
UDC 519.837 Вестник СПбГУ. Прикладная математика. Информатика... 2019. Т. 15. Вып. 2
MSC 91A25

Looking Forward Approach for dynamic cooperative advertising game model∗

L. Shi, O. L. Petrosian, A. V. Boiko
St. Petersburg State University, 7–9, Universitetskaya nab., St. Petersburg,
199034, Russian Federation

For citation: Shi L., Petrosian O. L., Boiko A. V. Looking Forward Approach for dynamic
cooperative advertising game model. Vestnik of Saint Petersburg University. Applied Mathematics.
Computer Science. Control Processes, 2019, vol. 15, iss. 2, pp. 221–234.
https://doi.org/10.21638/11702/spbu10.2019.206

In this paper, we examine a dynamic cooperative advertising game model, where each firm
market share depends on its own and its competitors’ advertising decisions. More and more
companies are willing to cooperate on the market in order to increase their market share
and their joint profit as a result. They cooperate on advertising acting as one company
and according to a characteristic function introduced in this work, their joint profit can be
reallocated according to some cooperative solution. Looking Forward Approach is applied to
the initial game in order to construct a model, where information about the process updates
dynamically. Comparison between the solution of initial game model and game model with
dynamic updating is illustrated using the numerical simulation.
Keywords: dynamic games, dynamic cooperative games, time consistency, looking forward
approach.

1. Introduction. Advertising as a strategy for market competition has been studied
in many marketing models and in this paper, we are concentrating on the dynamic
advertising model. Here each firm’s market share depends on its own and its competitors’
current and past advertising expenditures. Competition between firms is formulated by
the non-cooperative differential game as it was done in [1–6]. In this paper we consider an
oligopoly advertising model of [5] and apply Looking Forward Approach (LFA) in order
to model the behavior of firms in case of dynamic updating of information.

LFA is used for constructing game theoretical models and defining solutions for conflict
controlled processes where information about the process updates dynamically. In works
[7–14] are published most recent results on this topic. Existing dynamic games often
rely on the assumption of time invariant game structures for derivation of equilibrium
solutions. However, many events in the considerably far future are intrinsically unknown.
It is supposed that players lack certain information about the motion equations and payoff
functions on the whole time interval on which the game is played. At each time instant
when information about the game structure updates, players receive updated information
about the motion equations and payoff functions and adapt to the updates. This new
approach for the analysis of dynamic games via information updating provides a more
realistic and practical alternative to the study of dynamic games. There was also work [15]
related to the game models with shifting planning horizon, where authors study dynamic
game models for labor stimulation. It is important to notice that the overall study of games
with dynamic updating is dedicated to the problem of construction of a general theory, in
particular, for a class of cooperative dynamic or differential games with dynamic updating,
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where important question is how to construct cooperative solution and what properties of
this solution are.

It’s worth mentioning that LFA is similar in substance to the Model Predictive Control
theory developed within the framework of numerical optimal control, for recent results in
the field see [16–18]. But the main problem that is solved by the Model Predictive Control
is the provision of movement along the target trajectory under the conditions of random
perturbations and unknown motion equations, which leads system to the target trajectory.
LFA on the other hand solves the problem of modeling players behavior when information
about the process updates dynamically.

In section 2 the initial game model of oligopoly advertising is presented. In section 3
the corresponding game model with dynamic updating is studied and the solution is
derived. In section 4 the numerical simulation is performed and the comparison between
the solution of the initial game model and the game model with dynamic updating is
presented.

2. Oligopoly advertising dynamic game model.We transform differential game
model from [5] to the corresponding discrete time game using Finite Difference Method
(FDM). Then the market share dynamics xi of firm i for dynamic game model is

xγ+1
i = h

( n

n− 1
ρiu

γ
i

√
1 − xγi −

1
n− 1

∑
j∈I

ρju
γ
j

√
1 − xγj

)
− (hδ − 1)xγi + hδ

1
n
,

x0
i = z0

i .

(1)

In (1) z0
i is a positive constant. In order to apply FDM, we introduce the equally distributed

grid points (tγ)γ=0,N , where tγ = γh,N is an integer and the spacing h is given by h = T/N

and xγ � x(tγ) for all γ = 0, N . Therefore we suppose that the initial game is defined on
the time interval with length T .

Payoff function of firm i in dynamic game model has the form

K0
i (x

0, u) =
N∑
γ=0

[mix
γ
i − (uγi )

2]. (2)

In expression (2) there is a logical consistency requirement that the market shares should
satisfy: ∑

i∈I
xγi = 1, xγi � 0, i ∈ I, γ = 0, N.

In table the list of parameters of the model is presented.

Table. List of variables and parameters

Notation Explanation
xγ

i ∈ [0, 1] Market share of firm i ∈ I = {1, ..., n} at stage γ
uγ

i � 0 Advertising effort rate of firm i at stage γ
ρi > 0 Advertising effectiveness parameter of firm i
δ > 0 Churn parameter

mi > 0 Industry sales multiplied by the per unit
profit margin of firm i

C(ui(t)) Cost of advertising of firm i, presented as (ui(t))2
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3. Game model with LFA.
3.1. Truncated subgame. In this paper, we apply the approach first described in

[10] to our game model. Assuming that at each stage k, players have full information about
the motion equations and payoff functions within T̄ stages, where T̄ is a fixed value, namely
information horizon. At the stage k, information about the game is updated. At the stage
k + 1 players have full information about the game structure on the interval k + 1 + T̄ .
Each blue oval represents information that is used by the players at the beginning of each
T̄ interval (Figure 1).

Figure 1. Behavior of player i in the game with truncated information can be modeled using
truncated subgames Γk(x0

k, k, k + T̄ ), k = 0, N − T̄

Definition 3.1. Let k = 0, N − T̄ . A truncated subgame Γk(x0
k, k, k + T̄ ) is defined

on the interval
[
k, k + T̄

]
. Motion equation and payoff function on the interval

[
k, k + T̄

]
coincide with that of initial game on the same interval. Motion equation and initial
condition of truncated subgame have the form

xk+li = h

(
n

n− 1
ρiu

k+l−1
i

√
1 − xk+l−1

i − 1
n− 1

∑
j∈I

ρju
k+l−1
j

√
1 − xk+l−1

j

)
−

−(hδ − 1)xk+l−1
i + hδ

1
n
,

x0
i = z0

i .

(3)

(Denote xk,li = xk+li , uk,li = uk+li , l = 0, T̄ for the truncated subgame Γk(x0
k, k, k + T̄ ).)

The payoff function of firm i in truncated subgame Γk(x0
k, k, k + T̄ ) has the form

K̄k
i (xk,0i ;u1, . . . , un) =

T̄∑
j=0

[mix
k,j
i − (uk,ji )2].

3.2. Cooperative game model. Suppose that all players or firms decided to coo-
perate on advertising and use some allocation rule for the joint cooperative income. In
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order to model their behaviour and feasible parameters of agreement it is necessary to do
following things [19]:

1) define the cooperative strategies, i. e. strategies that maximize joint payoff of
players. These strategies and corresponding cooperative trajectory will be denoted by
u∗ = (u∗1, . . . , u

∗
n) and x∗(t) respectively;

2) define the allocation rule for maximum joint payoff along the cooperative trajectory
x∗(t) and corresponding strategies u∗ = (u∗1, . . . , u∗n). Namely, define the cooperative
solution, as a subset of imputation set.

We focus on considering kth truncated subgame Γk(x0
k, k, k + T̄ ). Suppose that all

firms decide to cooperate in each truncated subgame, denote by Γck(x
0
k, k, k+ T̄ ) truncated

cooperative subgame on the interval [k, k + T̄ ] with the initial condition x0
k. Then the

corresponding optimization problem to be solved has the form

∑
i∈I

K̄k
i (xk,0i ;u1, . . . , un) =

∑
i∈I

T̄∑
j=0

[mix
k,j
i − (uk,ji )2] → max

u1,...,un�0
(4)

subject to (3).
This is a discrete time optimization problem. We use the dynamic programming

method described in [20] to solve it. Suppose that the Bellman function for each truncated
subgame Γck(x

0
k, k, k + T̄ ) has the form

W k(l, xlk) = max
ui(k)�0,i∈I

⎧⎨⎩∑
i∈I

T̄∑
j=l

[mix
k,j
i − (uk,ji )2]

⎫⎬⎭ , (5)

where ui(k) =
{
uk,li , ..., uk,T̄i

}
and l = 0, T̄ .

Hamilton—Jacobi—Bellman equations for the function (5) have the form

W k(l, xlk) = max
ui(k)�0,i∈I

{∑
i∈I

[mix
k,l
i − (uk,li )2] +W k(l + 1, xl+1

k )

}
,

W k(T̄ + 1, xT̄+1
k ) = 0.

(6)

Assume that the maximum in (6) is achieved under control u∗i (k), then u∗i (k) is optimal
in the control problem defined by (3), (4).

Denote the solution of (3) with optimal strategies u∗ involved by the cooperative
trajectory, x∗,lk = (x∗,k,l1 , . . . , x∗,k,ln ), l = 0, T̄ .

Proposition 3.1. Optimal cooperative strategies of players for each truncated
subgame have the form

u∗,k,li = G
k,l+1

i Zi

√
1 − xk,li ∀i ∈ I,

where

Gk,l+1
i = nCk,l+1

i −
∑
j∈I

Ck,l+1
j , G

k,l+1

i = max
{
0, Gk,l+1

i

}
, Zi =

hρi
2(n− 1)

,

and Ck,li , i ∈ {1, ..., n}, k = 0, N − T̄ , l = [0, T̄ ], satisfy the relations

Ck,li = mi − (G
k,l+1

i Zi)2 − Ck,l+1
i (δh− 1)

with initial conditions Ck,T̄+1
i = 0.
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P r o o f. Suppose that the Bellman function has the following form:

W k(l, xlk) =
∑
i∈I

[Ck,li xk,li +Dk,l
i ], (7)

then by substituting (7) into (6) we receive:

W k(l, xlk) = max
uk,l
1 ,...,uk,l

n �0

{∑
i∈I

[mix
k,l
i − (uk,li )2] +W k(l + 1, xl+1

k )

}
⇒

⇒
∑
i∈I

[Ck,li xk,li +Dk,l
i ] = max

uk
1 ,...,u

k
n�0

{∑
i∈I

[mix
k,l
i − (uk,li )2] +

∑
i∈I

[Ck,l+1
i xk,l+1

i +Dk,l+1
i ]

}
,

(8)
W k(T̄ + 1, xT̄+1

k ) = 0.

Substitute the right hand side of (3) for (8). Performing the indicated maximization
in (8) yields

u∗,k,li = max

⎧⎨⎩0,

⎛⎝nCk,l+1
i −

∑
j∈I

Ck,l+1
j

⎞⎠ hρi

√
1 − xk,li

2(n− 1)

⎫⎬⎭ =

=
hρi

√
1 − xk,li

2(n− 1)
max

⎧⎨⎩0, nCk,l+1
i −

∑
j∈I

Ck,l+1
j

⎫⎬⎭
for i ∈ I, l = 0, T̄ and k = 0, N − T̄ . Substituting it into the equation for (8) with xk+li

defined by the right hand side of (3), Ck,li and Dk,l
i are defined as

Ck,li = mi − (G
k,l+1

i Zi)2 − Ck,l+1
i (δh− 1),

Dk,l
i = (G

k,l+1

i Zi)2 +
Ck,l+1
i δh

n
+Dk,l+1

i .

The proposition is proved.
Proposition 3.2. If for a given k and l values Ck,l+1

i are not all equal, then there
exist s ∈ I such that Gk,l+1

s < 0 and u∗,k,ls = 0.
P r o o f. Suppose that Ck,l+1

s = min
i∈I

Ck,l+1
i . According to the Proposition 3.1

Gk,l+1
s = nCk,l+1

s −
∑
j∈I

Ck,l+1
j =

∑
j∈I

[
Ck,l+1
s − Ck,l+1

j

]
.

In the last sum all the components are non-positive and all Ck,l+1
j are not equal, then

at least one value Ck,l+1
s − Ck,l+1

j is negative. It follows that Gk,l+1
s < 0 and as a result

u∗,k,ls = 0. The proposition is proved.
Proposition 3.3. If all Ck,l+1

i are equal, then u∗,k,li = 0 for all i ∈ I.
P r o o f. According to the definition of Gk,l+1

i if Ck,l+1
i are equal, then it follows that

Gk,l+1
i = u∗,k,li = 0 for all i ∈ I. The proposition is proved.

Further we derive the non-negativity conditions of market shares x∗ corresponding to
the cooperative strategies u∗.
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Proposition 3.4. Value of x∗k,li is non-negative, if and only if the following conditions
are satisfied:

∑
j∈I\P

(1−x∗,k,lj )
(
hδ − 1 − 2Gk,l+1

j Z2
j

)
−(hδ−1)

⎛⎝1 + p−
∑

j∈P\{i}
x∗,k,lj

⎞⎠+
hδ

n
� 0, i ∈ P,

(9)(
2(n− 1)Gk,l+1

i Z2
i + 1 − hδ

) ∑
j∈I\{i}

x∗,k,lj −

−
∑

j∈I\(P∪{i})
2Gk,l+1

j Z2
j

(
1 − x∗,k,lj

)
+ 1 +

hδ(1 − n)
n

� 0, i ∈ I \ P, (10)

where P = {i : u∗k,li = 0}; I\P = {i : u∗k,li > 0}; p = |P |.
P r o o f. Let u∗,k,li = 0, i ∈ P . By substituting optimal cooperative strategies

u∗,k,li , i ∈ I, in (3) the corresponding cooperative trajectory is obtained:

x∗,k,l+1
i = −

∑
j∈I\P

2Gk,l+1
j Z2

j (1 − x∗,k,lj ) − (hδ − 1)x∗,k,li +
hδ

n
, i ∈ P. (11)

By replacing x∗,k,li with (1 − ∑
j∈I\{i} x

∗,k,l
j ) in equality (11) we obtain:

x∗,k,l+1
i =

= −
∑
j∈I\P

2Gk,l+1
j Z2

j (1 − x∗,k,lj )−(hδ−1)

⎛⎝1 + p−
∑
j∈I\P
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∑

j∈P\{i}
x∗,k,lj

⎞⎠+
hδ

n
=

= −
∑
j∈I\P
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(
2Gk,l+1

j Z2
j − (hδ − 1)

)
−(hδ−1)

⎛⎝1 + p−
∑

j∈P\{i}
x∗,k,lj

⎞⎠+
hδ

n
� 0.

For i ∈ I \ P : u∗,k,li > 0:

x∗,k,l+1
i = 2nGk,l+1

i Z2
i (1 − x∗,k,li ) −
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j∈I\P

2Gk,l+1
j Z2
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hδ

n
=

= 2nGk,l+1
i Z2

i (1 − x∗,k,li ) − 2Gk,l+1
i Z2

i (1 − x∗,k,li ) −
∑

j∈I\(P∪{i})
2Gk,l+1

j Z2
j (1 − x∗,k,lj ) −

− (hδ − 1)x∗,k,li +
hδ

n
=

(
2(n− 1)Gk,l+1

i Z2
i + 1 − hδ

)
(1 − x∗,k,li ) −

−
∑

j∈I\(P∪{i})
2Gk,l+1

j Z2
j (1 − x∗,k,lj ) + 1 +
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n

=

=
(
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−
∑
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j Z2
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hδ(1 − n)
n

� 0.
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From the formulas for x∗k,li derived above it follows that the conditions (9), (10) are
equvalent and that x∗k,li � 0.

The proposition is proved.
If conditions of Proposition 3.2 are satisfied, then according to

∑
i∈I x

k,l
i = 1 for

k = 0, N − T̄ and l = 0, T̄ the value of x∗,k,l+1
i won’t exceed 1.

It’s worth mentioning that the advertising effort rate of each firm is equal to zero,
when all the firms are symmetric, because of the whole market acting as a monopoly, when
all symmetric firms decide to cooperate, once consumers want to buy goods they have to
buy it from one of firms, even if firms do not spend on advertising.

Proposition 3.5. If all firms are identical:mi = m, ρi = ρ for i ∈ I, then the optimal
cooperative strategies of players are

u∗,k,li = 0, ∀i ∈ I, k = 0, N − T̄ , l = 0, T̄ .

P r o o f. Optimal cooperative strategies can be obtained in the form

u∗,k,li = max

⎧⎨⎩0,

⎛⎝nCk,l+1
i −

∑
j∈I

Ck,l+1
j

⎞⎠ hρ
√

1 − xk,li

2(n− 1)

⎫⎬⎭ (12)

for i ∈ I, k = 0, N − T̄ and l = 0, T̄ . Here we will examine only the second term in (12)
because if u∗,k,li = 0, then the result is trivial.

Consider the case when all firms are identical: mi = m, ρi = ρ for i ∈ I, then related
parameters in Proposition 3.1 can be rewritten as follows:

Ck,li = m− (G
k,l+1

i Z)2 − Ck,l+1
i (δh− 1),

where Z = hρ
2(n−1) and G

k,l+1

i = max
{

0, nCk,l+1
i − ∑

j∈I C
k,l+1
j

}
with initial conditions

Ck,T̄+1
i = 0. It shows that the value of Ck,li is equal for all i ∈ I, k = 0, N − T̄ and l = 0, T̄ ,

which means the optimal cooperative strategies equal to 0 for any stage when all firms are
identical.

The proposition is proved.
Definition 3.2. Resulting cooperative strategies {û∗,ji }Nj=0, ∀i ∈ I, are a combi-

nation of optimal cooperative strategies u∗,k,li for each truncated cooperative subgame
Γck(x

∗
k, k, k + T̄ ) defined on the successive intervals [k, k + T̄ ]:

û∗,ji =

{
u∗,j,0i , j = 0, N − T̄ ,

u∗,N−T̄ ,j−N−T̄
i , j = N − T̄ + 1, N.

Definition 3.3. Resulting cooperative trajectory
{
x̄∗j

}N
j=0

, is a combination of coo-
perative trajectories x∗k for each truncated cooperative subgame Γck(x

∗
k, k, k + T̄ ) defined

on the successive intervals [k, k + T̄ ]:

{
x̄∗j

}N
j=0

=

{
x∗,0j , j = 0, N − T̄ ,

x
∗,j−(N−T̄ )

N−T̄ , j = N − T̄ + 1, N.
(13)

In this paper we focus on allocation problem of the joint payoff among the players
(see (13)). Resulting imputation with LFA differs from the imputations in the initial game,
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which is a result of difference of resulting characteristic function and characteristic function
in the initial game.

3.3. Characteristic function. A characteristic function of coalition is an essential
concept in the theory of cooperative games. In this paper it is defined in [20, 21] as a total
payoff of players from coalition S ⊆ I in Nash equilibrium in the game with the following
set of players: coalition S (acting as one player) and players from the set N \ S (acting as
individuals). For each coalition S ⊆ I define the values of characteristic function for each
truncated subgame as it was done in [10]:

V k(S;x∗,0k ) =

⎧⎪⎨⎪⎩
∑

i∈I K̄
k
i (x∗,0k , u∗), S = I,

Ṽk(S, x
∗,0
k ), S ⊂ I,

0, S = ∅.
(14)

In form (14) Ṽk(S, x∗,0k ) is defined as a total payoff of players from coalition S in Nash
equilibrium uNE = (ū1, ..., ūn) in the game with the following set of players: coalition S
(acting as one player) and players from the set |I \ S|, i. e. in the game with |I \ S| + 1
players.

Suppose that the characteristic function for coalition S in truncated subgame
Γck(x

0
k, k, k + T̄ ) has the form defined above, then in order to find values of it we need to

use the system of Bellman equations for Nash equilibrium between players: S ⊆ I (acting
as one) and players i ∈ I \ S. Introduce the following Bellman functions, where V k(S, x0

k)
will be used as a characteristic function in the truncated subgame Γk(x0

k, k, k + T̄ ):

V k(S, x0
k) =

∑
i∈I

C̄k,0i xk,0i + Ek,0, S ⊆ I,

V k({i} , x0
k) =

∑
i∈I

Ak,0i xk,0i +B(i)k,0, i ∈ I \ S,

then the corresponding system of Bellman equations has the form

V k(S, x0
k) = max

uk
i ,∀i∈S

{∑
i∈S

[mix
k,0
i − (uki )

2] + V k(S, x1
k)

}
, S ⊆ I,

V k({i} , x0
k) = max

uk
i

{
mix

k,0
i − (uki )

2 + V k({i} , x1
k)

}
, ∀i ∈ I \ S,

V k(S;xT̄+1
k ) = 0, V k({i} ;xT̄+1

k ) = 0.

In order to allocate cooperative payoff along the resulting cooperative trajectory, we
define the resulting characteristic function in the way it was done in [10].

Definition 3.4. Resulting characteristic function of coalition S ⊆ I in the game
model with dynamic updating has the following form:

V̂ (S; x̄∗γ , N − γ)=

{∑N−1−T̄
j=γ [V j(S;x∗,0j ) − V j(S;x∗,1j )]+ V N−T̄ (S;x∗,0

N−T̄ ), γ = 0, N − T̄ ,

V N−T̄ (S;x∗,γ−N+T̄

N−T̄ ), γ = N − T̄ + 1, N.
(15)

4. Resulting cooperative solution. Using the resulting characteristic function (15)
it is possible to define allocation rule for the cooperative payoff since it shows the value
for each possible coalition. Imputation ξk(x∗k) for each truncated cooperative subgame
Γck(x

∗
k, k, k + T̄ ) is defined as an arbitrary vector, which satisfies the conditions:
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individual rationality: ξki (x
∗,k,0
i , k, k + T̄ ) � V k({i} ;x∗,0k ), i ∈ I,

group rationality:
∑
i∈I ξ

k
i (x

∗,k,0
i , k, k + T̄ ) = V k(N ;x∗,0k ).

In this paper, we choose Shapley value as a cooperative solution:

Shki (x
∗,0
k ) =

∑
S⊆I,i∈S

(|I| − |S|)!(|S| − 1)!
|I|! · [V k(S;x∗,0k ) − V k(S \ i;x∗,0k )].

According to LFA procedure, the imputation received by the players i ∈ I can be
calculated according the following formula [14]:

ξ̂i(x̄∗γ , N − γ) =

⎧⎪⎨⎪⎩
∑N−1−T̄

j=γ [ξji (x
∗,j,0
i , j, j + T̄ ) − ξji (x

∗,j,1
i , j, j + T̄ )] +

+ ξN−T̄
i (x∗,N−T̄ ,0

i , N − T̄ , N), γ = 0, N − T̄ ,

ξN−T̄
i (x∗,N−T̄ ,γ−N+T̄

i , N − T̄ , N), γ = N − T̄ + 1, N,

(16)

which is called the resulting imputation. It can be proved that the resulting imputation
(16) obtained by choosing from each truncated subgame Shapley value is equal to the
Shapley value calculated using the resulting characteristic function (15).

Proposition 4.1. Suppose that in every truncated subgame Γck(x
∗
k, k, k + T̄ ):

ξki (x
∗,k,0
i , k, k + T̄ ) = Shki (x

∗,0
k ),

where k = 0, N − T̄ , then the resulting imputation ξ̂i(x̄∗γ , N − γ) coincides with Shapley
value Ŝhi(x̄∗γ , N − γ):

ξ̂i(x̄∗γ , N − γ) = Ŝhi(x̄∗γ , N − γ), γ ∈ [0, N ],

calculated using the resulting characteristic function V̂ (S, x̄∗γ , N − γ).
P r o o f. Denote function

y(γ) =

{
N − T̄ + 1, γ = 1, N − T̄ ,

γ, γ = N − T̄ + 1, N.

According to (16), the resulting imputation is calculated using the Shapley value
Shk(x∗k, k, k + T̄ ) in each truncated subgame:

ξ̂(x∗γ , N − γ) =
N−T̄∑
j=γ

[Shj(x∗j,0, j, j + T̄ ) − Shj(x∗j,1, j + 1, j + T̄ )] +

+
N∑

j=y(γ)

[ShN−T̄ (x∗N−T̄ ,j−N+T̄ , j, N) − ShN−T̄ (x∗N−T̄ ,j+1−N+T̄ , j + 1, N)] =

=
∑

S⊂I,i∈S

(|I| − |S|)!(|S| − 1)!
|I|!

{
N−T̄∑
j=k

[(V (S;x∗j,0, j, j + T̄ ) −

− V (S;x∗j,1, j+1, j+T̄ ))−(V (S \ i;x∗j,0, j, j+T̄ )−V (S \ i;x∗j,1, j+1, j+T̄))] +

+
N∑

j=y(γ)

[(V (S;x∗N−T̄ ,j−N+T̄ , j, N) − V (S;x∗N−T̄ ,j+1−N+T̄ , j + 1, N)) −

− (V (S \ i;x∗N−T̄ ,j−N+T̄ , j, N) − V (S \ i;x∗N−T̄ ,j+1−N+T̄ , j + 1, N))]

}
,

(17)
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where Ŝh(x∗, N−γ) is Shapley value, calculated using the resulting characteristic function
V̂ (S, x̄∗γ , N − γ)

Ŝh(x∗γ , N − γ) =

=
∑

S⊂I,i∈S

(|I| − |S|)!(|S| − 1)!
|I|! (V̂ (S; x̄∗γ , N − γ) − V̂ (S \ i; x̄∗γ , N − γ)) =

=
∑

S⊂I,i∈S

(|I| − |S|)!(|S| − 1)!
|I|!

{
N−T̄∑
j=γ

[(V (S;x∗j,0, j, j + T̄ ) −

− V (S;x∗j,1, j+1, j+T̄ )) − (V (S \ i;x∗j,0, j, j+T̄ ) − V (S \ i;x∗j,1, j+1, j+T̄ ))] +

+
N∑

j=y(γ)

[(V (S;x∗N−T̄ ,j−N+T̄ , j, N) − V (S;x∗N−T̄ ,j+1−N+T̄ , j + 1, N)) −

− (V (S \ i;x∗N−T̄ ,j−N+T̄ , j, N) − V (S \ i;x∗N−T̄ ,j+1−N+T̄ , j + 1, N))]

}
,

(18)

comparing (17) and (18), the proposition is proved.
5. Simulation example. Consider oligopoly advertising dynamic game model with

n = 3 firms defined on the interval N = 8 and information horizon T̄ = 2. Let the
parameters of each firm be ρ = [0.4, 0.5, 0.3], h = 0.4, δ = 0.09, m = [0.6, 1, 1.2] and initial
conditions be z0 = [0.3, 0.5, 0.2].

Figure 2. Cooperative trajectory in the initial game (solid line) and resulting cooperative
trajectory (dashed line) in game model with dynamic updating

In Figure 2 comparison of resulting cooperative trajectory x̄∗ and cooperative
trajectory in the initial game is presented. Here the lines for the first player in the game
model with dynamic updating and in the initial game model coincide. Also, in Figure 3
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comparison of resulting cooperative strategies û∗ and optimal cooperative strategies in the
initial game model is presented. For the first player both cooperative strategies are equal
zero in Figure 3.

Figure 3. Optimal cooperative strategies in the cooperative case of initial game (solid line)
and optimal cooperative strategies in the cooperative game model

with dynamic updating (dashed line)

Figure 4. Characteristic function in the initial game model (solid line) and resulting
characteristic function (dashed line) in game model with dynamic updating
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Using {x̄∗l }Nl=0 formulas (14) and (15) we calculate the resulting characteristic function.
In Figure 4 difference between the resulting characteristic function and characteristic
function in the initial game for S = {1, 2} is presented. Using resulting characteristic
function, we determine the resulting Shapley value using the formula (). In Figure 5
difference between the resulting Shapley value and Shapley value in the initial game is
presented. As we can see from above, resulting Shapley value of game with LFA changes

Figure 5. Shapley value in the initial game (solid line) and resulting Shapley value (dashed line)
in game model with dynamic updating

more steadily over stages rather than the Shapley value of initial game. It can be seen that
the competition among the companies is more fierce in the initial game rather than it in
the game with LFA, considering market shares in Figure 2 and advertising expenditure in
Figure 3. Shapley value of each company is barely changes on the last stage, which means
that the profit of each company does not change much, as it is shown in Figure 5.

6. Conclusion. In this paper, cooperative dynamic oligopoly game model of
advertising with dynamic updating has been studied and related results were presented.
In future work, we are looking forward to study dynamic game with LFA, where the
information horizon is random, also trying to construct an analytic formula for optimal
strategies with LFA for each truncated subgame by one shot optimization. This would
lead to the new results in this field.

The authors thank reviewers for their help with the paper and especially for the
suggestion of adding Propositions 3.2 and 3.3.
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Модель игры о рекламе с динамическим обновлением информации∗

Л. Ши, О. Л. Петросян, А. В. Бойко

Санкт-Петербургский государственный университет, Российская Федерация,
199034, Санкт-Петербург, Университетская наб., 7–9

Для цитирования: Shi L., Petrosian O. L., Boiko A. V. Looking forward approach for dynamic
cooperative advertising game model // Вестник Санкт-Петербургского университета. При-
кладная математика. Информатика. Процессы управления. 2019. Т. 15. Вып. 2. С. 221–234.
https://doi.org/10.21638/11702/spbu10.2019.206 (In English)

Рассматривается динамическая модель, описывающая игру на рынке рекламы, в кото-
рой доля каждой фирмы зависит от ее собственных и рекламных политик конкурентов.
Все больше и больше компаний готовы сотрудничать на рынке, чтобы в результате уве-
личить свои рыночную долю и прибыль. Компании сотрудничают в области рекламы,
действуя как одна компания, и в соответствии с характерной функцией и некоторым
кооперативным решением, представленными в данной работе, их совместная прибыль
может быть перераспределена. Подход с динамическим обновлением информации при-
меняется к исходной игре, чтобы построить модель, в которой информация о процес-
се обновляется с течением времени. С помощью численного моделирования прoведено
сравнение решения исходной игровой модели и игровой модели с динамическим обнов-
лением.
Ключевые слова: динамичные игры, динамичные кооперативные игры, динамическая
устойчивость, динамическое обновление информации.
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