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This paper contains the development of theoretical fundamentals of the first method of
Lyapunov. We analyze the relations between characteristic numbers of functional matrices,
their rows, and columns. We consider Lyapunov’s results obtained to evaluate and calculate
characteristic numbers for products of scalar functions and prove a theorem on the gene-
ralization of these results to the products of matrices. This theorem states necessary and
sufficient conditions for the existence of rigorous estimates for characteristic numbers of
matrix products. Also, we prove a theorem that establishes a relationship between the
characteristic number of a square non-singular matrix and the characteristic number of its
inverse matrix, and the determinant. The stated relations and properties of the characteristic
numbers of square matrices we reformulate in terms of the Lyapunov exponents. Examples
of matrices illustrate the proved theorems.
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1. Introduction. In [1] A.M.Lyapunov presented the fundamental concepts of
stability theory and outlined two approaches tothe problem of the stability of motion.
In practice, the second method of Lyapunov is of considerable current use [2-7]. Lyapunov’s
first method is also widely used for the stability analysis of both linear and nonlinear
systems that may be time-invariant or time-varying [8]. Lyapunov introduced the notion
of the characteristic number of a function and described its basic properties. Lyapunov’s
idea was developed by N. G. Chetaev [9], I. G. Malkin [10], B. F. Bylov [11], B. P. Demido-
vich [12], V. L. Zubov [6, 7], and others. In [11, 12], the term of the characteristic exponent
is defined. In the literature it is often called the Lyapunov characteristic exponent or the
Lyapunov exponent. The idea of using the theory of characteristic numbers (characteristic
exponents) is the basis of Lyapunov’s first method. Nowadays, this theory is applied not
only to the analysis of the stability of motion described by differential equations [13], but
also to other problems of mathematical modeling of controlled and uncontrolled proces-
ses [14]. The theory of the Lyapunov exponents is widely used in the theory of dynamical
and stochastic systems, including ergodic theory, probability, functional analysis [15].
In [16, 17] one can find historical reviews of the basic mathematical results on the Lyapunov
exponents.

Lyapunov also gave the definition of the characteristic number of a set of functions
[1, p.44]. In [12] the notion of the characteristic exponent of a matriz is introduced,
and some of its properties are discussed. The aim of our paper is to develop the theory
of the Lyapunov characteristic numbers in the part that deals with the characteristic
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numbers of functional vectors and matrices. Using the classic Lyapunov notion of the
characteristic number of a function we generalize this concept to matrices and prove
the properties of characteristic numbers of matrices and vectors similar to the properties
established by Lyapunov for scalar functions. This paper continues the research previously
set out in [18, 19].

The paper is organized as follows. Section 2 contains basic concepts and notations.
In Section 3 we formulate and prove the main properties of the characteristic numbers
of rectangular matrices. Sections 4 and 5 contain the main results of this paper. In Sec-
tion 6 we formulate the main results of the paper in terms of the Lyapunov characteristic
exponents. In Section 7 some concluding remarks are given.

2. Basic concepts and notations. Let us recall the notion of the characteristic
number of a function introduced in [1]. Following Lyapunov, let a function f(¢) be real or
complex, and continuous for real t > tg.

Definition 1. A real number « is called the characteristic number of a continuous
function f(t) defined for t > ¢¢ if the following conditions hold for any arbitrarily small
e>0:

() T |f(0)]el = oo,

(i) thgl f(t)ela==t = .
The characteristic number of the function f(t) is the symbol 400, if tlir+n ft)e =0

holds for any a. The characteristic number of the function f(t) is the symbol —oo, if
) ligl f(t)e* =+o0 holds for any a.

Under such conditions, any function f(¢) has a finite or infinite characteristic number.
By x[f] we denote the characteristic number of a function f(t). The following formula
is known (7, 9] for the calculation of the characteristic number of the function f(¢):

—In|f(t)

t——+400 t

xlf] = -

This holds if there exists 7' > 0 such that f(¢) # 0 for all ¢t > T

Many researchers use the term the Lyapunov characteristic exponent instead
of the characteristic number, but it essentially coincides with the characteristic number
taken with the sign minus. We use the classical concept of the characteristic number given
by Lyapunov. Following Lyapunov [1, p. 44], we formulate a definition.

Definition 2. The characteristic number of a set is the least of the characteristic
numbers of the functions comprising the set.

We shall consider m x n matrices X (t) = {x;;(¢t)} with real or complex elements
defined and continuous for ¢ > 0.

According to Definition 2, the characteristic number of a matriz (or a vector) X (t)
is the least of the characteristic numbers of its elements.

As in [18, 19], by x[X (¢)] we denote the characteristic number of a functional matrix
X (t). Throughout the paper, we use the following notations: let z; be the j-th column
of the matrix X (t); =/ be the i-th row of the matrix X (¢); let \; = x[z;], A/ = x[z/]
be the characteristic numbers of the j-th column and of the i-th row of the matrix
X (t) correspondingly; let X7 (t) be the transposed matrix of X (¢); X (t) be the complex-
conjugate matrix of X (¢); X*(¢) be the Hermitian conjugate matrix of X (¢). Let a norm
of a matrix (or a vector) || - || be the same as in [12] including Euclidean norm. Then, in
the above notations, Definition 2 for the characteristic number of the matrix X (¢) may be
written as
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X[X(@)] = min x[z;(t)]- (1)

Jj=1n

3. Basic properties of the characteristic numbers of rectangular matrices.
Let us formulate the basic properties of the characteristic numbers of rectangular matrices
(some of the properties of the Lyapunov characteristic exponents are represented in [12]).
Property 1 (the relation between the characteristic number of a matrix
and the characteristic numbers of its columns and its rows).
1). The characteristic number of a matriz equals the minimum characteristic number
of its columns and the minimum characteristic number of its rows
X[ X ] = min {); }— mm {)\ }. (2)
Jj=1n
2). The minimum characteristic number of matriz columns is equal to the least of
characteristic numbers of the matriz rows.
Proof. The proof follows from Definition 2. O
Property 2 (the relation between the characteristic number of the matrix
X (t) and the characteristic number of its norm || X||).
The characteristic number of a matriz is equal to the characteristic number of its
norm

X =x[[IX@)]]- (3)

Proof. The proof is based on the evaluation of the characteristic numbers of
functions. Indeed, for all types of considered norms the inequality

i ()] < IXOI < D o (8) (4)

_lm
Jj=

holds for V i,j. From the left-hand side of this inequality, by a monotonicity property,
we have X“xij (t)” [HX M for V i,j. Therefore, by Definition 2, for the least
of the characteristic numbers for a set {z;;(t)} of the matrix X (¢) elements we can write

min x| 35 (0)] | =x[ X)) > x[ | X0} 5)

i
3

<.
Il
|

N

Using the properties of the characteristic number for a sum of functions and Definition 2,
from right-hand side of double inequality (4) we get

K[ IXOIl] > min x[ | (0] ] = X1 X©)1
oin
Combining this inequality with (5), we obtain Equation (3). O
Property 3 (the relation between characteristic numbers of matrices X (t),

XT(t), X(t), X*(t)). _
Characteristic numbers of matrices X (t), X1 (t), X (t), X*(t) are equal

XX =x[XTt)] = x[X(®)] = x[X")].

444 Becrauk CII6I'Y. IIpuknannast maremaruka. Mudopmaruka... 2019. T. 15. Beim. 4



Proof. This proposition follows from Property 2 since the norms of all above
mentioned matrices are equal. O

Property 4 (the relation between the characteristic number of the sum of mat-
rices and characteristic numbers of summands).

Let X (t) =Y (t) + Z(t). We state Property 4 as Theorem 1 and its Corollary.

Theorem 1.

1). If characteristic numbers of summands are different, then the characteristic number
of the sum of matrices is equal to the least of the characteristic numbers of the terms.

2). If characteristic numbers of summands are equal, then the characteristic number
of the sum of matrices is not less than the characteristic number of the term.

Thus, the following relations hold:

{x[xaﬂmm{x[ O)x[2®]} i Y O] A Z0)],
AX0)] = XY (0] =X 20)], it [Y(0)] = .

These relations still stand if the characteristic numbers of the summands are either 400
or —oo.

Proof. Theorem 1 can be proved by using the property of the characteristic numbers
of a function sum and Equation (1). For each element x;;(t) of the matrix X (t) we can write
xi(t) = vi;(t) + 25(t), i = 1,m, j = 1,n, where y;;(t) and z;;(t) are the corresponding
elements of the matrices Y (t) and Z(¢t). By Equation (1), for all i = 1,m, j = 1,n we
have x[yi;(t)] = x[Y (1) ], x[z;(t)] = x[Z(t) ].

Case 1. Let x[Y(¢)] # x[Z(¢)]. Assume that x[Y(¢)] < x[Z(t)]. Then for all i, j
the inequalities x| z;;(t)] = x[Z(t)] > x[Y (t)] hold. Let us denote

xlwi ()] =x[Y(®)], i =1,m,

xlyij ()] > x[Y(t)], i =1,m,

Then, for characteristic numbers of the elements z;;(t) we obviously have
X[z (t)] = xlwi; () + 2i; ()] = x[Y ()] for yi;(t) € Y1,

(7)
Xl ()] = x[yi;(t) + 255(t)] = min{x[y;; ()], x[25() | } > x[Y(®)]

for yz](t) €Y.

These follow from the property of the characteristic number of the function sum y;;(t) +
zi;(t). Indeed, in case y;;(t) € Y1 we have x[v;;(t)] = x[Y(¢)] < x[Z(t)] < x[2i;(t) ], and
in case yy;(t) € Yz we have x[yi; ()] > X[V (D], x[2 ()] > x[Z(1)] > \[Y(8)]. Thus,
using (7), we get

AX(®)] = min xley®)] = X[Y0)],

i=1,m

j=T,n
which means that the minimum is reached at the elements ;;(¢) built on the elements
¥i;(t) € Y1. This completes the proof of Theorem 1 for Case 1, when x[Y (¢)] # x[Z(¢t)].
Case 2. Assume that x[Y | = x[ Z]. Using the property of the characteristic number

of the sum of functions and Definition 2, we obtain the general estimate

x[2ij ()] = min{x[vi; )], x[ 25 (1) |} = x[Y ()] = x[Z2(1)].
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This estimate is true for all ¢ and j. In particular, the inequality holds for z;;(¢), such
that x[z;;(t)] = x[ X (¢)]. This ends the proof of Theorem 1. O

Remark 1. Property 4 is formulated for two summands. This can be applied to a sum
of matrices with a finite number of summands. Namely, let Y3 (t), ¥ = 1, N, be m x n
matrices and X (t) = Zg:l Y% (). The following Corollary is true.

Corollary 1.

1). For a finite number of matrices, the characteristic number of a sum is not less
than the least of the characteristic numbers of summands

X[X ()] = min x[Yi(t)].
k=1, N

2). If among the matrices Yy (t), k = 1, N, there is only one matriz with the minimum
characteristic number, then the characteristic number of the matrixz sum is equal to the least
of the characteristic numbers of the summands.

Proof. Using relations (6) of Theorem 1, the proof of the Corollary is by induction
on k. Moreover, the Corollary can be proved by repeating the same algorithm as in the
proof of Theorem 1, using the elements of all added matrices. (]

Example 1. Consider y = (ef,t2 + 1)T, 2 = (eM,t°)T, x = y + 2. Let us evaluate
the characteristic number x[z] = x[y + 2], then let us find its exact value. We have

x[y] :min{x[et], X[tQ +1]} = -1,

. —A for A >0,
x[z]=mm{x[e“],x[t5]}={ PR

Obviously, a) x[y] <x[z] for A<1; b) x[z]<x[y] for A>1; ¢) x[2
Therefore, using Theorem 1 yields the following estimates: a) x|z
b)x[@]=x[2]=—A for A> 15 ¢) x[@] > x[y] =x[2]=~1 for A=1.

By direct calculation of the sum 2 = y + z we find the exact value of x[z] for A = 1.
We get z=(2¢', t5+t>+1)T, x[z] =min{x[2¢'], x[t°+t*>+1]}. Finally, we obtain
x[z] = —1, i.e. the characteristic number of the vector function x equals the boundary
value of its estimate calculated by Theorem 1.

Example 2. Consider y= (e, 12 + 1)T, z=(—e*,t5)T, z =y + 2. As in Example 1,
we have the same cases a), b) and c). In cases a) and b) the results of both examples are
the same. By Theorem 1, given A = 1, in case ¢), we obtain the estimate

x[z] = -1. (8)

By direct calculation of the sum x = y + z for A =1 we find

xly]=-1 for A=1.
=x[y]=—1for A< 1;

X[m}:min{x[et —et]7x[t5 + ¢ +1]}

or
x[z]=min{x[0], x[t® +t*+ 1]} = min{+o0,0} = 0.

Finally, in case c), for A =1 we have x[x] =0. Comparing this result with estimate (8)
calculated by Theorem 1 we can conclude that x[z]=0>—1, i.e. the value x[z] exceeds
the lower bound of its estimate.

Property 5 (estimation of the characteristic number of a matrix product
using the characteristic numbers of multipliers).

Consider X = H,Icvzl Y (t), where Yy (t), k = 1, N, are matrices admitting sequential
multiplication. We state Property 5 as the following theorem.
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Theorem 2. The characteristic number of the matriz product X (t) is not less than

the sum of the characteristic numbers of matrices-multipliers Yi(t), k = 1,N. In other
words, the inequality holds

N
X[X(6)]2 Y x[Ye()]. 9)

k=1

This inequality holds for matrices-multipliers Yj(¢) with not only finite characteristic
number values. Estimate (9) is also valid in each of the cases:

1) some of the matrices Yi(t), k = 1, N, have the characteristic number +oo;

2) some of the matrices Y4 (t), k =1, N, have the characteristic number —oco.
If among multipliers Y (¢), k = 1, N, there are matrices having the unlimited characteristic
numbers of opposite signs, then (9) can not be applied to x[ X (¢)].

Proof. This theorem can be proved by repeating the same algorithm as in the proof
of Theorem 2 from [12, p. 134]. In our reasoning, we also use (3) and Lyapunov’s Lemma V
on the characteristic number of the product of two functions [1, p. 41]. Indeed, by (3),

it follows that
N
H Yi(t) H] .
k=1

By the property of the norm of a matrix product, ’ HIICV:1 Vi) || < chv:l [IY%(¢) || Then,
using the monotonicity property of the characteristic number of a function and Lyapunov’s
Lemma V, we get x[X(t)] > Zg:l X{ Vi (t) || } By (3), substituting x[Yx(¢)] for

X [HYk () | }7 we obtain (9). This proves Theorem 2. O

Example 3. Consider a row vector y{ and a column vector ys:

A X0 = x[|X®) ] x[

1
/ tcos t Atcos t 42 T
= = t“+1
Y1 (6 7t2 1> ) Y2 (6 ) ) )

where A is a real parameter. Let us evaluate the characteristic number of the product
x = y{ y2. We have

1

X[y”:min{X[etCOSt]aX{m

] }:min{—l, 0}=-—1,

X[yg]:min{x[eMCOS t], X[t2 + 1]}:min{—\)\|, 0}=—\l
By Property 5, we obtain the estimate

xlz]=xlyi -v2] = xlyi ]+ x[y2] = =1 = [AL. (10)

To find the exact value of the characteristic number of the function x we multiply out
the product z = y{ yo. We obtain z = y{ yo = e(IHVtcost 4 1

To calculate y[2] we use the property of the characteristic number of the function
sum. Clearly, the characteristic numbers of summands are x [e(FVteost] = —|1 4+ A,

x[1] = 0. Therefore, we get x[z] = x [e(TNtcost 4 1] = min{x[e(+Ntcost] y[1]}, if
X [e(l"')‘)t“’”] #x[1]. If x [e(1+>‘)t°°St] =x[1] =0, then x[z] > 0.
Since x [e(1+Mteost] = |1 4 A| forall A except A=—1, we have
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x[z]=min{—[1+A[,0} = |1+ )] for X#—L

If A = —1, then e(!*Nteost = 1 Thus, x[z] = x[2] = 0.

Finally, for all A the characteristic number of the function x = y{ yo satisfies (10)
x[z]=—|14 Al = —1 — |)\|. Here the equality holds for A > 0.

In other cases a strict inequality holds x[z] > —1 — |A[.

Example 4. Let a column vector z(t) be defined by the matrix product z(t) =
Y (t)z(t), where Y (t)={y1(t), y2(t)} is a 2 x 2 matrix with columns y;(t), ya2(¢):

1
241

T
yl(t) — (6 tsin t’ > , yg(t) — (O, e—tsin t)T.

Vector z(t) of dimension 2 x 1 is defined by z(t) = (¢, —tztil et HT  We need to
construct the estimate of x[z(t)] and to calculate the exact value of this characteristic
number. Let us find the characteristic numbers of the column vectors 1 (t), y2(t), and z(t).
Applying formula (1) yields

x[u1] =min{x[e“i“]7 x[ﬁ]}=—l, X[y2] = min{ x[0], x[e ™™ '] } =1,

x[ ] Zmin{ x[#], X{_t;j—l e“i“} }= ~1.

It now follows that x[Y (t)] = min{x[y1], x[y2]} = —1. By Property 5 we have

xlz)] = x[Y () 2(0)] 2 x[Y(O) ]+ x[2(t)] =-1-1=-2.

The result is x[z(t)] > —2.
Next, we find the exact value of the characteristic number of the vector z(t). We
2  tsin t
multiply the matrix Y(¢) by the vector z(t), z(t) = Y(t)z(t) = (t 60 > Then,
x[z(t)]=min{x [t?e'5"*], x[0]} =min{—1, +oc}. Finally, we obtain x[z(t)]= —1>—2.

The examples show that the characteristic number of the product of matrices may
coincide with the lower bound, which is given by the estimate, but may exceed it.

Remark 2. All above-mentioned properties of the characteristic numbers hold
for arbitrary matrices of finite dimensions, namely, rectangular and square matrices, as
well as column vectors z(t) and row vectors x’(t).

4. Properties of characteristic numbers of square matrices. In this section we
present additional properties of the characteristic numbers of square matrices established
in [18]. Consider a non-singular square matrix X (t) ={z;;(¢)}, i =1,n, j =1, n, defined
and continuous for ¢ >0. Let \j =x[x;], AX;=x[«]] be the characteristic numbers of
the j-th column and the i-th row of the matrix X (¢) correspondingly; let S = Z;lzl)\j, S'=
> A be the sums of characteristic numbers of the columns and rows correspondingly;
X~1(t) be the inverse matrix. Let Ax = det X(¢) be a determinant of the matrix X (t);
A;j(t) be an algebraic cofactor of the element x;;(t); A (¢) be a row vector consisting of the
algebraic cofactors for the j-th column z;(t) of the matrix X (¢). It is clear that A’ () =
(A1j,D9j,...,Ayj). Let A;(t) be a column vector consisting of the algebraic cofactors
for the i-th row x}(t) of the matrix X (¢). Obviously, A;(t) = (Aj1,..., A, ..., Ai)T.
Then, we can write
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Ax = Xn:%(t)ﬁz‘j(t) = Ai(t)z(t) for Yj=Tn (11)

or

Ax = me = 2/(t)Ay(t) for Vi=T,n. (12)

4.1. The relationship between the characteristic number of a matriz and
of its determinant.
Lemma 1. The following inequalities hold:

X[Ax] =\ —|—X[A'] S>=nx[X] for Vj=1,n, (13)
X[Ax] 2N 4+ x[A;] =8 >nx[X] for Vi=1n. (14)

Inequalities (13) and (14) can be proved applying the properties of characteristic
numbers of the function sum and the function product to the determinant of the matrix
X(t).

Proof. Fix any j in (11) and any ¢ in (12). By Theorem 2, for x[Ax] from (11) and
(12) we have

x[Ax ] = x[z;() ]+ x[A] ()] = A; + x[A] @)], (15)
xX[Ax] = x[zi ()] + x[Ai ()] = X + x[Ai ()] (16)

Taking into account that all elements A;;(t), i = 1,7, of the vector Aj(t) in (15) are
the sums of products we disclose minors A;;(t) in the row vector A’(t).
By the properties of the characteristic numbers of the function sum and product, we
get
X[AG ()] 2 min x[Ay(H) ] Z M+ Ao+ + X0+ X+ + A =5-A (17)

1=1,n

2
2

Note that the characteristic number of the multiplier of the column zy(¢) is not
less than the characteristic number of the column z(¢). Thus in (17), we substitute the
characteristic number of every multiplier with the characteristic number of its column.
Since there are no elements of the column x;(t) in the vector A’ (¢), it follows that the
characteristic number \; is missing in (17). From (17), we get two left-hand side inequalities
n (13). The third inequality S > nx[X] is obvious. This follows from Property 1 of the
characteristic number of a matrix (see (2)). In the same way, inequalities (14) can be
proved using (16). To prove this result it suffices to show that x[A; (t)] = N]+ A+

N+ AN e+ A, =8 =)}, Since there are no elements of the row x/(t) in the
vector A; (t), it follows that the characteristic number X} is missing in these inequalities.
From this, we get two left-hand side inequalities in (14). The last inequality S’ > nx[ X ]
follows from Property 1 on the characteristic number of a matrix (see (2)). This proves
Lemma 1. (]

Corollary 2. The following inequalities hold for Vj=1,n and Vi =1,n:

X[Ax] =X = x[A}] =51,
x[Ax] =X = x[Ai] > 8" = A}

The proof is trivial.
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4.2. The relationship between the characteristic number of a matriz and
of its inverse matriz.
Lemma 2. The following inequalities hold:

X[X}‘FX[X1]<%(X[Ax}+x{i}><oy (18)
= DX x| g | <X < (X -xAx]) (o)

Proof. The proof of (18) and of the left-hand part of double inequality (19)is found
in [18].

Let us show that the right-hand side of double inequality (19) holds. The application
of the left-hand part of inequality (19) to the matrix X(¢) yields the right-hand side
of inequality (19). In fact, substituting X ! for X (£), X(t) for X!, and Ax for (Ax) ™"
in the left-hand side of inequality (19), we obtain x[X] > (n — 1)x [X '] + x[Ax].
Therefore, x [ X '] < =15 (x[X]— x[Ax]). The right-hand side of inequality (19) is
proved. This completes the proof of Lemma 2. (I

Corollary 3. For any non-singular n X n matriz X (t) defined and continuous for
t > 0 the following inequality holds:

X[X®)]+x[X7H )] <o. (20)
Proof. Using Property 5 and Lemma 2, let us apply estimate (9) to the product

of matrices X (t) and X~!(¢): X(t)X~!(t) = E, where E is the unit n x n matrix.
Obviously, x[E] = 0. From inequalities (9) and (18) it follows that the Corollary is

true. |
Remark 3. Inequality (20) is the generalization to non-singular square matrices
of Lyapunov’s inequality x[¢(t)] + x| ﬁ} < 0, proved by him for a scalar function ¢(t)

that is never equal to zero for any t > to.
5. Rigorous evaluation of characteristic numbers of a matrix product.
Consider a product

X(t) = L)Y (t), (21)

where L(t) is a non-singular n X n matrix, real or complex defined and continuous for
t > 0. Let X(¢) and Y () be rectangular matrices of dimension n x m. By Theorem 2, we
find the following estimate of the characteristic number of the matrix X (t):

X[ X(@®)] = x[L@) ]+ x[Y ()] (22)

The structure of (22) seems to be similar to the Lyapunov estimate for the product of two
functions x[f] = x[¢] + x[¢¥] (see [1]), where functions f(t), ©(t), ¥(t) are such that
f(t) = o(t) - ¥(t). Besides, Lyapunov has shown that the equality x[f] = x[¢] + x[¢]
holds if the function ¢(t) satisfies the equality x[¢(t)] + x| ﬁ] = 0. Such relationship
has not been found for matrices.

Now we introduce the following concept.

Definition 3. We shall say that the estimate of the characteristic number of the
matrix product X (t) is called rigorous if formula (22) is in the form of the equality
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X[X@) ] =X[L®) ]+ x[Y(D)].

Lemma 3. Let rectangular matrices X (t) and Y (t) be defined and continuous for
t > 0; L(t) be a non-singular square matriz; and equality (21) holds; then the following
estimates are true:

X[X(®)] = x[L@)]+x[Y(@®)], (23)

XY@ 2 x[ L7+ x[X(®)]. (24)

Proof. Let equality (21) holds. Then, applying estimate (9) to this equality

and to Y (¢t) = L™1(¢) X(t), we get estimates (23), (24). Lemma 3 is proved. O
Corollary 4. Suppose the equality

X(t) =Y(t)L(t) (25)

holds, where L(t) is a non-singular n X n matriz, real or complez, defined and continuous
for t > 0; X(t) and Y (t) are rectangular matrices of dimension m x n defined and
continuous for t > 0; then the estimates (23),(24) are true.

The proof is trivial.

5.1. Necessary and sufficient conditions under which estimates (23), (24)
are rigorous. Now we state and prove the conditions that establish strict values
for characteristic numbers of two kinds of matrix products. The following theorem holds.

Theorem 3. The estimates

X[X ()] =x[LE) ]+ x[Y(®)], (26)
XY ] =x[L7HO)] +x[X(2)] (27)

are rigorous if and only if
X[L@) ]+ x[L7H(t)] = 0. (28)

Proof. Necessity. Suppose (26), (27) hold. Summing left and right sides apart and
equating the results, we obtain x[X (t)] + x[Y(¢)] = x[L(@®)] + x[L7 ()] + x[Y ()] +
X[ X (t)]. This is followed by (28). The necessity is proved.

Sufficiency. Assume that (28) holds. We now show that under such conditions we
have (26), (27). Substituting in (24) the equality x[ L=1(¢)]=—x[ L(t) ], and combining this
with (23), we get x[Y () | +x[L(t) 1= x[ X ()] = x[ L(¢) ]+x[Y (¢)]. From these inequalities
we obtain equality (26). Putting in it x[ L(t)] = —x[L~1(t)], we have (27). Theorem 3 is
proved. (Il

Let us give examples of matrices illustrating Theorem 3.

Example 5. Consider
1 0
L_<t 1)f0rt>0.

Clearly, det L = 1,detL~! = 1, L7 = (_1t (1)> By these, x[L] = 0,x[L~'] = 0.

Hence, (28) holds and equalities (26), (27) have the form x[X] = x[Y] for products
(21), (25)
Example 6. Consider
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Let 11 and l2 be the first and the second columns of the matrix L(t) respectively. Then,
x[li] = —1,x[la] = —1. Consequently, x[L]= —1,detL = A = e?' det L7! = ™2,
X[ArL] = —2. The inverse matrix L~1(t) is

-1 e —ginte 2
o= T

Thus, x[11] = 1, x[l2] = 1, x[L~!] = 1, where I3, I, are the first and the second columns of
the matrix L~ (¢) respectively. Therefore, x[ L]+ x[L™!] = 0, i. e. equality (28) holds. This
implies that for products (21), (25) equalities (26), (27) have the form x[X ] = -1+ x[Y],
X[Y]=1+x[X]

5.2. The connection between equality (28) and characteristic numbers
of the determinant Ay (t) and (AL(t))”'. The following statements are true.

Theorem 4. The matriz L(t) satisfies equality (28) if and only if one of the two
following conditions holds: either

L] = x[A] (20)
X[ALHX[ALL}: (30)
L+ x| 5o | o (31)

To prove this theorem, the following lemma is needed.

Lemma 4. Equalities (29), (30) are equivalent to condition (31).

Corollary 5. Equality (28) holds if and only if characteristic numbers of all columns
and all rows of the matriz L(t) are equal to

ALO)=-1x| 5o

Lemma 4, Theorem 4 and Corollary 5 were proved by V.S. Ermolin in [18].
Example 7. Consider

Denote [L(t)] a matrix of the characteristic numbers for corresponding elements
of the matrix L(¢). We have

ORI Rl R ey )

and the determinant Ay, (t) = det L(t) = e2* # 0. This means that L(t) is a non-singular
matrix. The determinant of the inverse matrix L=1(¢) is det L™1(t) = ALl(t) = e 2. The

matrix L1(¢) is . .
L_l(t) _ (e —te
0 e t -

Let us find the corresponding matrix of the characteristic numbers

=[N L] e
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Using (32) and (33), we have x[L(t)] = —1, x[L7*(#)] = 1, x[L(t)] + x[L71(¢)] = 0.
Therefore, L(t) satisfies (28).

Now let us calculate characteristic numbers of the columns and the rows of L(t), as
well as the characteristic numbers of Az (t) and (AL (t)) ", Clearly, \y = —1, Ay = —1 are
the characteristic numbers values of the first and the second columns of L(¢); A} = —1,

%, = —1 are the characteristic numbers values of the first and the second rows of L(¢).
Hence, the characteristic numbers of all columns and rows of L(t) coincide. This means that

the Corollary 5 is true. Obviously, x[Ar(t)] = x[e?*] = _27X{ﬁ(t)} = x[e %] = 2.

Thus, x[Ar(#)]+ x [ ﬁ} = 0. This yields that equality (30) of Theorem 4 holds. Since
n = 2, then

mL(0)] = -2 = x[A0(0)] and X[ L) + x| x| = 1 +1=0.

Ar(t)

Consequently, equality (29) holds. Moreover, it is clear that (31) also holds. We see
that all conditions of Theorem 4 and its Corollary 5 are satisfied.

In the same way, it is easy to verify the implementation of these relations for
characteristic numbers of L71(¢), because x[Ap-1(t)] = x[e '] = 2, X[m] =
x[e?] = -2.

6. The main results of the paper in terms of the Lyapunov characteristic
exponents. The results obtained in this paper both for rectangular matrices and non-
singular square matrices can be reformulated in terms of the Lyapunov characteristic
exponents. For this we introduce the following notation.

Definition 4 (see Definition 2 and (1)). According to [12, p. 132], a number or
a symbol 400 (—o0)

is called the characteristic exponent of a matriz X (t) = {z;;(t)} defined on [to, +00).
Let X(t) = {;;(t)}, i = 1,n, j = 1,n, be a non-singular square matrix defined and

continuous for ¢ > 0. Let \; = X[z;], A = X[x}] be the characteristic exponents of the j-th
column and of the i-th row of the matrix X (¢) correspondingly. We define S = Z?:l Aj,

S/ = > X. Then, in new terms, Lemma 1 takes the following form.
Lemma 5. The following inequalities hold:

XAx] <A+ XA < S<nx[X] for Vj=Tn,
X[Ax] <N +X[A] <S8 <ny[X] for Vi=T,n.

Lemma 5 establishes the relations between the characteristic exponents of square
matrices and their determinants. The proof is similar to the proof of Lemma 1.

Now we give the relations connecting the characteristic exponents of a matrix X ()
and of its inverse matrix X ~1(¢) (see Lemma 2).

Lemma 6. The following inequalities hold:

WX [ 2 5 (R1ax1+ | 5] ) 0
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1
n—1

<n—1mX}+>z[i} > X[x] >

A (1x]-xax]).

The proof of Lemma 6 repeats the proof of Lemma 2.
Corollary 6 (see Corollary 8 and inequality (20)). For any non-singular n X n
matriz X (t) defined and continuous for t > 0 the following inequality holds:

XX @)+ XX (0] > 0.

Assume now that (21) holds, where L(t) is a non-singular n x n matrix, real or complex
defined and continuous for ¢ > 0; X (¢) and Y (t) are rectangular matrices of dimension
n x m. We have for the product of matrices the following inequality:

X[XT<XIL]+X[Y] (34)

Definition 5. The estimate of the characteristic exponent of the matrix product X (¢)
is called rigorous, if (34) is the relation of equality

X[X (@)= X[LO ]+ XY ()]
Lemma 3 and Theorem 3 are reformulated as follows.
Lemma 7. Let rectangular matrices X (t) and Y (t) be defined and continuous for

t > 0; L(t) be a non-singular square matriz; and equality (21) holds; then the following
estimates are true

XIXOT<SXLOT+XY®)], XY <L ®]+XX®)].
Theorem 5. The estimates
XX =X[LOI+X[Y®)], X[Y()]=XL®)]+X[X()]

are rigorous if and only if
X[L®)]+X[L7H ()] =0. (35)

The proof is trivial.
Theorem 6 (see Theorem 4). Matriz L(t) satisfies equality (35) if and only if
one of the two following conditions holds: either

nx[L]=x[AL], (36)
%[ALH%[ALL} = (37)
g[LH%y[AiJ 0. (38)

The proof of Theorem 6 repeats the proof of Theorem 4.

Lemma 8 (see Lemma 4). Equalities (36), (37) are equivalent to condition (38).

The proof is trivial.

Corollary 7 (see Corollary 5). Equality (35) holds if and only if characteristic
exponents of all columns and rows of the matriz L(t) are equal to

WLO)= 5% | 5. |-

The proof of Corollary 7 is similar to the proof of Corollary 5.
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7. Conclusion. This paper contains the development of the theoretical foundations
of Lyapunov’s first method and the generalization to rectangular and square matrices
of Lyapunov’s results for scalar functions. The conditions establishing the relationship
between characteristic numbers of rows and columns of functional matrices are stated and
proved. Moreover, corresponding relations between characteristic numbers of transposed
and conjugated matrices are also presented. In Lemmas 1 and 2, we set the relations
between the characteristic number of a non-singular square matrix with the characteristic
number of its inverse matrix and the determinant. In Lemma 3, we prove the conditions
extending to non-singular square matrices Lyapunov’s inequality obtained by him for
evaluation and calculation of the characteristic number of a scalar function product. In
Theorem 3, we formulate and prove the necessary and sufficient conditions that enable to
equate the characteristic number of a matrix product to the sum of characteristic numbers
of the matrices-multipliers. Theorem 4 is proved for matrices satisfying the hypothesis
of Theorem 3. In Theorem 4, we state the necessary and sufficient conditions for the
connection of the characteristic number of a square matrix with the characteristic number
of its determinant, as well as with the matrix dimension. The Corollary 5 of Theorem 4
shows the additional properties of the characteristic numbers of matrix rows and columns.
Presented examples of matrices illustrate the results set forth above. Furthermore, the
stated relations and properties of the characteristic numbers of square matrices we
reformulate in terms of the Lyapunov exponents.

The results of this paper make it possible to extend the use of the characteristic
numbers and the characteristic exponents both for the evaluation of coefficient matrices
of differential equations systems and for the evaluation of the solution behavior.
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IlepsBrrii MeTon JIAIlyHOBA: OIEHKN XapaKTEPUCTUYHBIX UHCEJI
byHKIIMOHAJIBHBIX MaTPHI]

B. C. Epmoaun, T. B. Baacosa
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456. https://doi.org/10.21638/11702/spbul0.2019.403

Crarbsi HOCBSIIEHA PA3BUTHIO TEOPETUIECKUX OCHOB ItepBoro meroja Jlsnyunosa. IIpoBomur-
CsI aHAJIU3 COOTHOIEHUN MEXK/Iy XapaKTEPUCTUIHBIMU YUCTAMHU (DYHKIIMOHATHLHBIX MATPHIL,
X CTPOK 1 cToso10B. Jlokazana Teopema, 0600Iaoas Ha TPON3BEIEHNE MATPHUI PABEHCTBO
JIsimyHOBa, BBIBEJIEHHOE MM JIJIsI OIIEHKY M BBIYMCJIEHUS XapPAKTEPUCTUIHOIO YHCJIa IPOU3Be-
JeHUs CKAJISPHBIX QYHKIUI. YCTAHOBIEHBI HEOOXOINMBIE U JIOCTATOYHBIE YCJIOBUS CYIIIECTBO-
BaHUsI CTPOTUX OIEHOK JIJIsl XapaKTEePUCTHIHBIX YKCesI Ipou3BeaeHnii marpuil. Kpowme Toro,
JIOKa3aHa TEOPEMa, BBISIBJIAIONIAs CBSI3b XAPAKTEPUCTUYHOIO HYHCJIA KBAJPATHONW HEOCOOOM
MAaTPHITHI C XAPAKTEPUCTUIHBIM IUCJIOM ee OOPATHONW MATPHUIIB U onpeaenunTessi. [[puBenen-
HbIE COOTHOIIIEHNSI U CBONCTBA XapaKTEPUCTUYHBIX YUCEJ KBaJIPATHBIX MaTpuly epedopmy-
JIMPOBaHbI B TePMHUHAX 1oKa3areseil JIsmynosa. [larorcss npumepbl MaTpuIl, WIIIOCTPUDYIO-
e TEOPEMBI.

Karouesvie carosa: nepsblit MeTon JIAmyHOBa, TEOPHS YCTONINBOCTH, XapAKTEPUCTUYHbBIE YUC-
J1a, oka3aren JIamyHoBa, DyHKIIHOHAIBHBIE MATPHUIIBL.
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