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The game-theoretic model of data transmission in a network of a given topology is presented.
Two players (network nodes) tend to send as many random data packagesas possible to the
final nodes through one common node. Each playerhas a finite capacity buffer for storing
data packages. A system of costs for sending and storing data packages andrewards for the
successful package delivery is introduced. A dynamic conflict-controlled process is modelled
as a stochastic gamewith a finite set of states. The existence of the Nash equilibrium and a
cooperative solution is proved. The cooperative solution is a strategy profile which maximizes
the total expected payoff. The price of anarchy in the network is calculated. The price
comparesthe players’ payoffs in the Nash equilibrium and cooperative solution.

Keywords: data transmission, slotted ALOHA, the price of anarchy, stochastic game.

Introduction. We propose a game-theoretic model of data transmission using slotted
ALOHA scheme [1-3]. There are two players (network nodes) who want to transmit
as many data packages of a unit capacity as possible. They may send the packages
independently or in cooperation and transitions are gone through the common node.
Players are not symmetric which means that data packages can appear at the nodes
with different probabilities that do not vary in time. The time is assumed to be discrete.
Game-theoretic models of data transmission in the networks of different topologies are also
considered in the papers [4, 5]. In particular, in [4] three models of data transmission in
the networks of different topologies were presented in case of complete information about
the presence of packages at the other player. In [5] the authors consider a model of data
transmission based on slotted ALOHA scheme in the absence of complete information
on the presence of packages at the other player. In papers [4, 5] the Nash equilibria and
a cooperative solution are found. Moreover, these two equilibria are compared using the
price of anarchy. In the work [6], the authors provide an analysis of data transmission
in ALOHA scheme networks, namely, the Nash equilibrium in one-shot game with n
symmetric and asymmetric players.

Dynamic process of data transmission in a network of a given topology of slotted
ALOHA scheme is modeled as a stochastic game. Unlike [5], we assume that each node
(or player) has a finite capacity buffer at which the received data packages are stored
before transmission to the destination node. The stochastic model of data transmission is
presented in [7] and there is a relay node in data transmission scheme, which is considered
as a buffer for package keeping. Contrary to this approach we assume that each player
has a buffer to keep randomly appeared packages. When we find the optimal players’
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strategies, the two approaches are used — non-cooperative and cooperative. We find the
Nash equilibrium and cooperative solution according to these approaches.

Model. Consider the data transmission slotted ALOHA-like scheme represented in
Fig. 1. Players (Nodes) 1 and 2 tend to send data packages to the nodes 1 and ra,
respectively. As one can see from the data transmission scheme, the package should go
through the node of a unit capacity which is common for both players. Player i = 1,2
has a buffer of capacity k;, which means that it can possess from 0 to k; data packages
of a unit capacity at each time period. At the beginning of each time period, Players 1
and 2 may receive a data package of a unit capacity with probability v4 € (0,1) and
vy € (0,1) respectively if at the beginning of the period he possesses less than k; packages.
The packages independently appear at nodes.

Figure 1. Data transmission scheme

In each time period, Player 7 = 1,2 can transmit only one package to the destination
node 7;. In case both players simultaneously transit the packages, the packages are back to
the Nodes. For successful package delivery, it is necessary that only one Player transits the
package. If the package is delivered to the destination node, the player receives a payoff of
1 minus the costs of a package transmission which is equal to ¢ € (0,1). The player bears
the costs of d € [0,1) for one time period delay per each unit package, d <« 1.

By the state of the system in time period ¢, we mean the pair (wi(t),ws2(t)), where
w;(t) € {0,1,...,k;} is the number of data packages at Player i’s buffer, i = 1,2. The set
of the system states at any time period ¢ is denoted by Q, |Q| = (k1 + 1) (k2 + 1). Let the
states be w™) | ..., w(™ where m = (ky + 1) (ko +1).

On the basis of the given assumptions we define a stochastic game with a finite state
set and finite action sets.

Stochastic game. The time is assumed to be discrete. The set of states at each time
period is Q = {w = (w1, w2) s w; € [0,k;], i =1,2}. At state w the set of Player i’s actions is
AY that is

4o - {{tw}7 if w; >0, 1)

{w}, if w; =0.

In formula (1) action ¢ means “to transmit” a package, w — “to wait”.

In state w = (wi,ws), here w; = ws = 0, the payoff function of Player i is equal
u¥ (ay,ay) = 0 for any 7 = 1,2, and both actions af and a$ are w. If w = (w1,w2), w1 >0
and wsy =0, then the payoff functions are defined by matrix

((1 —c—d(wy - 1);0))
(—dw1;0) ’
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where Player 1 chooses rows (row 1 correspond to action ¢, row 2 — to action w); Player
2 chooses a column. In case, when w = (w1,ws2), w1 =0 and ws > 0, then the players’ payoff
functions are defined by matrix

((0;1-c-d(wz—-1)) (0;-dws)).

If w=(w1,ws), w1 >0 and wy > 0, then each player has two actions ¢ and w and players’
payoff functions in this state are defined by
(—¢—dwr;—c—dws) (1-c-d(wy —1);-dws)
(-dwi;1-c—d(ws - 1)) (—dwy; —dws) ’

Let assume that the players’ strategies in the whole game are stationary which
seems to be a natural assumption in data transmission modeling. The stationary strategy
depends on the state and does not depend on time and the history of the stage. We
suppose that the player does not know the number of packages at the other player’s
buffer. And we also assume that Player i uses the same strategy in any state (w;,w;),
where w; € {1,...,k; — 1}, and may be the other strategy in state (w;,w;), when w; = k;.
Therefore, Player i’s mixed stationary strategy n; is (pf,p?f), 1 =1,2, where plf €[0,1] is
a probability of choosing action ¢ in any state (w;,w;), j #14, j = 1,2, if w; = k;, w; € [0, k;]
(probability of transmitting a package when the buffer of Player ¢ is full); p?f € [0,1] is
a probability of choosing action ¢ in any state (w;,w;), j # 4, j = 1,2, if w; € [1,k; — 1],
w; € [0,k;] (probability of transmitting a package when the buffer of Player ¢ is not full).
It is supposed that the Player ¢ chooses the same probabilities of transition when the
buffer is not full, w; € [0, k; — 1]. One may consider another class of stationary strategies,
e. g., the probabilities of transition may be different for different number of packages at
the buffer. Obviously, this increases the number of pure strategies and strategy profiles
and the number of calculations for finding the equilibria. The stationary strategy profile is
(n1,m2) = ((p{m?f), (p£7p;f)). Denote by Z; the set of stationary strategies of Player i.
The set of pure stationary strategies of Player i = 1,2 is {(0,0),(0,1),(1,0),(1,1)}.

Now we define transition probabilities 7(w” /w’,n) to state w' € Q from state w’ € Q if
strategy profile 7 is realised. They are 7(w”/w’,n), which is represented in table 1, where
w=(w,w;),1=1,2,7=1,2i+#j, and n=(n,n;) = ((p{7p?f), (p?,p;.’f)). The transition
probabilities for the pairs of states, which are not presented in table 1 are null.

We have defined two-person stochastic game G by a tuple

(97 {A;‘u}izl,Z;weﬂy {Uf}i:1,2;we97 {Ei}i:1,27 {ﬂ(w"/w'7 n)}w”eﬂ,w’eQ,neE] xEq 5)7

where § € (0,1) is a common discount rate.
We consider the discounted expected payoff as a payoff in stochastic game G given by

E;(n) = mo (L= 011(n)) " ui (n). (2)

In formula (2) 7 is an initial probability distribution over the set of states, I is an identity
matrix of size m, II(n) is a mxm matrix of transition probabilities 7(-/-,n), whose (I,n)-th
entry is a probability of transition from state w(® to state w(™, when strategy profile 7 is
realised.
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Table 1. Transition probabilities

R @) T i
vivj w;=w;=0 w'=w=1
l/i(lfljj) W;ZW;ZO wg':l, w;_/:()
(1-v)(1-vy) w;=w;=0 wi =w/ =0

-vi)(1-vj)p wi=0,w: e[,k - w! =0, w! =w’ -
1 17’”‘ 1=0,we[1k; -1 V=00 =Wl -1
v; v+ p -v wi=0,w e[l,kj - w!=0,w/=w
1- J1"f1] 1=0, 0 e[,k -1 V=0, W =)
(171/,‘)(1 p?f)uj w;=0,wie[lkj-1] | w/'=0,w/=wi+1
vi(1l- Vj)p;”f w; =0, wie[l,k;—1] wi=1wl=w; -1
vilp v+ (L-p ) (1= v))] Wi=0,whe[Lk;-1] | wf=1w/=w
yi(1fp;%f)uj wi=0,0he[lk;—1] [wf=1w/ =w+1
1-v)(1-vi)p™ (1 -p? whe[l,k;-1], W' =w! -1,
374 7 7 7 7
wi€[1,kj - 1] wi =w}
(lfz/i)ujp?f(lfp?f) wie[1,k; —1], w”fw; 1,
wi€[l,k;j —1] wi=wi+1
(1- zz,)(lfuj)p"f i wie[1,k; -1], Wi =wi,
+v;(1 - V])pnf(l p”f)+ whe[1,k; -1] wy =W}
+(1 = v (1~ p"f>p"f
L1101 - (1 - )
(=) (1 -p ) (1 -pi )+ Wl e [1,k; - 1], Wl =Wl
+(1-vy)vsp! pnf whe[1,k; -1] W’ =w +1
+ViViD; f(l pnf)
viv;(1- p”f)(l p”f)+ wie[l,k; —1], wi =wl+1,
+l/21/]'p?fp?f wj e [1,k; -1] wi=wi+1
(lfyi)(lfuj)p{ w; =0, wi =k w=0,w) =w; -1
(lfu,‘)[lfp';(lfuj)] w; =0, wi =k wi =0, Wl = w;
I/i(l—Vj)p'; w; =0, wi =k wi=1wl=w;-1
yi[l—p;.‘(l—yj)] w; =0, wi =k wi =1, wl =w]
(1-vi)pl (1-p]) W] = ki, o, = kj W =Wl L W =
(1- pf)(l pf)+1/,pf(1 pf)+ Wi = ki, Wi =wi,
+vj(1 - pf)p +pfpf wgfkj w;’:w;
(1- zz,)pif(l pf) wie[Lki -1, wi=k; | W =w;-1, w/=uw]
(1-v)(1-v)) (1 -p)p! wie[Lki—1], ) =k; | wf=w] o/ =0)-1,
vip; fp +v;(1- pnf)(l p; )+ wie[l,k; 1], wi =wl+1,
+I/1V7(1 p"f)p. wy =kj wi = w]
_ nf T nf ’ T " _
(1 Vz)p pj +Vip; (1- p)+ Wie[lvkz 1]7 W, =Wy,
cA-) (1 —pr (1 - pl)+ W) =k wi =
(L= v)vy (1 =p!)p]
Vi(l—uj)(l—p?f)p;‘ W;E[Lki_l]vw;‘:k.f w;,:w;+17 w;,:w;_l

Payoff function w;(n) defines the payoff for any state w. The values of function
wi(n:,1;), 5,5 =1,2, i # j, are represented in table 2.

We consider two approaches (cooperative and non-cooperative) to find a solution
in game G. We consider the Nash equilibrium as an optimality principle within a non-
cooperative approach. Following a cooperative approach we find the cooperative solution
maximizing the total players’ expected payoff in game G.
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Table 2. Payoff functions

uy (n) us (n) w = (wi,wy)

0 0 Wi = Wj =0
0 p?f(lfc+d)fdw]~ w; =0,

wj € [1,kj - 1]
0 pf(lchrd)fdwj w; =0, wj =k;
p:.Lf(l 7p?f)(1 +d) 7cp:.Lf — dw; p;.lf(lfp;lf)(l +d) 7cp;.lf —dw; | w;e[l,k;—1],

wj € [1,kj - 1]
pf(lfp;.lf)(ler)fcpszdwi p?f(lfp{)(1+d)fcp?ffdwj w; =k,

wj € [1,]{:]' - 1]
pl (1-p)(1+d) - cp! - dw; T-pH(1 +d) - cp! - dw; =k, wy =k
N j s i p; p; cpP; W Wi iy Wj J

Theorem. There exist the Nash equilibrium and cooperative solution in game G.

Proof. Existence of the Nash equilibrium follows from Fink’s results (see [8]) using
the fact that the set of states in game G is finite and the set of actions of any player is
also finite for any state w. The cooperative solution n* is an argument of a well-known
dynamic program problem and it always exists. Moreover, it is a pure stationary strategy
profile.

To estimate the selfishness in the network we calculate the price of anarchy [9] given
by

> Ei(n")

PoA(G) = —— : (3)
nGJIVnEH(lG) zgl ()

where NE(G) is the set of the Nash equilibria in game G. One can notice the PoA is not
defined if the sum in the denominator in (3) is null.

Simulation study. As an example we consider game G with the following parameters:
c = 0.2, d = 0.03. Let Player 1 has a smaller buffer of capacity k; = 2 contrary to
Player 2’s buffer of capacity ko = 4. Both players have the same discount factor 0.99.
The probabilities of package appearance at Players 1 and 2 are v; = 0.6 and v = 0.2,
respectively. There are 15 states in the game. Let the game start with the state (0,0)
when there are no packages at the nodes. The set of pure stationary strategies for each
player is {(0,0),(0,1),(1,0),(1,1)}. Player i’s mixed stationary strategy 7; is (p{7p?f),
1 =1, 2. Transition matrix is of size 15x 15 and it is a function of stationary strategy profile
1 =(n1,n2). To find a cooperative solution we need to calculate the total players’ payoff in
the whole game for each pure stationary strategy profile (there are 16 such profiles) and
find the maximal one. To find the Nash equilibria in stochastic game G we use Lemke—
Howson algorithm [10-12]. For this we calculate the matrices of expected payoffs of Players
1 and 2 by formula (2) for each pure stationary strategy profile. Therefore, we obtain two
payoff matrices A and B for Players 1 and 2, respectively:

-5.8518 -5.8518 -5.8518 -5.8518
47.5200 -2.7638  5.0169 -5.8518
43.7829 34.8935 -12.9591 -20.9107|’
47.5200 38.7075 -7.5023 -20.9767

A:
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-10.6254  15.8400 5.5014 15.8400
-10.6254  15.3433 3.7837 15.8400
-10.6254 -11.8717 -26.0360 -27.5207|"
-10.6254 -12.3383 -21.0293 -28.2416

B:

Then we use these matrices in Lemke—Howson algorithm.

There are four Nash equilibria in bimatrix game with payoff matrices (A, B): a) & =
(0,0.0619,0,0.93819), & = (1,0,0,0) with payoffs 47.5200 and —10.6254 of Players 1 and
2, respectively; b) & = (0,0.9697,0,0.0303), &2 = (0,0.2672,0,0.7328) with payoffs —-5.0266
and 14.5050 of Players 1 and 2, respectively; ¢) & = (0,1,0,0), & = (0,0,0,1) with payoffs
-5.8518 and 15.8400 of Players 1 and 2, respectively; d) & = (1,0,0,0), & = (0,0,0,1)
with payoffs —5.8518 and 15.8400 of Players 1 and 2, respectively. The “worst” Nash
equilibrium, i. e. the Nash equilibrium with the smallest total players’ payoff, is the second
one & = (0,0.9697,0,0.0303), &2 = (0,0.2672,0,0.7328). The equilibria in bimatrix game
corresponds to the Nash equilibria in stochastic game G in stationary strategies (n1,72).
Mixed strategy 71 prescribes to choose pure strategy (0,1) with probability 0.9697 and
(1,1) with probability 0.0303. Mixed strategy ne prescribes to choose pure strategy (0,1)
with probability 0.2672 and (1, 1) with probability 0.7328. Both players randomize between
two strategies (0,1) and (1,1), but Player 1 with much higher probability 0.9697 chooses
strategy (0,1) contrary to Player 2 who chooses strategy (0,1) with probability 0.2672.
The total players’ payoff in the Nash equilibrium is 9.4784.

The cooperative solution is (11,72), where 1y = (1,1), n2 = (0,0), with total players’
payoff 36.8946. In cooperation Player 1 transmits a package in any state regardless his
buffer is full or not, and Player 2 never transmits packages. The price of anarchy in game
G is 3.8925. We do not discuss if the price of anarchy is respectively high. It may be
interpreted taking into account the costs of coordination of players’ strategies.

-\
L
-

Figure 2. Price of anarchy as a function of probabilities v; and vs
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The sums of the players’ payoffs in all Nash equilibria and cooperative solution are
positive. In case of negative total players’ payoff in the “worst” Nash equilibrium, the
explanation of a price of anarchy is questionable. Therefore, in case of negative sum of
players’ payoffs in the Nash equilibrium the modification of the state payoff functions
(e. g., we may add a constant to all state payoffs to make them non-negative) should be
made to apply the price of anarchy.

The graph of the price of anarchy as a function of probabilities vy and v» is presented
on Fig. 2. For simulation we use the following parameters: ¢ =0.2, d = 0.03, k1 =2, ko =4,
0 =0.99, and the game starts with state (0,0). As one can observe from the graph, the
price of anarchy is non-monotonic function of probabilities 11 and v,. Calculations show
the regions of parameters v; and v, for which the PoA is large and the coordination of
players’ strategies may increase the total payoff in more than 100 times in some cases.

Conclusion. We have constructed a model of the process of data transmission
with two participants using the theory of stochastic games. The existence of the Nash
equilibrium and a cooperative solution follows from well-known results based on the game
model. The results are illustrated by the numerical example. The model may be extended
in different directions: (i) the packages may have different priority to be sent; (ii) the
probabilities of package appearance at the nodes may vary on time; (iii) players’ strategies
may be different, e. g., the probability to transmit a package maybe some particular
function of the number of packages at the player’s buffer; (iv) the mechanism of payoff
transfers may be implemented to support realization of the cooperative solution.
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B pabore npejicraBiena TeOpeTHKO-UTIPOBast MOJEIIb [TEPEAYH TAHHBIX B CETH 3aJaHHOMN KOH-
duryparnuu. Leas 1ByX UIPOKOB (BepIINH B CETH) — II€PECJaTh KAK MOXKHO GOJIbIIe HaKe-
TOB JIaHHBIX B KOHEYHbBIE BEPIIUHLI CETH, UCIOJIb3Ys O/IHY 00mLyio BepiinHy. Kaxkabiit urpok
nmeer Oydepbl KOHETHON eMKOCTH JJIsl XpaHeHus: BepinH. 1Ipeoxkena cucrema n3geprex
3a IepeChblIKY U XpaHEHUe IIaKeTOB, a TaKyKe BO3HAIPayKJIEHUH 3a yCHelIHble JIOCTaBKH Ia-
KeToB. JIunamudecknit KOH(DIMKTHO-YIIPABISEMBI IPOIECC MOMIETIUPYETCST CTOXACTHIECKOMN
HUTPOii C KOHEYHBIM MHOXKEeCTBOM cocTosiHMi. Jloka3aHo cymiecTBoBaHMe paBHOBecus 1o Hamry
U BEKTOPa KOOIIEPATUBHBIX CTPATEruil, IpU KOTOPOM JOCTUTAETCs MaKCUMAaJbHBIN cyMMap-
HBIIl BBIUTPBINT UTPOKOB. BhIumciieHa IieHa aHAPXUU B CETH, C IIOMOIIBI0 KOTOPOI CpaBHU-
BaIOTCsI BBINTPBIINY UI'DOKOB B paBHOBecuu 1o Hamry um Habope KOOEpaTuBHBIX CTPATErHil.

Karoueswie caosa: nepenada ganuabix, ALOHA, nena anapxuu, croxacTudeckasi UTPa.
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