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In many applications because of the complexity of the mathematical models have to abandon
the use of ordinary differential equations in behalf of considering the evolutionary equations
with partial derivatives. In addition, most commonly the evolutionary problem study on the
finite interval changes of a temporary variable. In practice, where you can solve the problem
for arbitrary finite interval changes to a temporary variable it is important to know the
behavior of the solution where, when the temporary variable strives to infinity. First of all,
this is related to the study of the properties of the stability of the indicated solution and the
possibility of constructing the stabilizing control in case of the instability. Precisely this case
is the object of the study in this work, in which represent the analysis of the stability of the
weak solutions of the evolutionary systems with distributed parameters on the graph with
the unlimited growth of the temporary variable, obtain the conditions of the stabilization
of the weak solutions. By studying the relevant initial-boundary value problem, we to be
beyond the scope of the classical solutions and appeal to the weak solutions of the problem,
reflecting more accurately the physical essence of appearance and processes (i. e. consider
the initial-boundary value problem in weak formulation). In this case, the choice of the class
of weak solutions to be determined one way or the other functional space is at the disposal
of the researchers and to meet the demand, above all, conservation of the existence theorems
and the uniqueness theorems for the arbitrary finite interval changes to a temporary variable.
The fundamental used tool is the representation of a weak solution in the form of a functional
series (method Faedo—Galerkin approximation with the special basis-system functions — the
eigenfunction system) and the compactness of a many of approximate solutions (thanks to
a priori estimates).

Keywords: an evolutionary system of parabolic type, distributed parameters on the graph,
a weak solution, stabilization of a weak solution.

Introduction. Today have a lot of the results by analyze of the behavior of the
solutions of the differential equations (the equations systems) to infinity, but, as we
know, all they oriented of the ordinary differential equations and systems [1, 2]. In many
applications because of the complexity of the mathematical models have abandon to
these differential systems in behalf of considering the evolutionary equations with partial
derivatives. Precisely this case is the subject of study in this work: make attempt to
analyze of the possibility of the stabilization solutions for the evolutionary systems with

© Canxkr-ITerepbyprekuii rocymapcrBennslii yuusepcurer, 2019

https://doi.org/10.21638,/11702/spbul0.2019.203 187



distributed parameters on the graph. By studying the relevant initial-boundary value
problem, we to by beyond the scope a classical solutions and reduce to the weak solutions
of the problem (i. e. consider the initial-boundary value problem in weak formulation).
These solutions describe more exactly the physical essence of phenomena and processes.
In this case, the choice of the class of weak solutions to be determined one way or the other
functional space, to meet the demand, above all, conservation of the existence theorems
and the uniqueness theorems for the arbitrary finite interval changes to a temporary
variable (provided that correspond to the spirit of the study phenomenon or processes).
The fundamental used tool is the representation of a weak solution in the form of a
functional series (method Faedo—Galerkin approximation with the special basis-system
functions — the eigenfunction system) and the compactness of a many of approximate
solutions (thanks to a priori estimates).

Basic concepts and notation. In the paper considers the question of stabilizing
the weak solving of the problem

when t — oo for the evolutionary system of parabolic equations with distributed
parameters on the graph I' (in the applications — on the network) [3—6] (for hyperbolic
systems see the paper [7]) and what role is played by the operator A. In here A is the
positive definite operator with discrete spectrum, acting in a Hilbert space H, f(z,t) and
u(z,t) are the specified and search abstract functions with values in the same space H
(the map t — H), ¢(z) is the element of the space Lo(T"). Weak solution (1) is defined as
the map ¢ — H, satisfying a integral identity [5, 6]. In particular get the conditions, fulfill
under which a weak solution of problem (1) converges for ¢ — oo in norm H to a some
weak solution v € W C H of problem

Av=yg, geH. (2)

We introduce the following concepts and symbols adopted in the works [5, 6]:

— I' is the limited oriented geometric graph with edges -y, parameterized the seg-
ment [0, 1];

—OT" and J(I') are the many of boundary ¢ and internal £ nodes of graph respectively;

— T'p is the join of all the edges of the graph I', does not contain the endpoints;

- Ft = Fo X (O,t) (’}/t =Y X (O,t)), 8Ft =0I' x (0,t> (t S <O,T], T< OO)

All through of the work make use of the classic space of functions:

- L,(T) (p =1,2) is a Banach space of measurable functions on I'y, integrable with
degree of order p (similarly defined the space L,(I'r));

T
~ Ly1 (D) is the space of functions from Ly(T'r), ||ullz, e = [ ([ u?dz)=dt.
0o

As well we make use of the analogues of Sobolev spaces [8, 9]:

— W(T) is the space of functions from Lo (T), with generalized derivative of order 1
also from Lo(T);

~ Wy°(r) is the space of functions from Ly(I'r) with generalized derivative of order 1
for x belonging to space La(I'r) (similarly defined the space W3(T'r));

~ Va(T'y) is the set of all functions u(z,t) € Wy °(I'r) with finite norm

l[ull2,rr = O?&XT ||“('at)HL2(F) + HUI”LQ(FT) ) (3)
these functions are continuous on ¢ in norm space Lo(T').
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We will introduce the state space of parabolic system and the auxiliary space. Consider
the bilinear form

) = [ (a(2) B2 2 4 p@) (@) (e) ) do

with a fixed measurable and limited on I'y functions a(x) b(z) square integrable.
If the function u(z) € W3(T') u £(u,v) ff x)dz = 0 for any v(z) € Wi(T)

(f(x) € La(T) is the fixed function), then (1emma 2 in [10, p. 92]) for any edge v C T

the narrowing of the function a(x)v%

Relabel Q,(T") the many of these functions u(z) satisfying the ratios > a(l)w% =
YER(E)

> a(O)W% in all nodes £ € J(T') (in here R(§) and r(&) is the sets of the edges
yer(€)
accordingly oriented “to node ¢’ and “from node £”) and u(x)|or = 0. The closing of the
set Q,(T) in norm W1(T') relabel W}(a,T).

Let the next Q,(I'r) are the set of functions u(z, t) € Vao(I'r), whose traces are defined

in sections of the domain I'r the plane t = to (to € [0,7]) as a function of class W{(a,T')
and satisfy a ratios

continuously in the endpoints of the edge ~.

ou(l,t)y Ou(0,t)
> a(L), 250 = Y a(0), G0 (4)
YER(E) ver(§)

for all nodes ¢ € J(I'). The closing of the set Q,(I'r) in norm (3) relabel V1%(a,T'7); it is
clear that V(a, ) ¢ Wy°(T'r).

Another the subspace of the space W4 (I'r) is W'(a, '), i. e. is the closing in norm
W3(Tr) the set of differentiable on I'g functions u(x,t) satisfy a ratios (4) for all nodes
¢ € J(I') and boundary condition u(z,t)|sr = 0 for any ¢ € [0,7T] (the derivatives in the
nodes are defined as the one-sided derivative).

Remark 1. The space V1%(a,T'7) describes the states set of parabolic system (1),

W(a,I'r) is the auxiliary space; H = Ly(I'), W = W{(a,T), Ay = —L (a(x) dy(z)) +
b(w)y(x)-

In the space V19 (a, ') considered the parabolic equation

) — 2 ((afw) 2450 + b(a)y(e,t) = f(,0), (5)

represents a system of differential equations with distributed parameters on each edge ~y
of the graph T'; f(z,t) € L21(Tr). The state y(x,t) (z,t € I'r) of the system (5) in the
domain T'7 is determined by a weak solution y(z,t) of the equation (5), satisfying the
initial and boundary conditions

Y li—o=¢(x), z€Tl, yl|rcors=0, (6)

o(x) € La(T). The assumptions about the functions a(z) and b(z) to make mention above.
From y(z,t) € V19(a,I'r) should be noted, that the map y : [0,7] — W{(a,T) C La(T)
is a continuous function, so that the first equality (6) makes sense and is be understood
almost everywhere.
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Definition. A weak solution of the initial-boundary value problem (5), (6) is the
function y(x,t) € VYO(a,T'7), that satisfies an integral identity

[ y(z, t)n(z, t)dx — fy x,t) a"( )dxdt+£t(y n) =
r
7f<p deerffxt n(x,t)dzdt

Ty

for any function n(x,t) € W(a,T'r) and for any t € [0,T).

The necessary approval. Let’s give the necessary approval, the full proof which
are presented in the works [3-6].

In proving solvability the problem (5), (6) in the space V'1:°(a, I'7) make use a special
basis of space W((a,T') — the system of generalized eigenfunctions of boundary-value
problem on the eigenvalues (the spectral problem)

— 4 (ofa) 221 + b(a)u(a) = Nu(a), u(@)lor =0 (7)

in the classroom W1(a,T') [10, p. 106; 11]. This problem consists in finding many
such numbers A (the eigenvalues of the boundary value problem (7)), each of which
corresponds to at least one nontrivial generalized solution u(z) € Wi(a,T') (the generalized
eigenfunctions), satisfies the integral identity

£(u,n) = A(u,m) (8)

for any function n(x) € Wi(a,T') (here and everywhere below through (-, ) designated the
scalar product in Lo(T') or Lo(T'7)).

Install the necessary further the properties of eigenvalues and eigenfunctions of the
generalized spectral problem (7). To do this, we will introduce in the space W(a,I") of
new the scalar product

[u,v] = lf (a(x) dq;(;) dz&w) + (Mo + b(x))u(m)v(:c)) dx = L(u,v) + \o(u,v),

where the number Ao of determined inequality Ao > [ (here the constant § fixed the
condition of the restriction to functions b(x): |b(x)| < ). Then given (2) true the ratio

[, 0] = aul| 1% + o = DI = all 211 + 1221°),
a > 01is the fixed constant. The latter means equivalence of norms ||u||}. .} = \/[u, u] created
by the scalar product [,-] and the norm [ulyr) of space W(a, F) The generalized
eigenfunctions of the spectral problem (7) satisfy the integral identity
[, ] = (Ao + A)(u, n) )

for any function n(z) € Wi(a,T).
In the space W}(a,T') we define the operator B by using identities

[Bu,n] = (u,n) Vn(z) € th)(avr)7
after which the identity (9) is equivalent to
[BU,U] = S‘[Uan] Vn(x) € W(%(aa F)7
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where A = 1 /(Ao+N). It is easy to verify that the operator B is completely continuous, self-
adjoint and positive operator. Whence it follows that his the eigenvalues {5\ }i>1 are real,
positive and situated in the decrease order, taking into account their multiplicity, moreover
X\; — 0 under i — oo. Note that the point A = 0 is not its eigenvalue, because under A=0
from the definition of the operator B it should by u = 0. The generalized eigenfunctions
{ui(x)}is1, relating to the eigenvalues {\; }i>1, are real and mutually orthogonal: [u;, uj] =
0 under ¢ # j. In view of the foregoing, the system of generalized eigenfunctions {u;(x)}i>1
form a basis in space W}(a, T), as well W} (a,T") dense in Lo(T"), then {u;(z)};>1 is the basis
in Lo(T') ({wi(x)}i>1 is the orthonormal basis in Lo(T")). Given the apparent relationship
Ai=—Xo+1/ \; of the eigenvalues \; of the spectral problem (7) and the eigenvalues \; of
the operator B, as well as the match of the generalized eigenfunctions, come to the next
approval.

Theorem 1. Let 0 < a, < a(z) < aF, |b(z)] < B, x € T'o. Then the spectral
problem (7) has counted many the real eigenvalues {\;}i>1 (situated in the ascending
order, taking into account their multiplicity), moreover \; — oo under i — oo (the
eigenvalues \; are positive, except maybe for a finite number of the first). System of the
generalized eigenfunctions {u;(z)}i>1 form a basis in W((a,T) and La(T). The generalized
eigenfunctions orthonormalized in L2(T) and orthogonal in terms of the scalar product [-,-].

Remark 2. If 0 < b(z) < 3, as is usually the case in the applications, then all
eigenvalues of the spectral problem (7) is positive with limit point at infinity. Indeed,
this follows from the integral identities (8), when u = n = u;(x), A = A; and a chain of
equalities

Clug,ug) = Ni(ug, ug) = NlJug[|® = A

for i = 1,2,... (see also [9, p. 98]). The positiveness of the eigenvalues is the determining
factor for establishing the stability condition and the possibility of the stabilizing of
evolutionary systems of parabolic equations with distributed parameters on the graph.

Remark 3. The operator A is the symmetric positive definite operator with discrete
spectrum and operating in the space W(a,I') C Ly(T') with the values in Lo(T"). The
domain of definition is the set €,(T), dense in the space W}(a,T).

A direct consequence arising from remarks 2 and 3 is (see [10, p. 105])

Theorem 2. The problem

Av=—4 (a(@) 42 +b(z)u(z) = g, g € Lo(D), (10)

has a unique weak solution in space Wi(a,T').

Theorem 3. When any f(x) € La1(T'r), w(x) € Lo(T") and for any 0 < T < oo the
initial-boundary value problem (5), (6) has a unique weak solution in the space V*°(a,T'r).

Under proof of the conclusion of theorem 3 make use of the Faedo—Galerkin method
with the basis {u;(z)};>1 (theorem 1). A detailed proof represent in the work [12].

For simplicity, the further statement of change space Lo 1(I'r), replacing this space
on CLy1(I'r) C La1(T'r) (CLg1(T'r) is the space of functions from L1 (I'r), that are
continuous on ¢ in the norm Lo(T')), when this f(z,t) € CLo1(I'r) (the latter is easy
condition in applications). In this case, as shown in the work [12], the weak solution
y(z,t) € V19(a,T'r) of problem (5), (6) for any 0 < T' < oo representable in the form of

the series
oo

y(z,t) =Y (so i fz-(T)eM”)dT> u;(2), (11)
0

i=1
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where o(z) = ij punla); ¢ = [ el [0 = i:: filhui(@); filt) =
IV[]"(:L',t)ui(x)dx, te[0,T].

In many applications, particularly, when studying conditions stabilize, where
investigate the properties of solutions y(z,t) € V1%(a,T'7) of the problem (5), (6) for an
arbitrary finite T', it is important to know y(x,t) when ¢ — +o0. To do this, let’s consider a
simple and unobtrusive enough condition for the existence in the domain I'o, = I'g X [0, c0)
of the free member f(x,t) of the equation (5) [12]. Namely, let any T, just as above,
f(.’l?,t) c CL271(FT>7 with

41
[ 7G5 yryds < 4 (12)

for any ¢ > 0, A is the fixed constant (the ratio (12) indicates that the function f(z,t) is
defined and limited in the domain T'y,).

Remark 4. To improve the properties of the function f(z,t) on a variable ¢ level of
smoothness of weak solutions y(z,t) on t > 0 (see remark 3 in the work [12]).

Indeed, let f(z,t) € CM((0,00); Lo(T)) (in here CM ((0, 00); Lo (T')) is the maps space
f(z,t) from the variable ¢ with values in Lo(T"), fi(z,t) € Lo(T) for any t € (0,00)). The

series
oo

yt<x7t>=z(—xi% SN () - A ff Ai@ﬂdr)ui(x), (13)

i=1

received of differentiation (11) on ¢, converge in metric Lo(T") uniformly along ¢ in any
segment [to,T], 0 < to < T < oo. Indeed, if we take the integral by parts, we get the series
with coefficients

t
—Aiie” N+ fi(0)e N 4 [ fi(r)em M dr,
0

Evaluate these coefficients. Given the inequality of Cauchy, square coeflicient, when
random ¢ at is does not exceed the magnitude of

t 2
307 (hie ) £ 3f2(0)e 2t 4+ 3 (f fﬂr)eW”dT) <

2
< tozﬁpl +3f 0

for any T € (to,00). On the assumptions about the functions Lp( ) and f(z,t) should
that a series with a total member of 3 S02 4+ 3f2(0 2/\ f 7)]?dr converge, and it

means that a series (13) converges uniformly on the metric L o(T ) in any segment [to,T],
0 <ty < T < oo. From this assertion should be the sum y(x,t) of the series (11) belongs
to the space C(M)((0, 00); W(a,T)).

Theorem 4. Let y(x,t) € VY9(a,T'r) is a weak solution of problem (5), (6) for an
arbitrary T > 0 which f(x,t), satisfies the condition (12). Then there is such positive
constant C, that ||y(-,t))| L,y < C when t — 4o0.

P r o o f. Split semiaxis [0, 00) into sections [j — 1,7], j = 1,2,..., and relabel ¢; a
number belonging to [j — 1, j], for which

||y('7tj)||%2(FT): Gr[nax ly(, )HQLQ(FTy J=12,.. (14)
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For arbitrary positive s and ¢ (s < t) from the integral identities of the define of weak
problem solving (5), (6) should the ratio

[ (252 v(.0) dr-+ | ! (a(a) 2202820 4 by, )y, 1)) v =

S

(f (2, 1), y(x, t))dt,

m%ﬂ

if you put n(z,t) = y(z,t) (ipso the remark 4 of theorem 3 the function y(z, t) differentiable
along t, ay(z ) ¢ Ly(I'r)). Of this ratio is obtained the inequality

G DI, w) = sllyC I, w +04f\|y vy ey ds <

t 1/2 1/2
< (frreom,ma)  (JieOlmas)

where the positive constant a depends only on fixed a, and (. (see the condition of
theorem 1 and remark 2).

Further reasoning relies on the idea presented in the monograph by J.-L. Lions [13,
p. 519]: use the inequality (15) for an arbitrary segment [t;,¢;42], j = 1,2, ..., because
when condition (14) makes it possible the equality ¢; = t;41.

We show that for any j = 1,2, ...

1y Ctir2)llory < max{lly(, 45)] ooy, M}, (16)

(15)

where M = (2442 + 84) bz ; X is the inclusive constant the space W(I') in Lo(T).
L Let |ly(-, tje2)ll o) < Ily(-,t5)ll 2o(r), then the proof is complete.
2. Suppose that

lyCs ti+2)ll oy > Ny G i)l Loy (17)
By virtue of (15) for s =t;, t = t;42 true the inequality

t+2

sl J+2)||L2(F) +o f ly (-, )||%,V1(F)d§ <

1/2 1/2 (
< gllyt ||L2 (f 1/, |L2(1‘)d<) (f ly(, le )d§> )

whence, comparing (17) to (18) it should be

4o 1/2 1/2
(f ly(, ||W1(p)d§> (f (s HLQ(F) > . (19)

t+1
Taking into account tjio — ¢; < 3 and the ratio [ Hf(-7§)||%2(r)d§ < A, we obtain
t

18)

tjt2
f If(C )2 7,(ryds < 34 and the evaluation (19) takes a resultant form
tit2
f Iy (s s ryds < 22 (20)
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tjt2
Since tjyo —t; > 1, then exist 7 € [t;,t;42] such that tf ‘|y('7§)||?4/;(r)d< = (tj42 —
J

tj)||y(~77')\|€vé(r) > ”y('vT)H%/%(F)’ it means, from the evaluation (20) it should be

Iy ()l Loy < xy/ 22 (21)

Let right how s = 7, t = ¢, in the ratio (15), then using (20), come to the inequality

1/2
Lyl tial2, ) < SllyC DI, m) + AV (24)7,

or, taking into account (21),

2
2Hy( ]+2)HL2 < % (X,/i—ﬂ) + (3A)1/2 (%)1/2 _ SA 2434 SA

or

ly (-, ]+2)||L2(F) <M= %XQ‘*‘

From here and the assumption (17) it should be (16) and further to any ¢ > 0 the inequality
ly(, )l Loy < max{ m[ax] ly(, )l Loy, M} = C is correctly. Thus, the assertion of the
t€[0,2

theorem is proved, the solution y(x,t) defined in domain I'sc = Ty x [0, 00).

Corollary. In the conditions of theorems 8 and 4 the initial-boundary value problem
(5), (6) is uniquely weakly solvable in space V1:%(a, ).

Remark 5. The conditions of theorem 4 allow another of importance fact. Applying
(15) to (t,t + 1), get the inequality

1/2
o J I s < 307447 (F IOy

t+1
from which should be the existence of a positive constant C*such that [ [y(-,<

< C* for any t > 0.

Stabilization of weak solution. Suppose that 0 < b(xz) < 3 for « € Ty, then the
eigenvalues \;, ¢ > 1, are positive (remark 2). Consider the system (5) in the domain '
The right side f(x,t) of the equation (5) is the distributed effect v(z,t) = f(x,t) on the
evolutionary system (5), (6). The function v(x,t) belong to the class C'")((0, 00); Lo (T'))
and satisfy the conditions of the theorems 1-4.

Relabel y(v; z,t) the weak solution of initial-boundary value problem (5), (6) under
the condition f(z,t) = v(zx,t).

The problem of stabilize a weak solution. Solution y(v;x,t) of the system (5),
(6) with the initial state ¢(z) using control effect v(z,t) (further: the stabilizing control)
is to definition such the conditions on the stabilizing control v(z,t) and the function
0(z) € W{(a,T), that weak solution y(v;x,t) of the initial-boundary value problem (5),
(6) strive to f(x) under ¢ — oo in norm of the space La(T).

Theorem 5. Let the function v(x,t) strive to g(x) € La(T') under t — oo in norm of

)||%V%(F)d§ <

the space L2(T') so that [[v(t) — gllr,r) — 0 under t — oo and [ [[v'(t)||7,pydt < co.

Then weak solution y(v;x,t) of the initial-boundary value problem (5), (6) strive to
the weak solution 6 of the problem (10) under t — oo in norm of the space La(T).
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P r o o f. First of all it should be noted that the weak solution 6(z) of the problem
(10) is represented in the form of

b@) = 3 Luila), gi = (g.w).

Indeed, A6 = Z giui(z) = > (g,u;)u;(x) = g(x). The weak solution y(v;x,t) of problem
i= i=1

(5), (6) can be wrltten as y(v;x,t) = yl(v;z,t) + y!(v; 2, t), where is
y! (v, ) = 30 preMui(a),

y (v, t) = e My (T)drui(w), i) = (u(r), ui),

&Mg
o o

@
Il
—

it means
ly(v;t) = Ol Loy < N1y (03 Loy + [y (v 8) = Ol Loy
Next, we have

ly" (s t)I7, ) = 2 (0 ui)?e ™20 72Xt Z(%uz) =e o), ) — 0,

=1 1=1

when t — oc;

Iy @i t) = 012, 0 = 3 & (<vi<t> —00) =Nty (0) = [ e T )dT)

Beginning with the Cauchy inequality, we get
||yII(U;t) *0”%2([\) g 3 )\—%(Uz(t) —Gi)2+

1
00 00 t
+3> )\1—2672)‘”1/2-2(0) +3> )\—12 <f eAi(tT)Ug(T)dT>
=N : i \o
Hence, when ¢t — oo

(0) =02 < o 5 (ilt) — 0,)2 = Fello(t) — gl12, 0 — 0.

2

00 t

It remains to evaluate the series of Y 5z <f C_Ai(t_T)’Ug(T>dT> . Let t* is a fixed number
i=1""

of interval (0,t) such that f [V (7 HLQ(p)dT < €A}/2, where € is the arbitrarily given

positive number. So as
2 : 2

( J et )dT) _ (gew%( ) + fe** =) (r )dT> <

2

(feA (t=7) )dT>2+2 (!eMtT)v;(T)dT) ,

Becruuk CII6I'Y. Ilpuknagnas maremaruka. Vudopmarnka... 2019. T. 15. B, 2 195



then, using the Cauchy—Schwartz inequality, we have

¢ 2 _ s _
(f 6)\i(tT)U2(T)dT> <e 22 (t— c) 2X;t fU dT " 1—e 2; i (t—<) f 42(T)d’r <
0 0 ‘

J
—2X1 (t—9)
< fu;2(7)d7+ + fvg2(7)d7
0 S

Whence, granting of [[v(t)[|7, ) = 2 v (1), get

i=1

2

(fe_’\ =Tyl (1 )d’l’) <E 72)1“ i va’g YdT + & 3 Z fv’2 Ydr =

=1 0 i=1 ¢

oo
1—1 A

e~ 22 (t <)
—r— fHU ||L2 A7 + 35 fllv DI, mydr <

—2X (t <)
—— fH I, mdr + 5

oo
By virtue of the convergence of integral OfHU/(T>H2L2(F)dT (and thus limited
f [ (7)I7, (rydT when ¢ < o00) and when a sufficiently large ¢ correctly the inequality

72%1“ 2 f V()17 rydT < 5, t> to, and hence the inequality Iy (v;6)=01I7, 1y — O

The theorem is proved.

Conclusion. The approach presented the assertions of theorems 3-5 it is possible
may make use under obtain the conditions of stability (asymptotic stability) of the weak
solutions of initial-boundary value problem (5), (6). This same approach can be applied to
a problem in the direction of increasing dimensionality as the spatial variable z (xz € R™
and the functions describing the state of the studied system [14]). The obtained results are
fundamental in the problems of optimal control and stabilization of differential systems
with delay [15-21].
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Crabuansaimusg cjaaboro pemieHus mapabomiecKoii CUCTeMbI
C pacripejieJieHHbIMU ITapaMeTrpamMu Ha rpade

A. IT. 2Ka6ro', B. B. IIposomopos?, O. P. Banaban®
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Hnsa murupoBauus: Zhabko A. P., Provotorov V. V., Balaban O. R. Stabilization of weak so-
lutions of parabolic systems with distributed parameters on the graph // Bectauk Cankr-Ilerep-
6yprckoro ymusepcurera. Ilpukiagnas maremarmka. Vudopmaruka. Ilpomeccer ymnpasienwus.

2019. T. 15. Bem. 2. C. 187-198. https://doi.org/10.21638/11702/spbul0.2019.203 (In English)

B MHOro4mnc/IeHHBIX IPUJIOKEHUAX U3-38 CJA0KHOCTU MATEMATUYIECKUX MO/JIEJIeHl IIPUXOIUTCS
OTKA3bIBATHCA OT UCIIOJIb30BAHUS OOBIKHOBEHHBIX AU depeHnnaaIbHbIX YPABHEHNH B TOIb3Y
PaCCMOTPEHUST SBOIIOIMOHHBIX YPABHEHHH C YaCTHBIME TPOU3BOAHBIMU. [Ipu 9TOM ware Bce-
IO 3BOJIIOIIMOHHAA 3a/lada U3ydaeTcsd Ha KOHEYHOM HMHTEpBaJie U3MEHEHUs BPEeMEHHOH nepe-
menHoit. Ha mpakTuke, e MOXKHO PENInThb 33249y [JIs TPOU3BOJIHLHOTO KOHEYHOTO HHTEPBa-
Jla U3MEHEHUs BpeMeHHO IlepeMeHHOi, Ba;KHO 3HAaTh IIOBeJeHNe pellleHus, KOr/1a BpeMeHHas
IepeMeHHast CTPEMUTCSI K OECKOHEYHOCTH. DTO CBSI3aHO C MCCJIEJOBAHUEM CBOCTB cTabnin3a-
WY U yCTOWIMBOCTH YKA3aHHOTO pererus. VIMenno Takoii ciryvail sBasieTCs mpeaMeToM U3y-
deHusl B HACTOSINEH paboTe: MPeACTABICH aHAIU3 PEIIeHIs SBOJTIOIUOHHON CUCTEMBI C Pac-
MpeJie/IeHHBIMU TIapaMeTpaMi Ha rpade Ipu HeOTPAaHUYEHHOM BO3PACTAHUU BPEMEHHOM Te-
PEMEHHOM U CBA3aHHBIN ¢ HUM BOIIPOC O CTAOMIN3AINH pelntenns. M3ydasi coOOTBeTCTBYIONLY IO
HAYaAJbHO-KPAEBYIO 33/1a9y, Mbl BBIXOAMM 3a PAMKU KJIACCHYIECKUX DEIIeHMIl 1 obparaeMcs
K ¢J1a0bIM pelleHnsIM 3a1a49u (T. e. IPOBOJAMM aHAIN3 HAYaJlbHO-KPAEeBbIX 33/1a4 B c1a60ii 1o-
CTAHOBKE), OTPAXKAIOMMM GoJiee TOIHO (BU3MIECKYIO CYIHOCTD sIBJIeHU# u mporeccos. Ilpu
9TOM BBIOOD KJIacCa CJIA0BIX PEIIeHUi, OMPEeIeTsaeMOro TeM WU WHBIM (DYHKIIMOHATHHBIM
[IPOCTPAHCTBOM, OOYCJIOBJIEH IVIABHBIM 00Opa30M TpeOGOBAHMEM COXPAHEHHsI TEOPEMBI CYIie-
CTBOBAHHUSA M T€OPEMbl €IMHCTBEHHOCTU Ha IIPOU3BOJIHPHOM KOHEYHOM HMHTEpBaJjle U3MEeHEeHUs
BpPEMEHHOi mepeMeHHOI. B cTaTbe B OCHOBHOM NMPUMEHSIIOTCSI ITPEJICTaB/IEHNE CJIaboro pere-
uus B Buze paja (meron Paemo—lanrepkuna co CrenmuagIbHbIM 6a3UCOM — CHCTEMOM COOCTBEH-
HBIX (DYHKIMI) U CBOMCTBO KOMIAKTHOCTA CEMEHCTBA NMPUO/IMKEHHBIX penenuii (6iaromaps
AIPUOPHBIM OI[EHKAM ).

Karoueswie €ca06a: IBOTIONUOHHAS CUCTEMA TIAPADOIUIECKOrO THUIA, PACIIPE/IEICHHBIE Tapa-
MeTphl Ha rpade, ciaaboe pernieHne, CTabuIn3alus cJIadoro perreHus.
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