
UDC 519.83 Вестник СПбГУ. Прикладная математика. Информатика... 2019. Т. 15. Вып. 1
MSC 91A10, 91A50

Opinion dynamics game in a social network with two influence nodes∗

A.A. Sedakov 1,2,3, M. Zhen 1

1 St. Petersburg State University, 7–9, Universitetskaya nab., St. Petersburg,
199034, Russian Federation

2 School of Mathematics and Statistics, Qingdao University, 308, Ningxia Road, Qingdao,
266071, People’s Republic of China

3 Institute of Applied Mathematics of Shandong, 308, Ningxia Road, Qingdao,
266071, People’s Republic of China

For citation: Sedakov A.A., Zhen M. Opinion dynamics game in a social network with
two influence nodes. Vestnik of Saint Petersburg University. Applied Mathematics. Computer
Science. Control Processes, 2019, vol. 15, iss. 1, pp. 118–125. https://doi.org/10.21638/11702/
spbu10.2019.109

We consider an opinion dynamics game in a social network with two influence nodes. Pursuing
certain goals, the influence nodes affect other members of the network by the selection of
their levels of influence. Considering this model as a 2-person non-cooperative dynamic game
and choosing Nash equilibrium as its solution, we find the equilibrium levels of influence for
both influence nodes at any game stage. We also perform the numerical simulation for both
low and high levels of players’ influence on agents.
Keywords: social network, influence, opinion dynamics, equilibrium.

1. Introduction. In social networks, individuals form and revise their opinions
depending on some influential opinions in the complex interpersonal environment.
DeGroot [1] first introduced the mathematical theory of opinion dynamics by drawing
on the algebra of a Markov chain. In his work, he focused on finding a consensus assuming
that any agent considers his stage opinion to be a linear combination of agents’ opinions
at the previous stage. Friedkin and Johnsen [2, 3] enriched the social influence network
theory by describing a social influence process affected by both endogenous opinions and
exogenous conditions. Some recent results based on the DeGroot and Friedkin—Johnsen
models can be found in [4, 5]. Many works have extended the models of opinion dynamics
with applications in social and political sciences, economics, engineering and computer
sciences [6–8]. In [9], the authors develop a bounded confidence framework for a Friedkin—
Johnsen model presenting a series of simulations. The concept of the stubbornness of
agents regarding their initial opinions was considered in [10], while [11] studied the wisdom
groups under the DeGroot opinion dynamics. The problem of reaching a consensus was
also studied in [12, 13] for a specific structure of a network with three groups of agents
influenced by two nodes.

The models in the aforementioned papers were not examined from game-theoretic per-
spective. Different game-theoretic approaches can be applied to analyze opinion dynamics.
For example, studies [14, 15] develop a controlled DeGroot model of opinion dynamics;
[16] considers a Hegselmann—Krause model in a well-designed potential game. The
present paper considers a model of influence in the opinion formation process as a non-
cooperative discrete-time linear-quadratic game, in which players’ objectives are close to
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those in [17, 18]. In the model, players choosing their influence levels (control variables)
wish to make agents’ opinions in a network close to “desired” opinions minimizing the
associated costs. Models of opinion formation can also use evolutionary game theory
approaches, however they deal with different techniques which are not relevant to the
model presented in this paper.

The structure of the paper is the following. In section 2, we describe an opinion
dynamics model in a social network as a two-person non-cooperative discrete-time linear-
quadratic game. As a solution to this game, we consider a feedback Nash equilibrium which
is presented in section 3 where we also provide a system of recurrence relations to find the
equilibrium. A numerical simulation illustrating the results is presented in section 4. For
simulation, we consider a social network with the agents of three types (agents influenced
by both players, agents influenced only by one player, and agents not influenced by players
directly) and two scenarios of players’ influence (low and high levels of influence on agents).

2. The model. We consider an opinion dynamics discrete-time model in a social
network over a finite set of stages T = {0,1, . . . , T}. The social network is represented
by a pair (V,E) where V is a finite set of nodes and E is a set of edges between the
nodes reflecting their communication structure. We suppose that the set of nodes can be
decomposed as V = A ∪N , A ∩N = ∅. We call a node from A by an agent and a node
from N by an influence node or a player. Therefore, the set A is an agent set and N is
a player set in the network. Further, we suppose that each agent i ∈ A in the network
has its own opinion on a “subject” which can be changed over time. We suppose that
agents’ opinions are numerical values. Denote by xi0 ∈ [0,1] the initial opinion of agent i
whereas xi(t) ∈ [0,1] represents his opinion at stage t = 1, . . . , T . Let x(t) = (xi(t), i ∈ A)′
and x0 = (xi0, i ∈ A)′ denote opinion profiles of agents at stage t and at the initial stage,
respectively.

Players (influence nodes) can influence agents’ opinions. For simplicity, we assume
that there are two influence nodes in the network, i. e. N = {1,2}. Denote by uk(t) ∈ [0,1]
the action of player k ∈ N on network agents (her influence level) selected at stage t =
0, . . . , T − 1. Each agent can evaluate his opinion at any stage aggregating the opinions of
other agents in the network as well as the influence efforts of players. The opinion dynamics
for agent i ∈ A is governed by the equation

xi(t + 1) = ∑
j∈A

wijxj(t) + bi1u1(t) + bi2u2(t), t = 0, . . . , T − 1,

with xi(0) = xi0. Here, wij ∈ [0,1] is a level of trust of agent i ∈ A to the opinion of agent
j ∈ A and bik ∈ [0,1] is a level of trust of agent i ∈ A to the opinion of player k ∈ N . It
is not necessarily that wij = wji. Additionally, we assume that ∑j∈A wij +∑k∈N bik = 1 for
any agent i ∈ A. The opinions of players are considered to remain constant over time and
hence are not included into the model. Let W = {wij}i,j∈A, bk = (bki, i ∈ A)′, k ∈ N . Then
the opinion dynamics of agents in the network is given by

x(t + 1) =Wx(t) + b1u1(t) + b2u2(t), t = 0, . . . , T − 1, x(0) = x0.

We also decompose the set of edges E into two disjoint sets EA and EN , i. e. E = EA∪EN

in which EA describes all connections between agents and EN describes all connections
between pairs “player—agent”. In the following, we identify the set E with matrix W and
vectors b1 and b2: wij > 0 if and only if (j, i) ∈ EA; bik > 0 if and only if (k, i) ∈ EN .

A player k ∈ N selecting an admissible profile of actions in T stages (or a strategy)
uk = (uk(0), . . . , uk(T − 1)) ∈ [0,1]T and taking into account opinion dynamics x(t + 1) =
Wx(t) + b1u1(t) + b2u2(t), aims at minimizing his payoff function, which is given by
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Jk(u1, u2) =
T−1
∑
t=0

⎛
⎝∑j∈A

(xj(t) − x̂k)2 + cku2
k(t)

⎞
⎠
+ ∑

j∈A
(xj(T ) − x̂k)2,

here x̂k ∈ [0,1] is a given desired opinion for player k to which he tries to drive the opinions
of all agents in the network selecting his strategy uk, and ck > 0 measures the efforts of
this player associated with the selection of uk.

The proposed model is a two-person non-cooperative discrete-time linear-quadratic
game. The payoff function of player k ∈ N can be rewritten in a common form for this
class of games:

Jk(u1, u2) =
T−1
∑
t=0

(x(t)′x(t) + cku2
k(t) − 2x̂k1′x(t))+

+ x(T )′x(T ) − 2x̂k1′x(T ) + ∣A∣(T + 1)x̂2
k =

=
T−1
∑
t=0

(1
2
x(t)′Qx(t) + 1

2
Rku

2
k(t) + q′kx(t))+

+ 1
2
x(T )′Qx(T ) + q′kx(T ) + ∣A∣(T + 1)x̂2

k,

where 1 denotes a vector of ones of size ∣A∣; Q = 2I, I is an identity matrix of size ∣A∣;
Rk = 2ck, qk = −2x̂k1 for k ∈ N .

The above model finds its application in describing the relationship between sellers and
consumers in a social network. One can imagine that sellers can promote their products by
advertising them in a certain way. The advertising effect as well as the opinions of other
members in the social network may drive agent’s opinion about the products and thus
change his willingness to have them.

3. Solution. In dynamic games, an information structure plays an important role
as it is used by players to define their strategies. In this paper, we deal with a feedback
information structure and thus a strategy of player k ∈ N is a mapping that depends
on stage t and the current opinion profile x(t), i. e. uk(t) = σk(t, x(t)) ∈ [0,1], where
σk(⋅, ⋅) ∶ {0, . . . , T −1}×[0,1]∣A∣ ↦ [0,1]. As a solution to this game, we consider a feedback
Nash equilibrium which is a pair (σ∗1 , σ∗2) such that

J1(σ∗1 , σ∗2) ⩽ J1(σ1, σ
∗
2) and J2(σ∗1 , σ∗2) ⩽ J2(σ∗1 , σ2)

for all strategies σ1 and σ2.
In [19, 20], one can find results related to feedback Nash equilibrium for a linear-

quadratic game of a general structure. Two theorems below characterize a feedback Nash
equilibrium for the specific linear-quadratic game under consideration.

Theorem 1. For a discrete-time dynamic game, a pair of strategies (σ∗1 , σ∗2) provides
a feedback Nash equilibrium if and only if there exist functions Vk(t, ⋅) ∶ R

∣A∣ ↦ R, t ∈ T ,
k ∈ N , such that the following relations are satisfied:

Vk(t, x) = min
uk(t)

[1
2
x′Qx + 1

2
Rku

2
k(t) + q′kx + Vk(t + 1,Wx + bkuk(t) + b3−kσ∗3−k(t, x))].

Theorem 2. Let matrices Sk(t), vectors pk(t), hk(t), and numbers rk(t), sk(t) satisfy
the following relations :
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pk(t) [Rk + b′kSk(t + 1)bk]+p3−k(t)b′3−kSk(t + 1)bk =W ′Sk(t + 1)bk,
rk(t) [Rk + b′kSk(t + 1)bk] + r3−k(t)b′3−kSk(t + 1)bk = −hk(t + 1)′bk,

Sk(t) = Q +Rkpk(t)pk(t)′ + [W ′ − ∑
j∈N

pj(t)b′j]Sk(t + 1)[W − ∑
j∈N

bjpj(t)′],

hk(t) = −rk(t)Rkpk(t) + qk + [W ′ − ∑
j∈N

pj(t)b′j]Sk(t + 1) ∑
j∈N

bjrj(t) +

+ [W ′ − ∑
j∈N

pj(t)b′j]hk(t + 1),

sk(t) =
1
2
Rkr

2
k(t) +

1
2
∑
j∈N

b′jrj(t) ⋅ Sk(t + 1) ∑
j∈N

bjrj(t) +

+ hk(t + 1)′ ∑
j∈N

bjrj(t) + sk(t + 1),

for t = 0, . . . , T − 1, k ∈ N , with the boundary conditions Sk(T ) = Q, hk(T ) = qk,
sk(T ) = 0. If Rk + b′kSk(t + 1)bk > 0 for k ∈ N and t = 0, . . . , T − 1, then the feedback
Nash equilibrium strategy of player k is given by σ∗k = {σ∗k(t, x(t)) = −pk(t)′x(t) + rk(t)}.
Player k’s equilibrium payoff in the game is

Jk(σ∗1 , σ∗2) = Vk(0, x0) + ∣A∣(T + 1)x̂2
k =

= 1
2
x′0Sk(0)x0+hk(0)′x0 + sk(0) + ∣A∣(T + 1)x̂2

k.

4. Numerical simulation. Now we illustrate theoretical results. We suppose that
the network consists of set A of ten agents, for which each agent is connected only with
three other agents, and set N = {1,2} of two players who influence selected agents in the
network over twelve periods, so T = 12. The network is demonstrated in Fig. 1, in which
players 1 and 2 are marked by “Pl.1” and “Pl.2”, respectively. Consider matrix W and
vectors b1, b2 of the following form:

Figure 1. A network with ten agents and two players

Вестник СПбГУ. Прикладная математика. Информатика... 2019. Т. 15. Вып. 1 121



W =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
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4
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4
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4
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4
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4
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4
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4
1−δ2

4
0

0 0 0 0 0 1
4

0 1
4

1
4

1
4

0 0 1
4

0 1
4

0 0 0 1
4

1
4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

,

b1 = (δ1, δ1, δ1, δ1, δ1,0,0,0,0,0),

b2 = (δ2, δ2,0,0,0, δ2, δ2, δ2,0,0),

for some parameters δ1, δ2 ∈ (0,1). We consider two scenarios. In the first one players have
low influence on agents, i. e. δ1 = δL

1 , δ2 = δL
2 . In the second scenario, players’ influence is

high, i. e. δ1 = δH
1 , δ2 = δH

2 . For simulation, let δL
1 = 0.1, δL

2 = 0.05, δH
1 = 0.4, δH

2 = 0.35.
Further, let c1 = 0.3, c2 = 0.4, the desired opinions for players be x̂1 = 0.5, x̂2 = 0.6 and the
initial agents’ opinions be x0 = (1,0.9, 0.8,0.7,0.6,0.5,0.4,0.3,0.2,0.1).

Table. Feedback Nash equilibrium strategies

t σ∗L1 (t, x
∗L(t)) σ∗L2 (t, x

∗L(t)) σ∗H1 (t, x∗H(t)) σ∗H2 (t, x∗H(t))

0 0.159 0.264 0.305 0.621
1 0.295 0.315 0.373 0.665
2 0.376 0.334 0.391 0.640
3 0.411 0.346 0.389 0.634
4 0.427 0.351 0.387 0.630
5 0.431 0.351 0.386 0.628
6 0.426 0.346 0.386 0.626
7 0.412 0.334 0.386 0.623
8 0.387 0.311 0.387 0.617
9 0.346 0.274 0.389 0.607
10 0.282 0.215 0.391 0.580
11 0.178 0.125 0.380 0.509

Solving the recurrence relations indicated in the statement of theorem 2, we note that
R1+(bL1 )′S1(t)bL1 ∈ [0.700,0.798] and R2+(bL2 )′S2(t)bL2 ∈ [0.825,0.846] for all t = 1, . . . ,12.
Similarly, R1 + (bH1 )′S1(t)bH1 ∈ [2.200,2.417] and R2 + (bH2 )′S2(t)bH2 ∈ [2.025,2.209]
for all t = 1, . . . ,12. Next, we find players’ feedback Nash equilibrium strategies (their
actions at each stage) which are represented for two scenarios (see table for values and
also Figs 2, 3). For both scenarios, agents’ opinions are determined as x∗L(t + 1) =
Wx∗L(t) + ∑k∈N bkσ

∗L
k (t, x∗L(t)) and x∗H(t + 1) = Wx∗H(t) + ∑k∈N bkσ

∗H
k (t, x∗H(t))

for t = 0, . . . , T − 1 with x∗L(0) = x∗H(0) = x0. The equilibrium opinion dynamics is
demonstrated in Figs 4, 5 with the following terminal agents’ opinions:
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x∗L(12) = (0.379,0.379,0.402,0.402,0.403,0.414,0.412,0.413,0.439,0.437),
x∗H(12) = (0.452,0.452,0.427,0.443,0.441,0.516,0.499,0.501,0.517,0.468).

Figure 2. Feedback Nash equilibrium
strategies σ∗L1 (t, x

∗L(t))

and σ∗L2 (t, x
∗L(t))

Figure 3. Feedback Nash equilibrium
strategies σ∗H1 (t, x

∗H(t))

and σ∗H2 (t, x
∗H(t))

Figure 4. Equilibrium opinions x∗Li (t),
i ∈ A, t = 0, . . . ,12

Figure 5. Equilibrium opinions x∗Hi (t),
i ∈ A, t = 0, . . . ,12

Players’ payoffs under the two feedback Nash equilibria are

J1(σ∗L1 , σ∗L2 ) = 1.711, J2(σ∗L1 , σ∗L2 ) = 3.753,

J1(σ∗H1 , σ∗H2 ) = 1.671, J2(σ∗H1 , σ∗H2 ) = 4.387.

5. Conclusion. In the paper, we proposed a two-person discrete-time game in a social
network. Assuming that players behave non-cooperatively under feedback information
structure, we used the concept of feedback Nash equilibrium as a solution to the game. To
perform numerical simulation, we considered a social network with the agents of three
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types: a) agents influenced by both players; b) agents influenced only by one player;
c) agents not influenced by players directly. For two scenarios of players’ influence, we
presented equilibrium strategies and agents’ equilibrium opinions.
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В статье исследована конфликтно-управляемая модель динамики мнений в социаль-
ной сети с двумя центрами влияния. Центры посредством выбора уровней влияния
на остальных участников сети преследуют определенные интересы. При рассмотрении
этой модели как некооперативной игры двух лиц и выборе в качестве ее решения рав-
новесия по Нэшу найдены равновесные уровни влияния для каждого из центров.
Ключевые слова: социальная сеть, влияние, динамика мнений, равновесие.
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