers reported changes of the mean zonal wind and temperature in the middle atmosphere due
to SA changes. Analyzing the regression coefficients between SA and the mean temperature and zonal wind
in winter months based on the European Centre for Medium-Range Weather Forecasts Reanalysis-Interim
atmospheric reanalysis data showed noticeable changing in these fields at altitudes up to 60 km (Crooks &
Gray, 2005) and at pressure levels below 1 hPa (Kodera et al., 2016). In particular, Crooks and Gray (2005)
have reported statistically reliable heating in the tropical and cooling in the extratropical stratosphere under
conditions of solar maximum in the data of European Centre for Medium-Range Weather Forecasts
Reanalysis-40. Arnold and Robinson (2003) made simulations of SA and GW impacts on atmospheric circu-
lation for boreal winters and obtained general structure of the differences in the mean temperature and
zonal wind analogous to our right panels of Figures 4 and 5. Using the chemistry-climate model SOCOL,
Rozanov et al. (2008) performed numerical simulations to estimate solar irradiance influence on general
atmospheric circulation. The results they obtained for the northern winter conditions are in general agree-
ment with the results described above. These simulations did not involve thermospheric heights and consid-
ered changes of general circulation due to changes in radiation balance, GW activity, and photochemistry
within the middle atmosphere at different SA levels. In our simulations, we kept radiation balance and com-
position below 100 km unchanged at all SA levels. Therefore, it is thoughtless to make point-by-point com-
parisons of Figures 4 and 5 with studies mentioned above. However, our simulations show that
modifications of atmospheric parameters at heights above 100 km caused by SA may produce effects in
the middle atmosphere comparable with impacts of changes in solar radiation and photochemistry at alti-
tudes below 100 km.

In order to recognize the reasons of the zonal wind and temperature differences in the middle atmosphere
due to SA thermospheric impacts in our study, we analyzed different terms in MUAM equations of motion
and heat balance at heights below 100 km. The main distinctions were found in the heat influxes caused by
the horizontal advection of heat and by diabatic heating/cooling due to vertical air motions at high northern
latitudes. Such heating/cooling differences (dynamical in nature) might be caused by interactions between
the mean flow and PWs propagating from the lower layers of the atmosphere. Figure 6 represents the EP flux
vertical component for SPW1 (which is much stronger than other SPW modes) and the EP flux divergence
calculated for winter months. The left and right panels of Figure 6 reveal discussed quantities at high SA
level and respective differences between high and low SA.

Theory of atmospheric PWs (e.g., Andrews et al., 1987) shows that upward directed EP flux matches with the
wave heat flux directed to the north and, hence, to warming of the middle atmosphere at high latitudes.
Figure 6a shows that SA influence in the thermosphere can modify conditions of PW propagation and reflec-
tion and can produce changes in EP fluxes in the middle atmosphere as well. The right panel of Figure 6a at
high northern latitudes shows negative differences in the EP flux at altitudes 30-60 km and generally posi-
tive differences above 60 km, which corresponds very well to negative and positive temperature differences
in respective altitude layers in the right panel of Figure 5b. Such heating/cooling of the high latitude middle
atmosphere can modify meridional temperature gradients and influence the mean zonal wind in respective
atmospheric layers. Additional impacts may exert accelerations of zonal wind produced by PWs and depend-
ing on the EP flux divergence (e.g., Andrews et al., 1987). The right panel of Figure 6b shows maxima and
minima of the differences in SPW1 EP flux divergence at altitudes 40-100 km, at middle and high northern
latitudes, where the right panel of Figure 5a shows substantial zonal wind differences.

Section 3.1 shows that modifications of the mean wind and temperature may change conditions of wave pro-
pagation in the atmosphere leading to variations of SPW characteristics. On the other hand, changes in SPW
EP flux components may exert wave accelerations and heat influxes producing modifications of the mean
atmospheric circulation and temperature. Therefore, interactions between the middle atmosphere circula-
tion and SPWs is not a stationary process but produce so-called “vacillations” having periods up to several
weeks (e.g., Holton & Mass, 1976). The results of the MUAM simulations also contain such vacillations
(e.g., Gavrilov, Koval, et al., 2018). Hence, the mean circulation and SPW characteristics discussed above
reflect cumulative effects of these vacillations averaged over the winter season.

In the right panels of Figures 5 and 6, differences of all quantities at high and low SA are stronger within the
Northern Hemisphere compared to those in the southern (summer) one, where zonal wind reversal at about
20 km prevent direct SPW propagation from the lower atmosphere (e.g., Charney & Drazin, 1961). This
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Figure 6. SPW1 vertical EP flux component in 1072 m?/s? (a, left) and EP flux divergence in m/s/day (b, left) for high SA
and their respective differences from the low SA (right panels) in middle December-February averaged for 16 MUAM
runs. Solid lines show zero levels.

confirms that changes in SPW propagation and reflection conditions at thermospheric altitudes can modify
SPW characteristics, wave-mean flow interactions, thermal regime, and general circulation in the middle
atmosphere in winter season. Statistically confident nonzero differences of the SPW amplitudes, mean
zonal wind, and temperature at heights below 100 km in the right panels of Figures 2 and 5 give
confirmations that modifications of thermospheric characteristics due to SA influence can affect the
middle atmosphere circulation and SPW characteristics at heights below 100 km.

One of the other reasons for the mean wind and temperature changes in the atmosphere could be dynamical
and thermal effects of GWs. Numerous studies show dependences of GW characteristics on SA in the ther-
mosphere (e.g., Klausner et al., 2009; Yigit & Medvedev, 2010). SA affects thermospheric temperature, den-
sity, dissipation, and static stability, which can influence GW propagation conditions (e.g., Vadas & Fritts,
2006). Simulations with a high-resolution nonlinear GW model showed that resulting GW dynamical effects
at any thermospheric height at increased SA depend on increase in the wave amplitudes because of smaller
molecular viscosity and smaller transfer of wave energy to the mean wind and on decrease in the amplitudes
due to larger density and larger wave reflection (Gavrilov, Kshevetskii, & Koval, 2018). Analyzing the wave
drag and heat influxes made by GW parameterizations in the MUAM indicated their substantial values at
altitudes above 80-100 km. SA variations produce changes of GW drag and heat influxes in the thermo-
sphere similar to those reported by Yigit and Medvedev (2010). These changes may modify the mean tem-
perature, wind, and SPW waveguides, especially in the lower thermosphere. Differences in the mean wind
and temperature for high and low SA in the right panels of Figure 5 exist at altitudes below 80-100 km,
where GW drag and heat influxes are smaller than those produced by SPWs. Therefore, in the MUAM the
main GW impacts at different SA provide changes in the mean wind and temperature in the thermosphere,
which vary reflection conditions for SPWs propagating from the lower atmosphere and change their dyna-
mical and thermal features.

KOVAL ET AL.

10,655



'AND SPACESCIENCE

Journal of Geophysical Research: Space Physics 10.1029/2019JA027392

In addition to changes in SPW propagation and reflection conditions discussed above, variable SA can pro-
duce substantial changes in thermospheric pressure, temperature, density, molecular viscosity, and heat
conduction (see, e.g., Figure 1 of the paper by Gavrilov, Kshevetskii, & Koval, 2018). These changes can help
for penetration of thermospheric perturbations to the middle atmosphere. Major differences in the mean
wind and temperature in the right panels of Figure 5 are generally located along the SPW waveguides in
the left panels of Figure 3. In addition, the differences are smaller at altitudes 30-60 km of the Southern
Hemisphere, where upward SPW propagation is suppressed. This gives evidences that changes in SPW pro-
pagation and reflection conditions due to variable SA dominates over direct influences of thermospheric
impacts on the middle atmosphere mentioned above. However, further studies of different mechanisms of
influence of thermospheric processes on the lower atmospheric layers are required.

Some studies (e.g., Kodera & Kuroda, 2002) showed that changes in ultraviolet radiation during solar cycle
might influence the mean temperature and wind, as well as PW propagation conditions and EP flux compo-
nents in the stratosphere. Our results reveal noticeable impacts on these characteristics in the mesosphere
from thermospheric variations due to changing solar activity. Complete considerations of solar activity influ-
ences of the middle atmosphere dynamics require developments of whole atmosphere circulation models
accounting for SA impacts at all altitudes.

4. Conclusions

The focus of this paper is on increasing of statistical confidence of numerical simulations of the effect of ther-
mospheric SA impacts on the mean flow and characteristics of SPWs in the middle atmosphere. Two 16-
member sets of numerical modeling of atmospheric general circulation for low and high SA were obtained
using the three-dimensional mechanistic general circulation model MUAM, which covers altitudes from 0 to
about 300 km. The radiation block of the MUAM uses solar flux of radio waves at 10.7 cm as an indicator of
different SA levels. Ionospheric conductivities with their latitudinal, longitudinal, and time variations for
different SA conditions were involved in the MUAM above 100 km. Amplitudes of SPWs at each latitude
and altitude were obtained for each of 15-day subintervals using least squares fit of longitude dependence
of hydrodynamic fields with sinusoidal components having different zonal wavenumbers m at zero fre-
quency. Selecting five 15-day subintervals from each of 16 MUAM runs for middle December—February
allowed us to obtain 80 pairs of SPW amplitudes with zonal wavenumbers m = 1-4. This approach allowed
us to achieve statistically confident nonzero differences in SPW amplitude estimations at 95%
significance level.

In the thermosphere, changing from the low to high SA level in the MUAM above 100 km enhances magni-
tudes of zonal wind (up to 50%) at heights above 180 km and weaken them at 140-180 km. This could be
associated with SA influence on meridional temperature gradients. At altitudes less than 100 km, differences
in SPW amplitudes between high and low SA reach up to 10-15% at middle and high northern latitudes.
SPWs propagate upward within waveguides depending on refractivity index squared. Changes in the ampli-
tudes of SPW modes correspond to respective changes in their EP flux components. A significant influence
on SPWs propagating from below is their partial reflection at heights of the lower thermosphere. This means
that SA impacts at altitudes above 100 km may change proportions of reflected SPW energy, which can mod-
ify dynamics and temperature at heights below 100 km.

Differences of the mean zonal wind and temperature for high and low SA impacts can reach 10% at altitudes
40-100 km at high and middle northern latitudes. The major distinctions were detected in the MUAM heat
balance equation containing heat influxes due to the horizontal advection of heat and diabatic
heating/cooling due to vertical air motions at high northern latitudes. There are substantial increases and
decreases of upward EP flux component at heights 40-100 km, which matches with respective increases
and decreases in temperature at high northern latitudes under high SA. The nonzero differences in tempera-
ture and zonal wind are statistically confident at almost all latitude-altitudinal grids. The general structure of
simulated zonal wind and temperature differences due to SA impact coincides with the results of previous
numerical simulations and with studies based on the atmospheric reanalysis data. This gives statistically
confident confirmations of existing views that variations in the thermosphere due to variable SA may affect
the conditions of SPW propagation and reflection, which may produce noticeable dynamical and thermal
alterations in the middle atmosphere.
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