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Abstract

The method of matrix elements’ calculations for the Dirac equation in the Coulomb field based
on the virial relations is suggested. A matrix representation of virial relations for the Dirac
equation in the Coulomb field is given. An explicit form of matrices in the cases of direct and
inverse recursion is found. Possible applications of the suggested method are discussed and
the probability of forbidden M1 transitions is calculated as an example.

1. Introduction

We consider a set of states of a relativistic particle in a central
field. It was shown in [1-7] that some of the matrix elements
of these states are connected by recurrent relations. These
relations were named virial because the virial theorem was
used to deduce them. The idea to use some of them in
case of Coulomb field for summation of perturbation series
was introduced in a paper [5] (see also a review [6]) for
the first time. Computations have shown that this method
is more effective than the use of the reduced Coulomb-—
Green functions. Later the virial relations were repeatedly
and successfully used for the analytical and high-precision
numerical calculations of the hyperfine splitting and the bound-
electron g-factor in H-like ions (see, for example, [8—10] and
references therein).

However, although these relations have been well known
for a rather long time, a number of important and fundamental
issues are still unsolved. In particular a so-called problem
of negative powers and the problem of the condition of
applicability should be mentioned.

The aim of this paper is to elaborate and simplify the
mathematical apparatus of virial relations for Dirac equations
in the Coulomb field that will provide solutions for the
problems mentioned above. Besides, this work allows us to
obtain simple formulae for the calculation of matrix elements
for suitable powers s.

In recent papers [11, 12] the diagonal matrix elements
(Or®)y, where O = {1, B,1anf} are the standard Dirac

0953-4075/11/045002+06$33.00

matrix operators and angular brackets denote the quantum
mechanical average for the relativistic Coulomb problem, have
been evaluated as sums of three specialized hypergeometric
functions 3 F>(1). In these works it was also shown that the set
of matrix elements (Or®) is connected with the set (Or*~!)
for all suitable powers s by using 3 x 3 matrices. In this paper
we consider the general case of non-diagonal matrix elements
and show that virial relations among them can be written down
in terms of 4 x 4 matrices.

The paper consists of three parts. The first one is
of introductory character and contains the derivation and
comparison of the known results. In the second section, we
set the mathematical structure of virial relations and explicit
expressions of matrix elements for direct and inverse recursion.
In the third section, by calculating the probability of forbidden
M1 transitions in hydrogen atom and light H-like ions, it is
shown how to apply the mathematical apparatus developed
here to particular problems. In this paper relativistic units
(h = ¢ = 1) are used, and the terminology and notation are
taken from [5] and [6].

2. Virial relations for the Dirac equation in a central
field

For the case of a central field V(r), the stationary Dirac
equation has the form

(m1a- V+Bm+V(r) y(r) = Ey(r), ey

© 2011 IOP Publishing Ltd  Printed in the UK & the USA
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The wavefunction is conveniently represented by
Bnic (1) 2, (M)

r) = , 2

v (lf(r)nKQ—Km (n) @

where Q4,,,(n) is the spinor spherical harmonics, n =
n(, ¢) =r/r, and k = (—1)7**/2(j + 1/2) is the quantum
number determined by the angular momentum and the parity
of state.  Substitute (2) into (1) and define G, (r) =
r8ni (1), Fue(r) = rf, (r). After separation of variables, one
can obtain the following system for radial functions:

dG «
—+-G—(E+m—-V)F =0, 3)
dr r
dF «
— ——F+(E—-m—-V)G =0, @
dr r

Rewrite (3)—(4) in a compact form. Then the radial functions
G (r) and F,, (r) should be collected into the column

G (r) )

P (1) = ( Fuc (1)

and according to [13] the following operator can be introduced:
d K
H = —i0,—+o0,—+om+V,
dr r

where o, 0, and o are the Pauli matrices. Hence,

H P (r) = Epepc ().

Obviously the functions ¢, (r) satisfy the following boundary

conditions:
S rmo =0, ()| —0. 5)

Introduce the symbols for matrix elements:

o0
Xo(s) = (i’ |r* nic) = / (Fup Foi + G Gut) °dr, (6)
0

Xi(s) = (0 josr* nic) = / (Fui G + G Fut) 14,
0
™

o0
Xa(s) = (' j10y Inic) = / (Gt Fo — Fu G 1dr,
0
®)

oo
X3(S) = <n/K/|UZrS|nK> = / (Gn/k/Gnk - Fn/k/Fnk) rsdr.
0
)

It was shown in [5] that matrix elements commutators and
anticommutators of the operator H, with r*, o.r%, 10,r* and
o,r® could be designed via the following system of equations:

(EII/K/

= —s(n//c’llcryr“1 Inic) + (k' — k) (n'«’|oxr® " nk),

- EnK)<nK/|rX|nK)

(10)

(En’i(/ -

=s'k'|r' Y nk) — (" + k) (k' |or* " nk)

E,)(n'«'|ioyrf|nk)

D

+2m(n'k’|orf|nk),

(EI’I/K/ + EnK)<n/K/|UZrS |l’lK>
= s(n'i’|owr " nk) — (k" — k) (' 1oy nke)

+2m(n'k'|rf|nic) + 2(n'K’|o, Vi’ |nk),

12)

(En’/c/ + EnK)(’/l/K/'o'er |l’lK>
= —s(n'k'|o.r "V nk) + (" + 1) 0k’ | )
(13)

Equations (10)—(13) are named the virial relations. It should be
mentioned that there exists a simpler way to obtain them. The
equations for matrix elements (6)—(9) should be integrated by
parts; then expressions (3)—(4) should be used with boundary
conditions (5). Therefore calling equations (10)—(13) virial is
no more than a tradition. Attention should also be drawn to the
fact that equations (10) and (11) do not contain the potential
V(r).

+2(n'«'|o, Vri|nk).

3. Mathematical structure of virial relations in the
Coulomb field

Let us consider a charged particle moving in the Coulomb
field V. = —aZ/r. In this case equations (10)—(13) are two-
term recurrence relations. We shall explicitly present their
structure.

Let us suppose that s is a positive integer number. We
put the matrix element containing 7* on the left-hand side of
every equation, and on the right-hand side we put a linear
combination of matrix elements containing r*~!. Equations
(10) and (13) can be simply transformed into

(k" =)

Xo(s) = le(S Y
- mxz(s - D, (14)
Xi) = —9) w1y 29D v
(Ewie + Ene) (Ewie + Ene)
- mx3(s — ). (15)

Let us substitute the expression for the matrix element X (s)
from (15) into equation (11):

¥ _ s 2m(k’" + k) Xols — 1
2(S) - (En/,(/ _ EnK) + (El%,’(, _ E'%K) O(S )
dm(aZ)
- Xis = 1)

(Erzt’fc’ - E%K)
3 K'+«) N 2ms
(En’/c’ - Enk) (E’%rl(/ - Erzuc)

:| X3(S - 1)

(16)
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Then we substitute the expression for the matrix element X (s)
from (14) into equation (12) and obtain

s 2m(k’ — k)
(En’/(’ + Enl() (E,%/K/ - E2 )

nK

X3(S)=|: :|X1(S_1)

[ k' =)
— +
(En’/c’ + EnK)
_ 2(aZ)
(En’lc’ + Enl()

Obviously equations (14)—(17) can now be represented in
matrix form:

2ms
(Ei/l(/ - Erzuc)

] Xo(s — 1)

X3(s — D). 17)

X(s) = A(s)X(s — 1). (18)

In formulae (18) we used the following designation for the
vector X(s):

Xo(s) (n'|r" |nk)
_ 1 Xas (n'«'|oyr*|nk)
X(s) = X5 (s) (n'«’|toyr' |nk) (19)
X3(s) (n'ic’|o.r* nk)
Elements of the matrix A(s) are respectively equal to
(k' — k)
a1 =0, ap=———-:+—,
(En’k’ - Enk)
s
a3 i=————7—, ay:=0,
(En’k’ - Enk)
k' +k) 2(Za)
ap) = ) day = — )
(En’k’ + Enk) (En’k’ + Enk)
S
ap =0, ay:=———"——,
(En’k’ + Enk)
s N 2m(k' + k) dm(Za)
as) = ,az3 = ————————
(Eww — En) (E%,, — E2) (Eyw — En)
0 (k' +k) 2ms
az =0, a4z = — - )
(En’k’ - Enk) (E,%/k/ — Er%k)
0 s 2m (k' — k)
as =V, ag = s
(En’k’ + Enk) (E’Zl,k, — Er2lk)
(k' —k) 2ms
agp = — - .
(En/k’ + Enk) (Egrk/ - Erzzk)
2(Za)
Ay \—m ————————.
(En’k/ + Enk)

Note that in the matrix A(s) there are five zero and two equal
non-zero elements: ay;; = a4 = a3 = azz3 = ag = 0; axp =
ass # 0. Repeatedly using formula (18) one can obtain the
following expression:

j=s
X(s) =[[AG) - X0, (20)
j=I1
where
0
(n'ic’ o, )
X(0) = 21

(n'k'|1oy|nK)
(n'k’|oz|nk)
The upper component of the vector X(0) turns to zero due to
the condition of orthogonality. A natural requirement which

limits the applicability of the method consists of the condition
of non-zero value of matrix determinant:

A = det A(s)
ST =27+ k2 = 2(Za)?)s? + (K2 — k?)?

= £ 0.
(B2 — E%)

(22)

Now we suppose that s is a positive real, not necessarily
an integer, number. It should be noted that if condition
(22) is satisfied, then formula (18) is true. However in this
case, repeated use of formula (18) cannot give a result in the
form (20). If condition (22) is not satisfied, then we have
degeneration. Then some ratios should be excluded and the
relation would be realized by the matrices of smaller size.
Such a situation appears, particularly, when one considers
virial relations for diagonal matrix elements [6, 11, 12]. Here
one has 3 x 3 matrices because X,(s) = 0, and in special cases
they reduce to 2 x 2 matrices.

With virial relations (10)—(13) one connects the problem
of negative powers. Let us explain the content of the problem.
Let us take « such that integrals (6)—(9) exist. Then while
s < 0, equations (10)—(13) would not be recursive. In other
words, they could not be directly used for calculating matrix
elements. However if one takes into account the ratio (18),
then for solving the problem of negative powers one should
know the inverse matrix, that is, the existence condition (22)

is satisfied:
X(s — 1) = A" ($)X(s) = B(s)X(s). (23)

Let us write out explicitly the elements of the inverse matrix
B(s):

2
by = K(k’ + k) (Epw — En) (K" — k) +2ms),

1
by = Z(—2ms3 — (K + k) (Eyr — Ego)s® +2m((K' — k)2

4(Za)*)s + (K + k) (k' — k) (Eyw + En)),
bz = %s(Enfkf — Eu)(s* — (K — k) +4(Za)?),

2
by = _Z(En’k’ — Ex) (K +k)s(Za),
1
bot = < (K +k)* — sH((K' = k) (Eyp — En) +2ms),
2
by = _Zs((En’k’ — Eu)s +2m(k' +k)),
2 /
by := Z(k +k)(Eyp — Ex)(Za),
1 2 / 2
by = XS(En’k’ + Ep)(s” — (K +k)),

1 3 / 2 ’ 2
b3 = —Z((E,,/k/ — E s’ +2m((k" — k)s® — (k' +k)
—4(Za))(Epp — En)s — 2m(K' — k) ((K' +k)?)),
by = %(k/ — k) (Ewp + Enp)s +2m(K' +k)),

2,
b = (K > — k) (Ewr — En)(Za),

K=k
A

(Ewi + En) (s> — (K +K)%),
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2
by = Z((k' — k) (Eyp — En) +2ms)s(Za),

by = —%(s(En/kf + Ep) +2mk + k) (s* — (k' — k)P,

(k' +k) /
by = A (Epp — Enk)(s2 — (k' — k)z)v
2 2
b44 = —Z(En/k’ + Enk)s (ZO[),

Note that the matrix B(s) has a more complicated structure
than the matrix A(s). In a general case all matrix elements
are not equal to zero. However, in a particular case k = k/,
three elements turn to zero: b3y = bz = by = 0, but there
are no other equal elements. Let us stress once more that
formulae (18) and (23) are valid not only for an integer but
also for any real values of s, provided that condition (22)
is satisfied. This condition may be violated even by non-
diagonal matrix elements, in which case we have degeneracy.
In certain circumstances it is necessary to obtain some relations
between the matrix elements with different powers in order to
derive the asymptotic formulae. In the next section we take
the calculation probabilities of forbidden M1 transitions in
hydrogen atom and light hydrogen-like ions as an example
and show how to do that by virtue of formula (18).

4. Probabilities of forbidden magnetic-dipole
transitions in the hydrogen atom and light
hydrogen-like ions

The magnetic-dipole transitions between the states nj/ and
n’ jl in the hydrogen atom and light hydrogen-like ions belong
to the most strongly forbidden transitions in the optical range.
Interest in these transitions was aroused in connection with
the theoretical and experimental studies of the parity-violation
effects in atoms. The magnitude of the parity-violation
effect in these transitions is proportional to the ratio between
the probability amplitudes for the electric-dipole transition
allowed due to parity violation and the forbidden magnetic-
dipole transition. If the latter transition is strongly forbidden,
the effect becomes more pronounced [14]. The general
expression for the degree of parity violation in a process
occurring via an arbitrary ns; , —n’s; s, forbidden M1 transition
is [15]

(E1)
(n'p1y2|Hw|n's1)2)

nsi2; n'pij2
P s, =2+
S1/25 'S1,2 _ (M1)
|En’p1/2 E"/SW' Wnsuz: n'si
(E1)
(np1/2|HW|nSl/2> W"P]/z; n'si

+2-

(24)

|Enp]/2 - eriul: n'si
Here, Hy is the effective Hamiltonian of a weak interaction
and n is the principal quantum number. An analogous
expression for the degree of parity violation in a process

occurring via an arbitrary np; »—n'pi » forbidden M1 transition

EnS|/z |

. . . . (M1) .

is obtained from expression (24) by replacing W,¢ -,  in
. . . (M1) .

the denominator under the radical sign by Wnpl/z; Wi It is

methodically expedient to obtain general formulae at first for
all the probabilities of any forbidden M1 transition, and then
those which one needed.

In the nonrelativistic limit «Z < 1, the probability of
magnetic-dipole transitions between the njl and n’j'l’ levels
of single-electron atoms is given by expression [16]:

4 o 2
b

W [n'J' g

ilinil = 3105 1+ 1)

(25)

where (n'j'l'||u]lnjl) is the reduced matrix element of
the magnetic dipole operator p of the electron and w is
the transition frequency. Expression (25) is, however,
inconvenient to calculate the M1 transition probabilities in
our case when n # n’. The reason is that the operator
only depends on the spin variables, and therefore the matrix
element in (25) should vanish because the radial wavefunctions
R,y and R,; are orthogonal. To obtain a nonzero value, it is
necessary to take into account the relativistic corrections to
the wavefunctions. However, it is also necessary to consider
the corrections to the operator itself. Ignoring the latter led
to an error in the first calculation of the 1s;/,—2s;, transition
probability in the hydrogen atom carried out by Breit and Teller
[17]. This error was eliminated subsequently by Drake [18].

Therefore, we will use another, completely relativistic,
expression for the probability of the emission of the magnetic
dipole photon [19], i.e.

1
Wit =~ [t min . @6)

n'jl; njl = 7T(2J + 1)

Here, (n'jl|[v™'||njl) is a reduced matrix element of
magnetic-dipole emission operator:

(' U™ |njl)
[aw [
= E /O‘ [F,,/k(r)G,,k(r) + Gn’k(r)Fnk(r)]gl(wr) dr‘
(27)

The upper and lower components of a Dirac bispinor in the
Coulomb field is represented as follows [19]:

G| @' [ (me % EgoTn, +2y + 1]
Fu() |  TQ@y+1)

4Zam? (Zame

5 —K) n,!

A

z
X (2Ar)Y e {(% - K) F(=n,,2y +1;24r)

:Fn,F(l—n,,2y+l;2Ar)}, (28)

where the upper and lower signs refer to G and F, respectively;

A= VK2 = (Za)?, n, is the radial
quantum number, m, is the electron mass; Z is the nuclear
charge; and F is a confluent hypergeometric function.

In the nonrelativistic limit, i.e. (¢ Z) — 0, the argument of
function g; (wr) becomes small: @ ~ m, («Z)?*, the average

2
mg_Enka Yy =

value of the radius vector |F| ~ ; consequently

m, (aZ)’
wr ~ (aZ). To solve our problem, it suffices to retain two

terms in the expansion of this function:

4 2 5 s
g1(wr) = —or — E(a)r) + O (wr)’. (29)

3
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The second term in this formula gives Drake’s correction for
the reduced matrix element. Substituting (29) into (27), we
obtain

aw [ 4m X, (1) 27 3X,3)
— | o - —w .
3 ! 157 !

(' jHR M Inl) = /5
T
(30)
All integrals through which X;(1) and X;(3) are expressed
are of one type (see a mathematical appendix in [20]):

o0
T, ) =/ e WM TN (o, y, 202) F (o, y, 20 2) dz
0

with s = 1 and s = 3. In principle, to calculate them, we can
use the recurrence formula of Gordon [21] (see also [20]):

J;+"0(a, o) = {ly( =) = 2he +20/a" — 2)/s]

A2 — 22
)y @) +s(y =145 = 2a) 17 (@ o)

+20/'s T30, o + 1)} (31)

This formula allows us to reduce any integral of the
form J;’O(a, a’) to the integral J;,)’O(oz, a’), which is
expressed through the Gauss hypergeometric function
F(a,a,y,—4A) /(A —1))*).  However, this method of
calculation gives a cumbersome expression for the reduced
matrix element (30) which will contain eight hypergeometric
functions. It is difficult to simplify.

On the other hand, if we use formulas (20) and (21) for
calculating X; (1) and X;(3):

Xi(D) = (A(X(0);, Xi(3) =(AB)AQ)ADX(0));,

then the reduced matrix element in (30) is represented as a
linear combination of four hypergeometric functions. This
expression can be simplified by using the adjacency relations
[22]:

B—-—a)F(a,B,v;2)+aF(a+1,B,y;2)

—BF(a,B+1,y;2) =0, (32)

B—a)1=2)F(a, B, y;20) —(y —a)F(a — 1,8,y 2)

+(y—BF(B—-1y;2)=0. (33)
If we substitute the result in (26) and pass to the limit (¢ Z) —
0, we obtain the general expressions for the probabilities of the
forbidden M1 transition in the lowest order in («Z). These
expressions have different forms for different values of the
total angular momentum.

1. For j =1+ 1/2 (referred to as spin up, which is indicated
by the corresponding arrow),

8 16/ (41 + 5)2(nn" Y@= (n + n')?

(M1) 20+1 ~21+1
=
T 205 T (I +1)(n —n)¥
n—n' 2n+2n'—1
><< /> Fz(—n+l+1,—n’+l+1,
n—n

4nn’ 10
20+ 2; —m mea (aZ)"”, (34)

where C ﬁjl and C ,%/1:11 are the binomial coefficients.

2. For j =1 — 1/2 (spin down),

el 16/ (41 — D?(mn")#=9 (n + n')?

WJEMI) _ ic21+lc

- 225 n+l “~n'+l l(n _ n/)41
n—n' 2n+2n’—1
x< /) F2<—n+l+l,—n/+l+1,
n—n
4nn’ 10
20 + 2, —m meo ((XZ) . (35)

For I = 0, the following expression for the probability
of M1 transitions between all possible ns;/, levels can be
obtained from formula (34):

W(Ml) 8 (n + n’)2 <n o n/)2n+2n’1

nst/2n's1/2 = g s n—n

4nn'

——> mea (@Z)'0. (36)

xF2(1=n,1=n2;
(n —n')?

For n’ = 2, expression (36) gives the known Drake formula
[18]

(M1)

)10
Is1/2; 2812 :

= nga (aZ
972
It should be noted that expression (36) can also be obtained by
using the effective potential method, described in [14] and [23].
All the formulas necessary to investigate the parity-violation
effects in hydrogen and light H-like ions can be derived
from (34) and (35) by substitution of respective quantum
numbers. Such alist was first presented in [24] by complicated

calculations involving Gordon’s formula.

5. Conclusion

In this paper we have shown that the set of non-diagonal
elements X(s) is related to the set X(s — 1) by 4 x 4 matrices
according to formulae (18) and (23). Condition (22) of
applicability was also established for this representation. On
one hand, formulae (18) and (23) may be useful for the
derivation of diverse asymptotic relations when one needs
to connect matrix elements with different powers. We have
illustrated our method with the calculation of the probability
of forbidden M1 transitions. On the other hand, in the
calculations of higher-order corrections to various physical
quantities, one needs to evaluate the sums

EZED 'y ('’ | RS (k)
Enk - En’K’

; (37

li, s, k', nK) =

n'

where Ry = r*, R} = o,r*, R} = 10yr", R} = o,r'. In
papers [5, 6] the virial relations were employed to evaluate
sums (37) in some important special cases. In principle, it
would be interesting to have simple and compact expressions
for all such sums with arbitrary powers s. Hopefully, the matrix
representations (18) and (23) might be useful for this. It
would also be very interesting to make an attempt to write the
non-diagonal matrix elements as sums of special generalized
hypergeometric functions ,F, with the integers p and g as
in the works of Suslov [11, 12]. It is important for a better
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understanding of the structure of relativistic Coulomb
integrals.

The author believes that the mathematical results obtained
in this paper are not only natural and elegant but also will be
useful in the current theory of hydrogen-like heavy ions and
other exotic relativistic Coulomb systems.
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