


 
 

 
 
 

 
 

 
 

 
  
  

  
  

  
  

 
 

 

  
  

  

 
 

 



ABSTRACT

Kiseleva, Maria A.
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Saint Petersburg: Saint Petersburg State University, 2013, 56 p.(+included articles)
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ISBN 978-5-288-05426-6, ISSN 2308-3476

This work is devoted to study of electromechanical models of the drilling systems
actuated by an induction motor. This subject is up-to-date due to the fact that fail-
ures of the drilling equipment cause significant time and expenditure losses for
the drilling companies. Although there are many papers devoted to the inves-
tigation of the drilling systems, the equipment failures still occur in the drilling
industry.

In this study, we continue investigations started by researchers from Eind-
hoven University of Technology who introduced an experimental model of a
drilling system. The model consists of two discs connected with each other by
a steel string which may experience torsional deformation only. The upper disc
which represents the upper part of the drill-string is connected to the driving part.
The lower disc, which represents the end of the drill-string, experiences friction
torque caused mainly by interaction with a shale. The key idea of the present
study, that expands and refines the experimental model, was to introduce more
complex equations of the driving part and, particularly, to consider the induction
motor.

Towards this end, two new mathematical models are considered. The first
model is a simplified one. Its prototype is an electric hand drill. It can be as-
sumed that the drill-string is absolutely rigid. Also, another model of a friction
torque acting on the lower part of the drill-string is implemented. It is assumed
that the friction torque has asymmetric characteristics of the Coulomb type. The
qualitative analysis of this model made it possible to obtain conditions on per-
missible loads (i.e., permissible values of the friction torque) in case when the
system remains in operational mode after the shale’s type changes. With the help
of computer modeling, a particular case when there is a sudden load appearance
(i.e., when the drill was idle before the transient process) was also studied.

The second mathematical model takes into account the torsional deforma-
tion of the drill. For the friction torque with an asymmetric characteristic of the
Coulomb type, local analysis of the system is provided. In the case of the friction
model offered by the researchers from Eindhoven, the computer modeling of the
system was carried out by the author. In the context of this modeling, an interest-
ing effect represented by hidden oscillations of the stick-slip type was found.

The results of the study have been published in 10 papers (three of which
are indexed in Scopus).

Keywords: drilling systems, induction motor, friction torque, limit load problem
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1 INTRODUCTION

1.1 Intellectual merit

The breakdown of a drilling system (see Fig. 11) is a common problem in the
drilling industry. That is why the study of transient processes in the drilling
equipment is very important both from the theoretical and practical perspectives.

The drilling equipment breakdown happens quite often in oil and gas in-
dustries. It leads to considerable time and expenditure losses. The discontinua-
tion of the regular performance of a drill string due to the impact of certain loads
is of the special interest. Indeed, due to the high cost of each failure, in order to
reduce the number of drill string elements breakdowns, the study of drilling rigs
is important. According to the statistics provided in (Horbeek et al., 1995; Shokir,
2004; Vaisberg et al., 2002), in 1985, 45 % of all rigs failures were directly related
to the drill string. Nowadays, losses associated with each such failure of a drill-
string are very expensive. Approximately one out of seven rigs experience such
drill string failure. Notwithstanding, a lot of research devoted to lessening the
failures of drill strings (Besselink et al., 2011; Mihajlovic et al., 2006; Mihajlović
et al., 2007; Germay et al., 2009; Viguié et al., 2009), the data mentioned above
shows that drill strings still break. Thus, the study of transient processes appear-
ing in drilling rigs is relevant to the nowadays needs of theory and practice.

The main concern of this work is the study of the dynamics of more thor-
ough models of drilling systems actuated by an induction electrical motor.

The stability criterion developed in this work allows one to obtain the range
of permissible loads for the drill when the shale’s type changes. In the case of
double-mass model of a drilling system, the so-called hidden oscillations have
been found. These oscillations cannot be detected after the transient process
which begins in the neighborhood of a stable equilibrium. Thus, the breakdowns

1 Dwight Burdette (Own work) [CC-BY-3.0 (http://creativecommons.org/licenses/by/3.0)],
via Wikimedia Commons. 2012. Oil Drilling Rig Saline Township Michigan.
URL:http://commons.wikimedia.org/wiki/File%3AOil_Drilling_Rig_Saline_Township_
Michigan.JPG. [Online; accessed 11-May-2013]
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FIGURE 1 Photo of the drilling system

of the drilling equipment could be caused by the presence of such oscillations.

1.2 Goal of the work

The goal of this work is to create and to study mathematical models of the drilling
systems which contain a more comprehensive description of the electrical drive
operation in comparison with earlier investigations. The study of the new re-
fined models includes the investigation of the influence of different loads on those
models with the help of analytical and numerical methods of the investigation of
dynamical systems, modern computational tools, and specialized mathematical
software packages.

1.3 Methods of investigation

In this work, both analytical and numerical methods of the investigation of dy-
namical systems have been used. All the models included have been described
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with the help of differential equations with discontinuous right-hand sides. To
this end, the methods of investigation of differential equations with discontinu-
ous right-hand sides were used, including Filippov definition (see Appendix 2).
In order to study the global stability of such systems, it was necessary to investi-
gate the behavior of their trajectories in the regions of continuity. This approach
enabled the use of the Lyapunov functions method (see Appendix 1) suitable for
the investigation of ordinary differential equations with continuous right-hand
sides. In the course of computer modeling, in order to avoid computational er-
rors, it is of critical importance to correctly define the behavior of the system in
the neighborhood of the discontinuity surface. This method of correct computer
modeling is based on Filippov definition and is described in Appendix 3.

1.4 The main results

– A mathematical model of a drilling system with absolutely rigid drill string
actuated by an induction motor is developed (PI; PIV).

– An appropriate load characteristics represented as a non-symmetrical dry
friction is introduced. For the model with such friction type a limit load
problem is solved (PI; PIV).

– A double-mass mathematical model of a drilling system actuated by an in-
duction motor is developed. Local analysis of the system is provided for the
friction torque with an asymmetric characteristic of the Coulomb type (PII;
PIII; PIV).

1.5 Adequacy of the results

All analytical results developed in the study are rigorously proven. In the con-
text of computer modelling, methods specifically designed for the integration of
differential equations with discontinuous right-hand sides were used in order to
avoid computational errors. The obtained results correlate with the results of
other researchers, in particular, from Eindhoven University of Technology.

1.6 Novelty

In this work, for the first time, three different approaches had been used jointly:
the construction and analysis of models of drilling systems (Eindhoven Univer-
sity of Technology) and electrical drives (Saint Petersburg State University), and
the methods of numerical analysis (University of Jyväskylä). This allowed the
author to study complex effects appearing in the drilling systems actuated by an
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induction motor.

1.7 Practicability

The obtained models enable for a more effective analysis of the performance of
the drilling systems. Engineers may use the regions of stability of the drilling
models in order to minimize failures. Also, it is demonstrated that the models
may experience hidden stable oscillations which co-exist with a stable equilib-
rium state for certain systems. This means that in the course of computer model-
ing, it is possible to miss those hidden oscillation and to make a wrong assump-
tion about the global stability of a system. This can result in the drilling system
failure. In order to avoid that, it is necessary to use special approaches of investi-
gation of such drilling systems.

1.8 Appraisal of the work and publications

The results of this work were reported at the international conferences “4th IEEE
International Conference on Nonlinear Science and Complexity” (Budapest, Hun-
gary –2012), XII International Conference “Stability and Oscillations of Nonlin-
ear Control Systems”, Pyatnitskiy conference (Moscow, Russia – 2012), “Sixth
Polyakhov Readings” (Saint Petersburg, Russia – 2012), 4th All-Russian Multi-
Conference on Control Problems “MKPU–2011” (Divnomorskoe, Russia – 2011),
International Workshop “Mathematical and Numerical Modeling in Science and
Technology” (Finland, Jyväskylä – 2010) and at the seminars of the department
of Applied Cybernetics (Saint Petersburg State University, Russia 2009 – 2013)
and the department of Information Technology (University of Jyväskylä, Finland
2009–2013).

The results of this dissertation were also published in 10 articles. The main
results are published in four included articles. In articles PI–PIV, problem for-
mulation belongs to the co-authors. In article PI, the author obtained estimates
of the limiting value of the permissible rapidly alternating load for the model
of a drilling system with a non-symmetrical dry friction. In articles (PII; PIII), a
new model of a double-mass drilling system actuated by an induction motor is
introduced. In the context of numerical analysis, hidden oscillations were found
by the author. In PIV, different mathematical models of the drilling systems are
studied. Also, the material of the dissertation is presented in (Kiseleva, 2012) and
its extended version is in preparation in (Kiseleva, 2013).



2 THE MAIN CONTENT

2.1 Real drilling systems

In order to understand mathematical models of the drilling systems, it is neces-
sary to know how real drilling equipment used in the oil and gas industry works.

The drilling systems of a rotary type are used for drilling wells for explo-
ration and production of oil and gas (Mihajlovic, 2005). Schematic view of the ro-
tary drilling system is depicted in Fig. 2 (Leine, 2000). A borehole is created with
the help of a rock-cutting tool called drill-bit. The bit represents a short heavy
segment containing a cutting device at the free end (Tucker and Wang, 1999) and
is driven by a torque created at the surface by a motor with a mechanical trans-
mission box. The rotary table is driven by the motor (large disc) via transmission.
Rotary table acts as a kinetic energy storage unit. This energy is transmitted from
the surface to the bit with the help of a drill-string. The drill-string mainly con-
sists of drill pipes and can be up to 8 km long. The lowest part of the drill-string
is the Bottom-Hole-Assembly (BHA). The BHA consists of drill collars and the
bit, and it can reach several hundred meters in length.

During the drilling process, a real drill-string undergoes various types of vi-
brations (Mihajlovic, 2005; Mihajlović et al., 2007; Jansen, 1991; Leine, 2000; Leine
and van Campen, 2002; Van den Steen, 1997): torsional (rotational), bending
(lateral), axial (longitudinal) and hydraulic vibrations. Torsional vibrations are
caused by nonlinear interaction between the bit and the shale or the drill-string
and the borehole wall. Bending vibrations are often caused by the pipe eccen-
tricity and they lead to centripetal forces during the rotation. Axial vibrations
are due to the bouncing of the drilling bit on the shale during the rotation. Hy-
draulic vibrations are found in the circulation system, stemming from the pump
pulsations. Extensive research on the subject of friction-induced torsional vibra-
tions in the drill-string systems has already been conducted. Much of the re-
search considers vibrations in the drill-string systems (Brett, 1992; Germay, 2002;
Jansen and Van den Steen, 1995; Kreuzer and Kust, 1996a,b; Keuzer and Kust,
1997; Kust, 1998; Kyllingstad and Halsey, 1988; Jansen, 1991; Leine, 2000; Leine
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FIGURE 2 Schematic view of a real drilling rig

and van Campen, 2002; Mihajlovic et al., 2005, 2004a,b; Van den Steen, 1997). In
most cases, it is concluded that torsional vibrations are caused by negative damp-
ing in the friction force present at the contact between the bit and the borehole
(see, for example, (Brett, 1992; Kreuzer and Kust, 1996a; Mihajlovic et al., 2004a)).
A number of experimental results provide additional evidence for such a conclu-
sion (Brett, 1992; Leine, 2000; Leine and van Campen, 2002; Mihajlovic et al., 2005,
2004a,b; Van den Steen, 1997). Based on that conclusion, a control strategy is sug-
gested in (Jansen and Van den Steen, 1995) to avoid torsional vibrations the in
drill-string systems. It should be noted that Germay (Germay, 2002) and Richard
et al. (Richard et al., 2004) have concluded that torsional vibrations in the drilling
systems can appear due to the interaction between torsional and axial dynamics
of the system. Moreover, according to these authors, such interaction effectively
leads to the Stribeck effect.

In this work, only one type of vibrations is considered – torsional vibrations,
since they are often regarded as one of the most damaging types of vibration
(Omojuwa et al., 2011; Rajnauth, 2003).

2.2 A simple mathematical model of a drilling system actuated by
induction motor. Limit load problem.

The aim of this work was to develop mathematical models of the drilling rigs,
using an induction motor as the drive (see, e.g. (Hild, 1934; Staege, 1936; Hall
and Shumway, 2009)), and to study the effect of different loads on a number of
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FIGURE 3 Photo of an experimental set-up of a drilling system

models. First, the model which motivated the research carried out in this work
will be considered.

In the articles by Nijmeijer, van de Wouw, Mihailovi´c (De Bruin et al., 2009;
Mihajlovic et al., 2006; Mihajlovic, 2005) an experimental rotor dynamic set-up
was studied (see Fig. 3, (De Bruin et al., 2009)). The configuration of this set-
up can be recognized in the structure of the drilling systems. The set-up mainly
consists of the upper disc actuated by the driving part, flexible steel string, lower
disc, and brake device. The upper and lower discs are connected with the steel
string and may revolve on their axes (see Fig. 4 (Mihajlovic et al., 2006)). The
brake device is used for modeling of the friction force acting on the lower disc.

Differential equations of rotation of the upper and lower discs are as fol-
lows1:

Juθ̈u(t) + kθ(θu(t)− θl(t)) + b(θ̇u(t)− θ̇l(t)) + Tf u(θ̇u(t))− kmu = 0,

Jl θ̈l(t)− kθ(θu(t)− θl(t))− b(θ̇u(t)− θ̇l(t)) + Tf l(θ̇l(t)) = 0.
(1)

Here θu and θl are angular displacements of the upper and lower discs, respec-

1 The derivation of this model can be explained in the following way (Kiseleva, 2013; Leonov
et al., 2013a). In order to derive the model of the system we use the equations of the rotation
of the upper and lower discs in the following form:

Ju θ̈u = Mu −Mru,
Jl θ̈u = Ml −Mrl ,

where Mu, Ml are rotation torques, Mru, Mrl are resistance torques. Here

Mu = kmu− Tf u(θ̇u),
Ml = Mru = kθ(θu − θl) + b(θ̇u − θ̇l),
Mrl = Tf l(θ̇l),

and Mu is a drive part torque. Later on, when considering the models actuated by an
induction motor, this torque will undergo changes.
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FIGURE 4 Scheme of mathematical model of drilling system

tively, Ju and Jl are inertia torques, kθ, b, km are non-negative coefficients, u is
a constant input voltage, Tf u(θ̇u) and Tf l(θ̇l) are friction torques acting on the
upper and lower discs.

This double-mass model is convenient for the analysis of the drilling system
model. However, this system lacks full dynamics consideration of the electric
motor which actuates the upper disc.

The group from Saint Petersburg State University lead by Prof. Leonov has
achieved significant results in the study of mathematical models of electrical ma-
chines. For example, in (Leonov and Kondrat’eva, 2009; Solovyeva, 2011; Zaret-
skiy, 2011) where new mathematical models of electrical machines have been de-
veloped, a new method of nonlocal reduction is suggested enabling for the im-
proved estimates of the limit loads for the models considered. These models
take into account the dynamics of the rotor of electrical machines and can be re-
duced to some other common models, such as a motor with squirrel-cage rotor
(Leonov et al., 2013a). The derived models are described by rather simple differ-
ential equations which allow for the in-depth qualitative study of such models.
This ensures that the implementation of this equations in the mechanical model of
a drilling system may allow one to conduct more precise analysis (both analytical
and numerical).

Here, for the both types of new models of the drilling systems, we are going
to use the model of induction motor offered in (Leonov et al., 2013a).

In PI, a simple electro-mechanical model of the drilling system actuated by
an induction motor is described, and the limit load problem is solved for that
model. The behavior of the model is similar to the behavior of an ordinary drill
(see Fig. 52).

2 By Kszapsza (Own work) [CC-BY-SA-3.0 (http://creativecommons.org/licenses/by-
sa/3.0)], via Wikimedia Commons. 2013. Bosch power hammer drill model PSB 550 RE.
URL:http://commons.wikimedia.org/wiki/File%3ABosch_PSB_550_RE_drill.JPG . [On-
line; accessed 11-May-2013]
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FIGURE 5 Photo of hand electric drill

For such a drill, the torsional deformation is extremely small relatively to
the rotation angle since the drill-string length is small enough. So, it can be as-
sumed that the drill-string is absolutely rigid. Assume that it is stiffly connected
to the rotor which rotates under the influence of magnetic field created by the sta-
tor of the induction motor. Interaction of the drill with the shale is defined by the
resistance torque which occurs during the drilling process. Such system experi-
ences rapidly alternating loads at the moment when the drill enters the bedrock.
Thus, it is necessary to study the induction motor behavior during the load jump,
i.e., when the friction toque suddenly experiences an abrupt change.

As the equations of the electromechanical model of the drilling system, let
us consider the equations of the induction motor (see Appendix 4, (Leonov et al.,
2013a); similarly some other types of induction motors (Leonhard, 2001; Khalil
and Grizzle, 2002; PI; PIV) may also be considered) supplemented by the resis-
tance torque M f :

Li̇1 + Ri1 = −nBSθ̇ cos
(

π
2 − θ

)
,

Li̇2 + Ri2 = −nBSθ̇ cos
(

π
2 − θ − 2π

3

)
,

Li̇3 + Ri3 = −nBSθ̇ cos
(

π
2 − θ − 4π

3

)
,

Iθ̈ = nBS
3
∑

k=1
ik cos

(
π
2 − θ − 2(k−1)π

3

)
+ M f (ωm f + θ̇).

(2)

Here θ is a rotation angle of the drill about the magnetic field which rotates with
the constant angular speed ωm f , i1, i2, i3 are currents in the rotor coils, R is the
resistance of the coils, L is the inductance of the coils, B is the induction of mag-
netic field, n is the amount of winds in every coil, S is the area of one coil wind,
I is the inertia torque of the drill, ω = θ̇ + ωm f is the angular velocity of the drill
rotation with respect to a fixed coordinate system. Assume that the resistance
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torque M f is of the Coulomb type. But in contrast to the classic Coulomb fric-
tion law with symmetrical discontinuous characteristics, friction torque M f has
non-symmetrical discontinuous characteristics depicted on Fig. 6 (see PI)

M f ∈





−T0, if ω > 0
[−T0, MT0], if ω = 0
MT0, if ω < 0.

(3)

Where M, T0 > 0, number M is assumed to be large enough. This condition
reflects the fact that the drilling process only takes place when ω > 0. In real sys-
tems, during the transient process, such characteristic doesn’t allow for switch-
ing from positive to negative ω. In this case, the system may only get stuck when
ω = 0 for some period of time. Such effects frequently happen during the drilling
process.

Note that in (3) we used a sign ∈ of differential inclusion. The notion of
differential inclusion is directly connected to the notion of differential equations
with a discontinuous right-hand side. Many papers such as (Andronov et al.,
1981; Barbashin, 1967; Gelig et al., 1978; Neimark, 1972) and other articles are de-
voted to this subject. A detailed description of this theory can be found in the
works by Filippov (Filippov, 1988, 1985). In (Filippov, 1985), Filippov considered
differential equations with single-valued discontinuous right-hand sides, intro-
duced a concept of solution and proved the basic results of the qualitative theory
(see the main notions and approaches in Appendix 2).
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Performing the nonsingular change of variables (Leonov et al., 2013a)

s = −θ̇,

x = −2
3

L
nSB

3
∑

k=1
ik sin(π

2 − θ − 2(k−1)π
3 ),

y = −2
3

L
nSB

3
∑

k=1
ik cos(π

2 − θ − 2(k−1)π
3 )

(4)

we reduce system (2) to the following system (PI; PIV):

ṡ = ay + ξ(s, y),
ẏ = −cy− s− xs,
ẋ = −cx + ys,

(5)

where

a =
3(nSB)2

2IL
, c =

R
L

.

Here variables x, y define electric values in the rotor windings and the variable
s defines the sliding of the rotor. For ξ(s, y), the following Filippov definition is
valid:

ξ(s, y) =





γ, if s = ωm f , y < −γ

a
or s < ωm f

−γM, if s = ωm f , y >
Mγ

a
or s > ωm f

−ay, if s = ωm f , −γ

a
≤ y ≤ Mγ

a
,

where γ =
T0

I
.

Let us introduce the parameter

γmax =
acωm f

c2 + ωm f
2 .

The local analysis of equilibrium states of system (5) shows that for 0 ≤ γ < γmax
it has the unique asymptotically stable state of equilibrium.

Indeed, in the case γ = 0, system (5) has one asymptotically stable equilib-
rium state s = 0, y = 0, x = 0, which corresponds to the rotation of the drill with
constant angular speed being congruent to the rotation speed of the magnetic
field (idle speed operation).

For γ ∈ (0, γmax) system (5) has one equilibrium state:

s0 =
c(a−

√
a2 − 4γ2)

2γ
, y0 = −γ

a
, x0 = −γs0

ac
,

where s0 is the smallest root of the equation

acs
c2 + s2 = γ.
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In this case, the drill rotates in the same direction as the magnetic field does but
with a lower angular speed s0 < ωm f .

Let us assume that at the moment t = τ there is a sudden change of the load
from the value γ0 to the value γ1, where 0 < γ0 < γ1 < γmax. Such situation
occurs when the drill reaches the bedrock. For γ = γ0 the system has the unique
stable equilibrium state

s0 =
c(a−

√
a2 − 4γ02)

2γ0
, y0 = −γ0

a
, x0 = −γ0s0

ac
.

It is essential, that after the transient process, the solution s(t), x(t), y(t) of system
(5) with γ = γ1 and the initial data

s(τ) =
c(a−

√
a2 − 4γ02)

2γ0
, y(τ) = −γ0

a
, x(τ) = −γ0s0

ac

tends to the equilibrium state

s1 =
c(a−

√
a2 − 4γ1

2)

2γ1
, y1 = −γ1

a
, x1 = −γ1s1

ac

when t→ +∞.
The following theorem is proved in the included articles (PI; PIV).

Theorem 1 Let the following conditions be fulfilled

γ0 < γmax,

γ1 < min
{

γmax, 2c2
}

,

(γ1 − γ0)
2

2c2 s0
2 +

(γ1 − γ0)
2

2
≤

ωm f∫

s0

φ(s)ds +
(1 + M)2

2
γ1

2.

Then the solution of system (5) with γ = γ1 and the initial data

s(τ) =
c(a−

√
a2 − 4γ02)

2γ0
, y(τ) = −γ0

a
, x(τ) = −γ0s0

ac

tends to an equilibrium state of this system when t→ +∞.

The main idea of proof is to build the following Lyapunov function (see Appendix
1) in the region of continuity:

V(x, y, s) =
a2

2
(x +

γ1

ac
s)2 +

1
2
(ay + γ1)

2 +

s∫

s1

(
−γ1

c
s2 + as− cγ1

)
ds.

The corollaries formulated below follow naturally from Theorem 1.
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Corollary 1 Let the following conditions be fulfilled

γ0 < γmax,

γ1 < min
{

γmax, 2c2
}

,

3(M2 + 2M)γ2
1 − 8c2γ1 + 3ac2 ≥ 0.

Then the solution of system (5) with ωm f = c, γ = γ1 and the initial data

s(τ) =
c(a−

√
a2 − 4γ02)

2γ0
, y(τ) = −γ0

a
, x(τ) = −γ0s0

ac

tends to the equilibrium state of this system when t→ +∞.

2

1

γ 1 
=
 2

c
2

γ
1 
 = a/2

γ
1

c0

2

1

FIGURE 7 Regions of acceptable load: 1 – due to the theorem conditions, 2 – due to
computer modeling results

Corollary 2 Let M be sufficiently large positive number, ωm f = c, γ0 = 0 and

γ1 < min
{ a

2
, 2c2

}
. (6)

Then the solution of system (5) with γ = γ1 and the initial data

s(τ) = 0, y(τ) = 0, x(τ) = 0

tends to the equilibrium state of this system when t→ +∞.

In the case when
2c2 <

a
2

for γ1 ∈
(

2c2,
a
2

)

(i.e., condition (6) is not fulfilled), the computer modeling of system (5) was car-
ried out (area 2 on Fig. 7, see PI), which showed that the corollary statement
remains valid. The computer modeling is based on methods applicable to the
systems with discontinuous right-hand sides (see Appendix 3).
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2.3 A double-mass mathematical model of a drilling system actu-
ated by an induction motor

In PII-PIV, electromechanical model of a drilling system with induction motor,
which takes into account torsional deformation of the drill string is studied. Let
us extend the double-mass model of a drilling system considered above by adding
the equations of an induction motor (see Appendix 4, (Leonov et al., 2013a)):

Li̇1 + Ri1 = −nBSθ̇u cos
(π

2
− θu

)
,

Li̇2 + Ri2 = −nBSθ̇u cos
(

π

2
− θu −

2π

3

)
,

Li̇3 + Ri3 = −nBSθ̇u cos
(

π

2
− θu −

4π

3

)
,

Juθ̈u + kθ(θu − θl) + b(θ̇u − θ̇l)− nBS
3

∑
k=1

ik cos
(

π

2
− θu −

2(k− 1)π
3

)
= 0,

Jl θ̈l − kθ(θu − θl)− b(θ̇u − θ̇l) + Tf l(ωm f + θ̇l) = 0.

Here θu, θl are angular displacements of the rotor and the lower disc relatively to
the rotating magnetic field, ωm f is a rotation speed of the magnetic field, Tf l(ωm f +

θ̇l) is a friction torque.
Performing the nonsingular change of variables

s = −θ̇u,

x = −2
3

L
nSB

3

∑
k=1

ik sin(
π

2
− θu −

2(k− 1)π
3

),

y = −2
3

L
nSB

3

∑
k=1

ik cos(
π

2
− θu −

2(k− 1)π
3

),

u = −θ̇l,
θrel = θu − θl,

we obtain the system

ẋ = −cx + ys,
ẏ = −cy− s− xs,
θ̇rel = u− s,

ṡ =
kθ

Ju
θrel +

b
Ju
(u− s) +

a
Ju

y,

u̇ = −kθ

Jl
θrel −

b
Jl
(u− s) +

1
Jl

Tf l(ωm f − u).

(7)

Here a =
3(nSB)2

2L
, c =

R
L

.
Consider the case when the friction force has non-symmetrical characteris-

tics considered above:



26

Tf l(ωl) ∈





γ, if ωl > 0
[−Mγ, γ], if ωl = 0
−Mγ, if ωl < 0,

where ωl = ωm f − u. Here M, γ > 0.
The results of the local analysis of the system are formulated in the following

theorem:

Theorem 2 For
b = 0, 0 < γ < γmax =

acωm f

c2 + ωm f
2

the system (7) has one asymptotically stable equilibrium state:

s0 = u0, x0 = −γs0

ac
, y0 = −γ

a
, θrel0 =

γ

kθ
,

where s0 is the smallest root of the equation

acs
c2 + s2 = γ.

The proof of this theorem can be found in Appendix 5. It is similar to the proof of
the theorem described in AI.

In the course of the numerical analysis of the system, stable operation modes
of the drilling system as well as the modes when the drill gets stuck were found.
Consider more complex model of the friction. Assume that the friction torque is
as follows (see Fig. 8, (De Bruin et al., 2009))

Tf l(ωl) ∈
{

Tcl(ωl) sign(ωl), if ωl 6= 0
[−Tsl, Tsl], if ωl = 0,

(8)

Tcl(ωl) = Tf l + (Tsl − Tf l)e
−| ωl

ωsl
|δsl

+ bl|ωl|, (9)

where Tsl, Tf l, ωsl, δsl and bl are non-negative coefficients.
Qualitative analysis of such systems is a complex task due to the friction

type.
Following the works (Leonov et al., 2012; Bragin et al., 2011; Leonov and

Kuznetsov, 2011b,a; Kuznetsov et al., 2011b; Leonov et al., 2010c; Bragin et al.,
2010; Leonov et al., 2010b), let us describe some aspects of the numerical model-
ing of oscillations of continuous dynamical systems which turned out to be ex-
tremely important for engineers as a practical matter. Computer modeling of the
system was carried out. Here again, for modeling a system with a discontinuous
right-hand side a special numerical method is required (see Appendix 3). For
such a system, frictional oscillations are of the special interest. There is a num-
ber of papers devoted to frictional oscillations (Hensen, 2002; Hensen and van de
Molengraft, 2002; Juloski et al., 2005; Mallon, 2003; Mallon et al., 2006; Olsson,
1996; Olsson and Astrom, 1996, 2001; Putra, 2004; Putra et al., 2004; Putra and
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FIGURE 9 Hidden oscillations in space (θrel , s, u)

Nijmeijer, 2003, 2004; van de Wouw et al., 2005; Al-Bender et al., 2004; Batista and
Carlson, 1998) due to the fact that these oscillations may cause wear or damage
of various mechanical systems. Under the certain values of parameters, the so-
called hidden oscillations (Leonov et al., 2011c; Bragin et al., 2011; Leonov et al.,
2012; Leonov and Kuznetsov, 2013) may emerge – oscillations which basin of at-
traction does not intersect with small neighborhoods of equilibrium states.

The development of modern computer technology allows for the numerical
simulation of complex nonlinear dynamical systems. Consequently, new infor-
mation about the behavior of their trajectories can be obtained. In the well-known
Duffing system (Duffing, 1918), Van der Pol system (van der Pol, 1927) Belousov-
Zhabotinsky system (Belousov, 1959), Lorenz system (Lorenz, 1963), Roessler sys-
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FIGURE 11 Hidden oscillations in space {y, s, u}

tem (Rössler, 1976) and other systems, classic self-exciting oscillations and the at-
tractors can be obtained numerically by using the standard computational procedure:
after the transient process, a trajectory, which begins in the neighborhood of the
unstable state of equilibrium, reaches an oscillation and defines it.

However, the possibilities of this approach are limited. In the middle of the
last century, in the systems with a scalar nonlinearity, oscillations of another type
were obtained. These are hidden oscillations and they can not be calculated in
the way described above. In this case, the simulation of trajectories with ran-
dom initial data will unlikely give the desired result (e.g., the description of the
experiment by Kolmogorov related to the search of limit cycles (Arnol’d, 2005;
Kuznetsov, 2008; Leonov et al., 2008; Kuznetsov and Leonov, 2008; Leonov, 2010;
Leonov and Kuznetsov, 2010; Bragin et al., 2011; Kuznetsov et al., 2013b)), as the
domain of attraction can be very small and the dimension of the attractor can be
significantly smaller than the dimension of the system.

In 1961, Gubar (Gubar’, 1961; Leonov and Kuznetsov, 2013) demonstrated



29

analytically the possibility of hidden oscillations in a two-dimensional phase-
locked loop with a piecewise constant pulse nonlinearity. In the 50-60s of the
last century, the study of known hypotheses (Markus and Yamabe, 1960; Aizer-
man, 1949; Kalman, 1957) about absolute stability have led to finding hidden os-
cillations in automatic control systems with piecewise-linear non-linearity, which
belongs to the linear stability region (see (Pliss, 1958; Bernat and Llibre, 1996;
Leonov et al., 2010a; Leonov and Kuznetsov, 2013; Bragin et al., 2011), etc.).

Recently, chaotic hidden oscillations (hidden attractors) were found in the
Chua system (Kuznetsov et al., 2010, 2011c; Leonov et al., 2011a; Bragin et al.,
2011; Leonov et al., 2011c; Kuznetsov et al., 2011a; Leonov et al., 2011b; Vagaitsev,
2012; Leonov et al., 2012; Kuznetsov et al., 2013a; Leonov and Kuznetsov, 2013).

In PII-PIV, hidden oscillations for a system describing electromechanical
double-mass model of the drilling system driven by an induction motor were
found.

In Fig. 9–11 (see PII) stable equilibrium state and stable limit cycle are de-
picted. According to the above definition, this fact implies that the system has
hidden frictional oscillations.

This result shows that such complex phenomena as hidden oscillations ap-
pear even in rather simple models. Because the possibility of finding hidden
oscillations while modeling a system with random data is low due to the small
region of attraction, the detection of hidden oscillations is a difficult task. There-
fore, there is a need to develop new approaches for the study of such systems.
Note that in our case hidden oscillations are of the stick-slip type – they pass
through the sliding region which appears due to the existence of the discontinu-
ity. Thus, it is recommended to carry out the modelling in the neighborhood of
the discontinuity surface.
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APPENDIX 1 LYAPUNOV FUNCTIONS METHOD

Lyapunov proposed a method for the study of the stability of solutions with the
help of a suitably chosen special functions, which were then called Lyapunov
functions (Lyapunov, 1950). For using this method, finding the solutions of the
system is not required. In what follows, the notions of Lyapunov stability, Lya-
punov functions, and theorems used in the dissertation are formulated.

Following (Leonov, 2001; Krishenko, 2007), let us formulate the main no-
tions and results. Consider the differential equation:

dx
dt

= f (t, x), t ∈ R1, x ∈ Rn, (10)

where f (t, x) is a continuous vector-function: R1 × Rn → Rn. Hereafter, we
assume that all considered solutions x(t, t0, x0) with initial data x(t0, t0, x0) = x0
are defined in the interval (t0,+∞).

Definition 1 Solution x(t, t0, x0) of system (10) is Lyapunov stable, if for any number
ε > 0 there exists a number δ(ε) > 0 such as for all y0, which satisfy the inequality
|x0 − y0| ≤ δ(ε), the following relation holds true:

|x(t, t0, x0)− x(t, t0, y0)| ≤ ε ∀t ≥ t0. (11)

Definition 2 If the solution x(t, t0, x0) of system (10) is Lyapunov stable and there ex-
ists a number δ(ε) > 0 such as for all y0, which satisfy the inequality |x0 − y0| ≤ δ(ε),
the following relation holds true:

lim
t→+∞

|x(t, t0, x0)− x(t, t0, y0)| = 0, (12)

then the solution x(t, t0, x0) is asymptotically stable.

Let us consider the case of the zero solution: x(t, t0, x0) ≡ 0. The generalized case
is reduced to this particular case by the following change of variables x = y +
x(t, t0, x0). However, this requires knowledge of the solution x(t, t0, x0), some-
thing that is not always convenient.

Let us consider the function V(x) differentiable in a certain neighborhood
of the point x = 0 (V : Rn → R1), for which V(0) = 0.

It is clear that if x is replaced by the solution x(t, t0, x0), then, according
to the rules of differentiation of a composite function, we obtain the following
identity:

dV
dt

=
n

∑
i=1

∂V
∂xi

fi(t, x). (13)

Here xi – i-th component of the vector x and fi – i-th component of the vector
function f .



41

Theorem 3 (on asymptotic stability) Let there exist differentiable function V(x) and
continuous function W(x), for which in certain neighborhood of the point x = 0 the
following conditions hold true:

1. V(x) > 0 if x 6= 0, V(0) = 0,
2. V̇(x) ≤W(x) < 0 if x 6= 0.

Then the zero solution of system (10) is asymptotically stable.

Theorem 4 (on instability) Let there exist differentiable function V(x) and continuous
function W(x), for which in certain neighborhood of the point x = 0 the following con-
ditions hold true:

1. V(0) = 0 and for certain sequence xk → 0 when k→ ∞ inequations V(xk) < 0
are fulfilled,

2. V̇(x) ≤W(x) < 0 when x 6= 0.
Then the zero solution of system (10) is Lyapunov unstable.

Let us introduce an important notion of the global asymptotic stability.

Definition 3 If the equilibrium state of system (10) is asymptotically stable and its re-
gion of attraction is congruent to Rn, then the equilibrium state is globally asymptotically
stable.

Definition 4 Equilibrium state of system (10) is asymptotically stable in region D if the
region of attraction of this solution is congruent to D.

There are theorems on asymptotic stability by Barbashin and Krasovskii that are
special cases of the theorem by La Salle (LaSalle, 1968). Let us formulate two of
them (Barbashin and Krasovsky, 1952).

Theorem 5 (the first theorem of Barbashin-Krasovsky) Let x = 0 be an equilibrium
state of system (10), defined in Rn, and let there exists continuous and differentiable,
positively-defined and infinite for ||x|| → ∞ function V : Rn → R1, derivative of which
along the trajectories of system (10) is a negatively-defined function. Then x = 0 is a
globally stable equilibrium state.

Theorem 6 (the second theorem of Barbashin-Krasovsky) Let x = 0 be an equilib-
rium state of system (10), defined in D, and there exists continuous and differentiable,
positively-defined function V : D → R1, for which V̇(x) ≤ 0 in D, and set S = {x ∈
D : V̇(x) = 0} doesn’t contain full trajectories except of x = 0. Then x = 0 is an
asymptotically stable equilibrium state.



APPENDIX 2 DIFFERENTIAL INCLUSIONS AND FILIPPOV
DEFINITION

All models of the drilling systems considered in this study are described by differ-
ential equations with discontinuous right-hand sides (due to the friction torque
origin). The investigation of these equation requires the introduction of a new
definition of solution which would be applicable to such systems. Following the
works (Andronov et al., 1966; Yakubovich et al., 2004; Filippov, 1960) bellow, we
will consider mechanical systems with friction and will try to explain why the
well-known definition of solution of an ordinary differential equation doesn’t
work for discontinuous systems. We will introduce the notion of the differen-
tial inclusion and Filippov definition for systems of differential equations with
discontinuous right-hand sides.

0

F

V

FIGURE 12 Viscous friction

The origin of the theory of differential inclusions is usually associated with
the names of the French mathematician Marchaud (Marchaud, 1936) and the Pol-
ish mathematician Zaremba (Zaremba, 1936). We will introduce later the defi-
nition of a discontinuous system solution proposed by Filippov (Filippov, 1960,
1985, 1988). Other well-known definition of discontinuous systems solutions for
our problem are equivalent to the definition by Filippov.

Mechanical system with a dry friction

As shown in (Andronov et al., 1966), we can establish the relationship be-
tween the work required to overcome friction and the speed. This relationship
is totally different for the case of the movement of a body of mass in the fluid
and the friction against any solid surface. In the first case (the case of “viscous
friction”), the work essentially depends on the speed and if the speed decreases,
the work decreases as well and it can be made arbitrarily small. In the second
case (the case of “dry friction”), on the contrary, the work is slightly dependent
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F

V
0

FIGURE 13 Dry friction

FIGURE 14 Slope field in the neighborhood of discontinuity surface: the sliding mode

on the speed. Regardless of how slow the body is moved, a certain clearly delin-
eated work is required for that, i.e., the friction force has a finite value even when
the speed is arbitrary small. In addition, the friction force is always applied in
the direction opposite to the velocity, and, thereby, when passing through zero,
the friction force changes its sign. In the case of the “viscous friction”, it follows
that the friction force passes through zero without a jump and changes the sign
(Fig. 12, (Andronov et al., 1966)).

In the case of the “dry friction”, as the speed tends to zero, the friction force
on both sides tends to different finite limits (in particular case, it tends to the
limits of opposite signs, but equal in absolute value), i.e., it is discontinuous at
zero (Fig. 13, (Andronov et al., 1966)).

Thus, mathematical models of mechanical systems with the Coulomb fric-
tion, obtained from knowing the mechanics of the systems of rigid bodies, are
differential equations, right-hand sides of which are functions that are discontin-
uous with respect to generalized velocities (the friction force changes abruptly
when the direction of the motion changes) (Bothe, 1999; Fečkan, 1997, 1999; Filip-
pov, 1988; Kunze, 2000; Kunze and Küpper, 1997).

One operation mode of such systems with the dry friction is the sliding
mode. The sliding mode occurs when phase trajectories are directed towards
each other in the neighborhood of the surface where the control function has dis-
continuities (see Fig. 14, (Gelig et al., 1978)). After a contact with the discontinuity
surface, the image point can not move during any even arbitrarily small, but fi-
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FIGURE 15 Slope field in the neighborhood of discontinuity surface: the solution moves
away from the discontinuity surface

nite time interval along any trajectory adjacent to the surface (in the case of any
displacement, there is always a movement that returns an affix on the discontinu-
ity surface). Also, another case is possible: here on the contrary, the solution can
not get to the corresponding part of the discontinuity surface as time increases
(see Fig. 15, (Gelig et al., 1978)).

Justification of the need to generalize the notion of solution of differential
equation

Here is the classic definition of solutions of differential equation (Filippov,
1985).

Definition 5 Solution of differential equation

ẋ = f (x, t)

with continuous right-hand side is a function x(t), which has derivative everywhere on
this interval and satisfies this equation.

Furthermore, the equation with a continuous right-hand side is equivalent to the
following integral equation

x(t) =
∫

f (t, x(t)) dt + C. (14)

However, in the case of differential equations with discontinuous right-
hand sides this definition doesn’t work. In the case when f (t, x) is discontinuous
for t and continuous for x, we may call the functions satisfying integral equation
solutions of the equation. In that case, solutions from one side of S go to S, from
the other side they go off S (trajectories puncture the surface), see Fig. 16, (Gelig
et al., 1978).

Solution x(t), which falls for t = t0 into the discontinuity surface S, ex-
tends uniquely for t > t0 and close to t0; by intersecting S the solution satisfies
the equation everywhere except the point of intersection in which the solution
doesn’t have a derivative. In another case, when the solution approach the dis-
continuity surface S from both sides (trajectories merge – the sliding mode), this
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S

FIGURE 16 Slope field in the neighborhood of discontinuity surface: trajectories punc-
ture the surface S

definition of solution is meaningless, because it tells us nothing about the behav-
ior of the solution on the surface S.

It is necessary to give such definition of the solution which would embody
these both cases and which formulation would not be dependent on the lines’
position and discontinuity surfaces.

Definition of solution

Consider the equation of the system in the vector notation

ẋ = f (t, x), (15)

with a piecewise continuous function f in the region G; x ∈ Rn, M - set (of
measure zero) of discontinuity point of function f .

Most of the well-known definitions of solution of equation (15) could be
described in the following way. For each point (t, x) of the region G set F(t, x) in
n-dimensional space is introduced. If at the point (t, x) function f is continuous,
then the set F(t, x) consists of one point, which is congruent to the value of the
function f at this point. If (t, x) is a discontinuity point of the function f , then the
set F(t, x) is defined in certain chosen way.

Definition 6 Solution of equation (15) is called the solution of the differential inclusion

ẋ ∈ F(t, x), (16)

i.e., absolutely continuous vector function x(t), defined on the interval or segment I, for
which almost everywhere on I

ẋ ∈ F(t, x). (17)

In other words, the solution of the differential equation (15) is defined as a func-
tion which derivative ẋ = dx/dt may have any values from a certain set F(t, x).
Sometimes (16) are called differential equations with a set-valued right-hand side.
A function is called a set-valued function and we emphasize that F(t, x) is a set.
If for all (t, x) the set F(t, x) contains only one point, then (16) is an ordinary dif-
ferential equation. The function F(t, x) is called one-valued at the point (t0, x0),
if the set F(t0, x0) contains one point.
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The most common definition of the solution of discontinuous system is Fil-
ippov definition. (Filippov, 1960, 1985, 1988).

Extending convex definition

This extension could also be applied to systems with a small delay of a cer-
tain type and to some systems with a dry friction including the systems consid-
ered in this study.

For every point (t, x) ∈ G let F(t, x) be the minimal convex closed set which
contains all limit vector-functions f (t, x∗); when (t, x∗) /∈ M, x∗ → x, t = const.
We call the solution of system (15) a solution of differential inclusion (16) with the
just constructed F(t, x). Since M is a set of measure zero, for almost all t ∈ I the
measure of the section of set M with the plane t = const is zero. For these t, the
set F(t, x) is defined for all (t, x) ∈ G. At the points of continuity for function f ,
a set F(t, x) consists of one point f (t, x) and the solution satisfies equation (15) in
the ordinary sense. If the point (t, x) ∈ M lies on the boundaries of two or more
regions G1,. . . ,Gk of plane t = const, then the set F(t, x) is a segment, convex
polygon or polyhedron with vertexes fi(t, x), i ≤ k, where

fi(t, x) = lim
(t,x∗)∈Gi

x∗→x

f (t, x∗). (18)

All the points fi(t, x) (i = 1, . . . , k) are contained in F(t, x), but not necessar-
ily all of them are vertexes.

Definition 7 Vector-function x(t), defined on the interval J, is called a solution of sys-
tem (15), if it is absolutely continuous and if for almost all t ∈ J and for all δ > 0 the
vector ẋ(t) belongs to the minimal convex closed set (n-dimensional space), which con-
tains all the values of the vector function f (t, x∗), when x∗ runs through almost entire
δ–neighborhood of the point x(t) in the space X (for a fixed t), that is, through the entire
neighborhood, except of the set of measure zero.

Such definition outlines the unique extension of the solution on the discontinuity
surface. Let us consider the case when the function f (t, x) is discontinuous on
a smooth surface S, defined by the equation s(x) = 0. The surface S divides its
neighborhood in the space into the regions G− and G+. Let for t = const and for
approximation x∗ for x ∈ S from regions G− and G+ the function has limit values

lim
x∗∈G−
x∗→x

f (t, x∗) = f−(t, x),

lim
x∗∈G+

x∗→x

f (t, x+) = f+(t, x).
(19)

Then the set F(t, x), mentioned in the definition of extension, is the segment
which connects endings of the vectors f−(t, x) and f+(t, x), which start at x.

• If for t ∈ I the segment lies on one side of the surface P, which is tangent
to the surface S at the point, then the solutions for those t go from one side of the
surface S to its other side (Fig. 17, (Filippov, 1985)).
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FIGURE 18 Motion of the solution along the surface S

• If this segment crosses the surface P, the crossing point is the end of the
vector f 0(t, x), which defines the speed of the motion

ẋ = f 0(t, x) (20)

along the surface S in space X (Fig. 18, (Filippov, 1985)).
Note that the vector is tangent to S f 0(t, x) ∈ P, so, f 0(t, x) ∈ F(t, x). This

means that the function x(t), which satisfies equation (20) due to the extension,
is the solution of equation (15). This implies that x(t), which on this part of the
considered time interval passes in the area G−(or in the area G+) and satisfies
equation (15); on the remaining part it goes along the surface S and satisfies equa-
tion (20), it is also considered as a solution of (15) in the sense of the definition of
extension introduced above.

In equation (20) f 0 = α f+ + (1− α) f−,

α =
f−N

f−N − f+N
, (0 ≤ α ≤ 1), (21)



48

f+N , f−N are vectors projections of f+ and f+ to the normal of the surface S at the
point x (the normal is oriented towards the direction of G+).

• If the whole segment with the endings f− and f+ lies on the surface P,
then the movement speed f 0 on discontinuity surface S is multi-valued.

For f 0 6= f−, f 0 6= f+ there is a sliding mode, which was discussed before.
Let the ideal sliding mode equation look as equation (20). Calculating α for f 0 =
α f+ + (1− α) f− from the condition grad S · f 0 = 0, we find the equation

ẋ =
grad S · f−

grad S · ( f− − f+)
f+ − grad S · f+

grad S · ( f− − f+)
f−, (22)

with the help of which we define the motion in the sliding mode (the initial data
for (22) is chosen on the discontinuous surface, i.e., S(x(0)) = 0).

The connection of the theory of equations (15) with discontinuous right-
hand side to the theory of differential inclusions (16) is obvious. If there is equa-
tion (17) with discontinuous function f (t, x), we need to replace its value f (t0, x0)
in the discontinuity point (t0, x0) with a certain set. This set should be limited,
convex, and self-contained. Furthermore, it should contain all limit values f (t, x)
when (t, x) → (t0, x0). After such change of variables (for any discontinuity
point) instead of (15) we obtain differential inclusion (16), in which a set-valued
function satisfies the above stated requirements.



APPENDIX 3 NUMERICAL METHODS OF STABILITY
INVESTIGATION OF DISCONTINUOUS
SYSTEMS

The models studied in this work are described by equations with discontinuous
right hand-sides, thereby, a special method for numerical computation of their
solutions is required. In what follows, we are going to provide a brief description
of one of such methods following the work (Piiroinen and Kuznetsov, 2008).

The event-driven simulation method

In some cases it is definitely possible to find explicit expressions for the so-
lutions of the ordinary differential equation that describes sliding if the vector
fields in the non-sliding regions are given. For example, this is the case when
small linear systems are considered. However, in the case of the above models of
the drilling systems actuated by an induction motor, the idea is to present a nu-
merical algorithm where the user only provides different vector fields and infor-
mation about the discontinuity surface, and then the vector fields for the sliding
regions are automatically computed. The method that has been chosen here for
modeling the considered systems with a discontinuous right-hand side is similar
to the hybrid system approach, where the integrations of smooth ordinary dif-
ferential equations are mixed with discrete maps and vector field switches. In
practice, this means that an initial value problem is solved for one of the possible
smooth dynamical systems until the trajectory reaches one of the predefined sur-
faces. At such a point, depending on the state at that instance, the vector field is
possibly switched. It is very important to have a reliable ODE solver that is ac-
companied by an accurate routine to locate discontinuity surface and the tangent
surface crossings. In what follows, a surface crossing will be called an event and a
scalar function defining an event surface is referred to as the event function. The
existence of event detection routines will be assumed here. For instance, in MAT-
LAB (Higham and Higham, 2005) the event detection routines are built-in and
can easily be used together with the likewise built-in ODE solvers to integrate
trajectories and to locate events along them as precisely as the accuracy of MAT-
LAB permits (for more details of the MATLAB ODE routines, see (Shampine and
Reichelt, 1997; Ashino et al., 2000)). However, standard methods, for example, the
secant type methods, can easily be implemented and have proven to be fast and
reliable. The type of events to be detected also plays an important role in how
to numerically deal with them and how sensitive the event detection needs to
be. The basic ideas behind the simulation algorithm for one discontinuity surface
and a schematic description on how the algorithm works are given in (Piiroinen
and Kuznetsov, 2008).



APPENDIX 4 MATHEMATICAL MODEL OF INDUCTION
MOTOR

In what follows, we are going to provide a brief derivation of a system of equa-
tions describing a mathematical model of the induction motor with a wound ro-
tor. The full version of this derivation can be found in (Leonov et al., 2013a;
Leonov and Solovyeva, 2012; Solovyeva, 2013).

Currently, the methods of research and design of asynchronous motors based
on mathematical modeling have become widespread (Bespalov et al., 2002; Be-
spalov, 1992; Golubev and Zikov, 2003; Gruzov, 1953; Kopilov et al., 2002; Kopilov,
2001b,a; Moshinsky and Petrov, 2001; Moshinsky and T., 2007; Moshinsky and
Petrov, 2007; Pankratov and Zima, 2003; Sipaylov and Loos, 1980; Hrisanov and
Brxhezinsky, 2003). Both Russian and foreign researchers have made great contri-
bution to the establishment and development of scientific methods of calculation
of induction motors, among them: Adkins, Bespalov, Blondel, Woodson, Glebov,
Gorev, Danilevich, Ivanov-Smolensky, Ilinskiy, Kazovsky, Kovacs, Kononenko,
Kopylov, Kostenko, Kron, Luther, Park, Petrov, Postnikov, Radin, Raz, Sipailov,
Soroker, Treschev, White, Filtz and others.

The basic constructive elements of induction electrical machines are station-
ary stator and rotating rotor. On the stator and the rotor the windings are located.
Stator winding is arranged in such a way that in the case of alternate current net-
working it generates the rotating magnetic field.

Consider the induction motor with a wound rotor (Drury, 2001) shown in
Fig. 19. In the simplest case, a wound rotor winding consists of three coils, each
consists of several turns of insulated conductor. Furthermore, one considers in-
duction motors with wound rotor, when a rotor winding is short-circuited and
no external devices are connected. A working gear is connected to the rotor shaft
(in our case, it is a drill-string). Thus, the induction motor, by transforming the
electric energy into the mechanical one, imparts rotational motion to the working
gear via shaft.

The classic derivation of expressions for the currents in rotor winding and
the electromagnetic torque of induction motor are based on the following sim-
plifying assumptions (Popescu, 2000; Leonhard, 2001; Skubov and Khodzhaev,
2008):

I It is assumed that the magnetic permeability of the stator and rotor iron is
equal to infinity. This assumption makes it possible to use the principle of
superposition for the determination of the magnetic field, generated by the
stator;

II one may neglect energy losses in electrical steel, i.e., the losses related to
motor heating, magnetic hysteresis, and whirling currents;

III one does not take into account saturation of the rotor iron, i.e. the current of
any force can run in rotor winding;
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FIGURE 19 Wound rotor of induction motor: 1 – the first coil with the current i1, 2 – the
second coil with the current i2, 3 – the third coil with the current i3, 4 – slip
rings, 5 – rotor shaft

IV one may neglect the effects arising at the ends of rotor winding and in rotor
slots, i.e., one may assume that the magnetic field is distributed uniformly
along the circumference of the motor;

Let us make an additional assumption:

V Stator windings are fed by a powerful outlet of sinusoidal voltage.

Then, following (Adkins, 1957; White and Woodson, 1968; Skubov and Khodzhaev,
2008), due to the last assumption, the effect of rotor currents on stator currents
may be ignored. Thus, a stator generates uniformly a rotating magnetic field with
a constant in magnitude induction. So, one may assume that magnetic induction
vector is constant in magnitude and rotates with a constant angular velocity. This
assumption is due to the classical ideas of Tesla and Ferraris and allows one to
consider dynamics of induction motor from the point of view of its rotor dynam-
ics (Leonov, 2006; Leonov and Solovyeva, 2012; Leonov et al., 2013b).

Suppose, magnetic field rotates clockwise. One introduces the uniformly
rotating coordinates, rigidly connected with the vector magnetic induction, and
considers the motion of wound rotor in this coordinate system. Also, suppose
that the positive direction of the rotation axis of the rotor coincides with the di-
rection of the rotation of the magnetic induction vector.

The rotating magnetic field crosses rotor winding and, by the law of electro-
magnetic induction, it induces EMF in it. Thus, taking into account the number
of turns, EMF in coils is equal to

εk = −nSB cos
(

π

2
− θ − 2(k− 1)π

3

)
θ̇, k = 1, 2, 3.

Here B is the inductance of the magnetic field, n is the number of turns in each
coil, S is an area of one turn of coil, θ is a mechanical angle of rotation of rotor.
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Acted by EMF, a variable current arises in rotor winding. According to Am-
pere’s force law, as a result of the interaction of currents in coils with rotating
magnetic field, there arise electromagnetic forces. Electromagnetic forces gener-
ate electromagnetic rotating moment, under which the rotor begins rotating with
a certain frequency.

Using Ampere’s force law for calculating electromagnetic forces and taking
into account the number of turns in coil and positive direction of the rotor rotation
axis, it follows that a generated rotating electromagnetic torque, acting on a coil
with the current ik, is equal to

Mk = nSB cos
(

π

2
−
(

θ +
2(k− 1)π

3

))
ik, k = 1, 2, 3.

Thus, the electromagnetic torque of the induction motor with a wound rotor is
equal to

Mem = M1 + M2 + M3.

The dynamics of the rotating induction motor is described by the equations
of electric chains (voltage equations) and the equation of moments of forces, act-
ing on the motor rotor (equation of moments).

Using the second Kirchgoff’s law and following the positive direction of the
by-pass of the circuit in the clockwise order, one arrives at the following differen-
tial equations

L(i̇1 − i̇2) + R(i1 − i2) = ε1 − ε2,

L(i̇2 − i̇3) + R(i2 − i3) = ε2 − ε3,
(23)

where R, L are active and inductive resistance of each coil; εk is EMF, induced in
k-th coil by rotating magnetic field.

The motion of wound rotor of induction motor about shaft in the chosen
coordinate system is described by the equation of torques:

Jθ̈ = Mem −M f ,

where θ is mechanical angle of rotor rotation; J is inertia moment of the rotor
relative to shaft; Mem is electromagnetic torque; Ml is load torque.

Thus, the system of differential equations

Jθ̈ = nBS
n

∑
k=1

ik cos
(

π

2
− θ − 2(k− 1)π

3

)
−M f ,

Li̇1 + Ri1 = −nBSθ̇ cos
(π

2
− θ
)

,

Li̇2 + Ri2 = −nBSθ̇ cos
(

π

2
− θ − 2π

3

)
,

Li̇3 + Ri3 = −nBSθ̇ cos
(

π

2
− θ − 4π

3

)

(24)
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describes the dynamics of induction motor with a wound rotor.
Note that non-singular change of variables (4), makes it possible to reduce

system (24) to the model used in (5) 1.

1 Some other types of induction motors may also be reduced to this model under certain
additional assumptions (Leonhard, 2001; Khalil and Grizzle, 2002)



APPENDIX 5 PROOF OF THE THEOREM ON LOCAL
STABILITY

Proof

In case when
0 < γ < γmax =

a
2

system (7) has one equilibrium state:

u0 = s0, x0 = − γ

ac
s0, y0 = −γ

a
, θrel0 =

γ

kθ
. (25)

Here s0 is the smallest root of the equation

acs
c2 + s2 = γ.

The characteristic polynomial of the first approximation matrix of (7) in sta-
tionary point (25) is as follows:

p1(λ) = a0λ5 + a1λ4 + a2λ3 + a3λ2 + a4λ + a5,

where

a0 = 1,

a1 = 2c,

a2 =
1

2Ju
(a + 2kθ + D) +

1
2Jlγ2 (2γ2kθ + Jla2c2 − Jlac2D),

a3 =
c

Ju Jl
((2kθ + D)Jl + 2Jukθ),

a4 =
kθ

2Ju Jlγ2 (γ
2a + γ2D + Jla2c2 + Jua2c2 − Jlac2D− Juac2D),

a5 =
cDkθ

Ju Jl
.

Here D =
√

a2 − 4γ2. For defining stability, one uses Routh–Hurwitz stability
criterion (Hurwitz, 1964; Routh, 1877) for a polynomial of the 5th order:

ai > 0, i = 0..5, (26)

a1a2 − a0a3 > 0, (27)

(a1a2 − a0a3)(a3a4 − a2a5)− (a1a4 − a0a5)
2 > 0. (28)
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Thus, the conditions (27) and (28) for the local stability of equilibrium state (25)
are as follows ((26) holds automatically)

ac
Ju

+
ac3

γ2 (a− D) > 0,

1
2J3

u Jlγ4 (Jlγ
2a2c4kθ(D(a− D) + 2kθ(a− D)) + Ju Jla2c6Dkθ(D− a)2 + 4γ4a2c2k2

θ,

+4Juγ2a2c4k2
θ(a− D)) > 0.

Therefore, equilibrium state (25) is asymptotically stable.


