Санкт-Петербургский государственный университет

МАРТЫНОВА Арина Алексеевна

Выпускная квалификационная работа

РЕДКОМЕТАЛЬНАЯ МИНЕРАЛИЗАЦИЯ РУД АНОМАЛЬНОЙ ЗОНЫ КОВДОРСКОГО МЕСТОРОЖДЕНИЯ

Основная образовательная программа бакалавриата «Геология»

Научный руководитель: к. г.-м. н, доцент ПЕТРОВ Сергей Викторович Рецензент: ООО «ЛИМС», начальник минералого-технологической лаборатории. КОНДРАТЮК Владимир Александрович.

Санкт-Петербург 2018

ОГЛАВЛЕНИЕ

УСЛОВНЫЕ СОКРАЩЕНИЯ	3
ВВЕДЕНИЕ В ВКР	4
ФИЗИКО ГЕОГРАФИЧЕСКОЕ ОПИСАНИЕ КОВДОРСКОГО ГОРНОПРОМЫШЛЕННОГО РАЙОНА	7
ГЕОЛОГИЧЕСКОЕ СТРОЕНИЕ КОВДОРСКОГО МАССИВА	10
МЕСТОРОЖДЕНИЯ ПОЛЕЗНЫХ ИСКОПАЕМЫХ КОВДОРСКОГО МАССИВА	18
ФАКТИЧЕСКИЙ МАТЕРИАЛ И МЕТОДИКА РАБОТЫ	23
ГЛАВА 1	24
ПЕТРОГРАФИЧЕСКОЕ ОПИСАНИЕ ПОРОД	24
ГЛАВА 2	30
МИНЕРАЛОГИЯ	30
СПИСОК ЛИТЕРАТУРЫ	44

УСЛОВНЫЕ СОКРАЩЕНИЯ

	3 CHODIIDIE	COM	VIII TII KINI
БПП-	Беломорский подвижный пояс	ОК	Объединенный концентрат
A3	Аномальная зона	SLC	Силикаты
AK	Апатит-карбонатные руды	SUL	Сульфиды
АШР	Апатит-штаффелитовые руды	BSE	Backscattered electrons
			(детекторы
$K\kappa_1$	Кальцитовые карбонатиты		отраженных электронов)
МТП	Минералого-технологическая проба	мф	Магнитная фракция
Mk	Карбонатный модуль	нмф	Немагнитна фракция
КП	Карбонатный продукт	ед. зн.	Единичные знаки
Кт	Концентрат	Pl	Плагиоклаз
ПП	Промышленный продукт	Tr	Тремолит
ОΠ	Обогащенный продукт	Px	Пироксен
ΤЛ	Тяжелая фракция	Hbl	Роговая обманка
ЛФ	Легкая фракция	Can	Канкринит
XB	Хвосты	Ne	Нефелин
Phl	Флогопит	Aeg	Эгирин
Ca	Кальцит	Aug	Авгит
Ap	Апатит	Fo	Форстерит
Dp	Диопсид	Mt	Магнетит
Ab	Альбит	Cl	Хлорит
Pyr	Пирротин	Bad	Бадделеит
Bt	Биотит	Gr	Гранат
Ser	Серецит	Ac	Актинолит
Amb	Амфибол	Art	Арфведсонит
Q	Кварц	Tphl	Тетраферрифлогопит
Fsp	Калиево-натриевый полевой	Pc	Пирохлор
	шпат		

ВВЕДЕНИЕ В ВКР

Актуальность темы. Ковдорский щелочно-ультраосновной массив один из наиболее ярких представителей в семействе аналогичных комплексов Карело-Кольского региона. На месторождении Ковдор выделяется несколько природных типов руд, среди которых особое место занимают редкометальные руды с повышенной радиоактивностью. Эти руды сосредоточены в центре месторождения, в пределах так называемой «Аномальной зоны» (АЗ).

Руды АЗ характеризуются повышенной радиоактивностью, что мешает получению из них концентратов. Поэтому руды АЗ выделяются при добыче путем сепарации по естественному радиоактивному фону и складируются в специальный отвал.

Использование руд АЗ:

- 1. Современное: подшихтовка к рядовой руде в очень небольших пропорциях;
- 2. Перспективное: разработка отдельной цепочки получения товарной продукции из этой руды;

Радиоактивность аномальных руд вызывается присутствием уранпирохлора. Руды со значением гамма - активности выше 40 мкр/ч относятся к этому типу. С другой стороны, руды содержат повышенные концентрации бадделеита.

Научная новизна и практическая значимость работы. Изучение вещественного состава руд АЗ и их технологических свойств с целью понимания обогатимости и комплексного практического исследования проводилось впервые на данном месторождении. Результаты исследований могут быть использованы при составлении перспектив использования руд данной зоны.

Цель работы. Определить закономерности распределения редкометальной минерализации в поздних карбонатитах АЗ Ковдорского железорудного месторождения.

Задачи.

- 1. Изучение минерального состава и структурно-текстурных особенностей пород и руд АЗ;
 - 2. Изучение химического состава;
- 3. Детальная характеристика редкометальной минерализации, с определением особенностей состава минералов;
- 4. Исследование возможности разделения тяжелой фракции редкометальных минералов с получением товарного продукта;

Фактический материал И методы исследования. Результаты исследований основаны на: а) изучении 5 прозрачно полированных шлифов, 9 аншлифов и 7 шайб с тяжелой немагнитной фракцией (ресурсный центр Санкт-Петербургского государственного университета, Hitachi диспетчер - Имя диспетчера?); б) результатах химических анализов 6 проб (ресурсный центр Санкт-Петербургского государственного университета, рентгенофлуоресцентный Любовь); анализ, диспетчер Панова L) микрозондовых рентгеноспектральных анализах минералов (ресурсный центр Санкт-Петербургского государственного университета, Hitachi S-3400N, диспетчер - Имя диспетчера?).

Защищаемые положения.

Благодарности. Автор выражает благодарность научному руководителю – доценту кафедры геологии месторождений полезных ископаемых, кандидату геолого-минералогических наук Сергею Викторовичу Петрову и сотрудникам кафедры геологии месторождений полезных ископаемых за ценную помощь и поддержку, которые позволили подготовить данную работу. А также старшему преподавателю кафедры петрографии Малашину М.В. за всевозможные консультации и сотрудникам ресурсного центра Санкт-Петербургского государственного университета. Отдельную благодарность, автор оказывает сотрудникам геологического отдела АО «Ковдорский ГОК»: Сохареву В.А., Бабурову К.В., Большакову И.В., Малыгиной С.Е., Кузнецовой Л. Л., Лебедева

М.И., Сапожниковой Т. Г., Бочаров А.Н, Завьялов А.А., Белецкой В.А., Белявской М.Н., Большаковой Я.Э., Колеснику М.Д., за помощь в сборе и подготовке материала для впускной квалификационной работы и за практическое ознакомление с данным месторождением. Отдельное спасибо Журавлевой О.В. за активное предоставление всевозможной необходимой информации по об АО «Ковдорский ГОК».

ФИЗИКО ГЕОГРАФИЧЕСКОЕ ОПИСАНИЕ КОВДОРСКОГО ГОРНОПРОМЫШЛЕННОГО РАЙОНА

Ковдорский горнопромышленный район находится в юго-западной, таёжной части Кольского полуострова (67°33′ северной широты, 30°31′ восточной долготы), в бассейне реки Ковдоры. Рельеф Ковдорского района (Рис. 1.) низкогорный, холмистый. Болотистые низины, долины рек и озёр сменяются пологими холмами высотой 200—450 м, относительные превышения которых достигают 250 м. Основу густой речной сети, принадлежащей бассейну Белого моря, составляют река Ёна с впадающими в неё реками Ковдорой и Лейпи. Ширина Ёны на плесах достигает 120 м, глубина — 3 м, скорость течения на порогах и перекатах — 4—6 м/с. Дно и берега рек — песчаные с валунами и галькой.

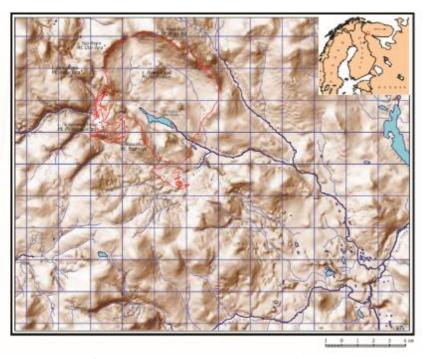
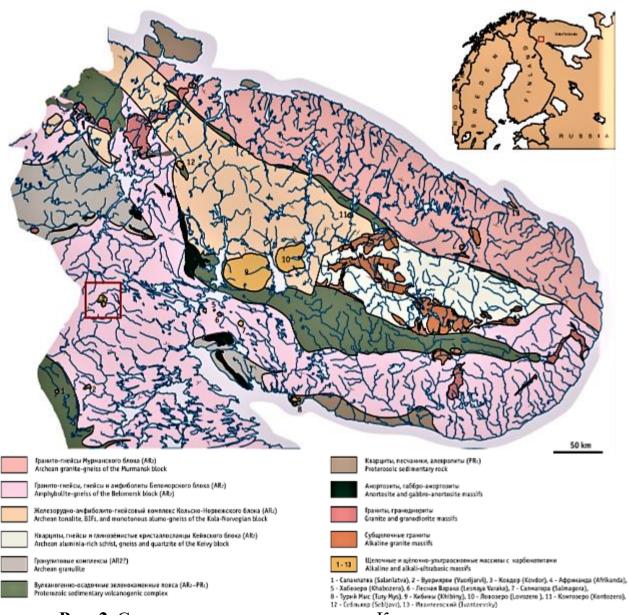


Рис. 1. Топография Ковдорского района (Иванюк Г.Ю., 2002)

Расположенный в этом районе Ковдорский массив представляет собой овальную кальдеру (7.5 × 9 км), дно которой, находящееся на высоте порядка 200–250 м над уровнем моря, окружено кольцом пологих возвышенностей: г. Мого-Вид (454 м) на Востоке, гг. Уци-Вара (373 м) и Воцу-Вара (330 м) на Западе, г. Пилькома-Сельга на Юго-Западе, г. Южная (355 м) на юге. Возвышенности сложены преимущественно фенитами (породами

экзоконтактового ореола Ковдорского массива) и ийолитами, а центральная часть – ультраосновными породами. В центре кальдеры также имеется Низка-Вара высотой 330 возвышенность Γ. M, сложенная серпентинизированными оливинитами, вермикулитовыми и флогопитовыми Скальные выходы имеются только породами. пород на склонах возвышенностей, тогда как дно кальдеры заполнено четвертичными осадками мощностью до 36 м. В субширотном направлении массив пересекается рекой Ковдорой. В центре массива р. Ковдора разливается в проточное озеро Ковдор около 4 км длиной, до 300 м шириной и 18 м глубиной, которое ныне является частью пейзажа города Ковдор и источником технического водоснабжения Ковдорского горно-обогатительного комбината. Дно озера покрыто толстым (до 17 м) слоем диатомовых илов.

Ковдорский район характеризуется умеренно континентальным климатом с относительно мягкой, но продолжительной зимой (с октября по прохладным летом, которое длится всего 2-2.5 многолетним наблюдениям Среднемесячная температура воздуха ПО изменяется от +13.6°C в июле до -14.2°C в феврале, а среднегодовая температура равна -1.7 °C. Район находится в зоне избыточного увлажнения и характеризуется значительным количеством осадков, составляющих в среднем 600 мм в год. Снежный покров устанавливается к началу ноября, а исчезает к концу мая. Преобладающее направление ветра в районе – западное и югозападное. Доля штилевых дней в среднем за год составляет 25 %. Нелишне напомнить, что с начала декабря до середины января здесь стоит полярная ночь, – не такая тёмная, как на крайнем севере, но солнце над горизонтом всё же не показывается, а только окрашивает южную часть неба в красный цвет разнообразных оттенков. И, наоборот, с конца мая до середины июля солнце за горизонт не заходит – стоит полярный день.


Растительный покров представлен, в основном, сосновыми, еловыми и смешанными хвойно-берёзовыми таёжными лесами. Подлесок в этом районе включает можжевельник, ягодные кустарнички (брусника, вороника, черника,

голубика, костяника), багульник, карликовые берёзки, папоротники. Чрезвычайно широко распространены мхи и лишайники (ягель, исландский мох и др.). В долинах рек встречаются заросли ивы и ольхи, на болотах — карликовая берёза, пушица, морошка, клюква, множество видов осоки. На возвышенностях хвойные и смешанные леса сменяются сначала берёзовым криволесьем, а затем (на высоте более 400 м) — горной тундрой с карликовой берёзкой, ягелем, вороникой и брусникой.

В речках и ручьях обитают форель, хариус, а в озерах – кумжа и сиг, в лесу и на болотах боровая и водоплавающая дичь (глухари, тетерева, куропатки, гуси, утки), звери (белки, зайцы, горностаи, куницы, росомахи, волки, лоси, медведи) (Иванюк Г.Ю., 2002).

ГЕОЛОГИЧЕСКОЕ СТРОЕНИЕ КОВДОРСКОГО МАССИВА

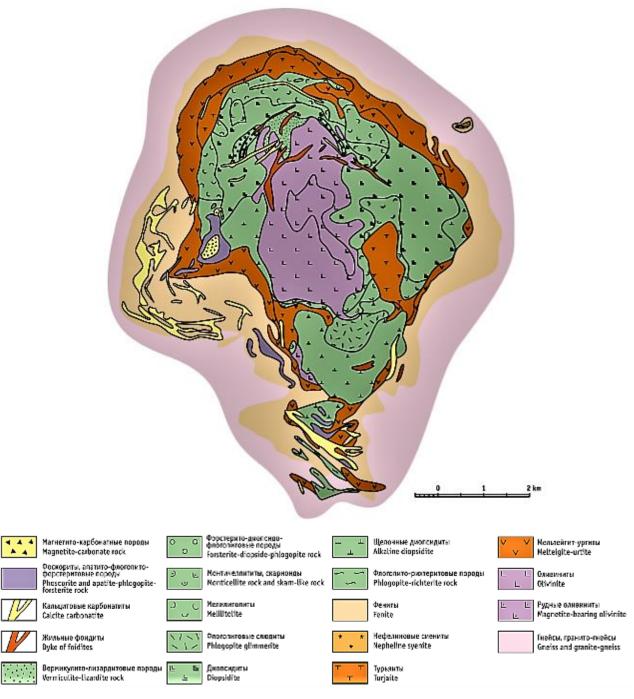

Ковдорский массив располагается в восточной части Балтийского щита (юго-западная часть Кольского п-ова) (Рис. 2.). Он является самым крупным щелочно-ультраосновным массивом Фенноскандинавии, сформированный в интервале 440-360 млн. лет (Римская-Корсакова О.М., 2002). Массив внедрен в биотитовые, амфиболовые гнейсы и амфиболиты (AR₂-PR₁) северовосточного крыла Ёнско-Лоухского синклинория.

Рис. 2. Схема геологического строения Кольского полуострова (генерализована из Геологической карты Кольского п-ова под ред. (Митрофанов Ф.П., 2001).

Ковдорский массив представляет собой сложную многофазную интрузию центрального типа. В истории формирования массива выделяются три этапа, последовательно сменяющие друг друга во времени: внедрение гипербазитовых магм, интрузий щелочных пород, а затем – карбонатитовых. Позднее на площади массива в приповерхностной части происходило экзогенное окисление пород и руд (Иванюк Г.Ю., 1997).

Массив имеет изометричное кольцевое строение (рис. 3), ядро которого слагают *оливиниты* и *пироксениты* (самый ранний гипербазитовый этап). *Оливиниты* представляют собой относительно однородные средне- до крупнозернистых темно-серые породы массивной текстуры. По содержанию вкрапленного магнетита среди оливинитов выделяются безрудные и рудные (более 10% магнетита). Рудные оливиниты протягиваются в виде полосы северо-западного простирания длиной 3 км и шириной до 1 км (Иванюк Г.Ю., 1997).

Рис. 3. Схема геологического строения Ковдорского массива, по (Афанасьев А.П., 1970)

Пироксениты окружают тело оливинитов с юга, запада и востока, образуя прерывистую кольцевую зону. Имеют неравномернозенистое сложение, иногда содержат вкрапления и гнезда титаномагнетита, местами флогопитизированы и амфиболизированы (Римская-Корсакова О.М., 1979).

По периферии ядра последовательно внедрялись (от ранних до поздних) ийолитовые и турьяитовые магмы. Нефелиновые сиениты и полевошпатовые

дайкообразными ийолиты представленны телами, самые поздние карбонатиты – дайко- и штокообразными телами. В размещении различных щелочных пород наблюдается зональность, во внешней зоне преимущественно развиты мелкозернистые ийолиты и ийолит-мельтейгиты, во внутренней части щелочных пород распространены более крупнозернистые кольца лейкократовые разновидности – ийолиты, ийолит-уртиты, уртиты. Чаще всего переход осуществляется постепенно (Кухаренко А.А., 1965).

Широкое развитие имеют мелилитовые и монтичелитовые породы, образующие полукольцевую зону между ультраосновными и щелочными породами в северо-западной части массива. Породы имеют пестрый минеральный состав. В основном они представлены: турьяитами (главные породообразующие минералы – мелилит, нефелин, флогопит), пироксеновыми турьяитами, мелилитолитами (мелилит, монтичелит, клинопироксен, флогопит) и монтичелитами. Мелилит-монтичелитосодержащие породы представлены в основном в северной части (Римская-Корсакова О.М., 1979).

Карбонатиты наиболее развиты в юго-западной части массива, в которых и концентрируется так называемый «рудный комплекс». А в северной части расположен крупный комплекс пород «флогопитового комплекса».

Карбонатиты довольно разнообразны и представляют наибольший промышленный интерес, поскольку с ними связаны месторождения бадделеитапатит-магнетитовых, редкометальных, карбонатных и апатит-карбонатных руд.

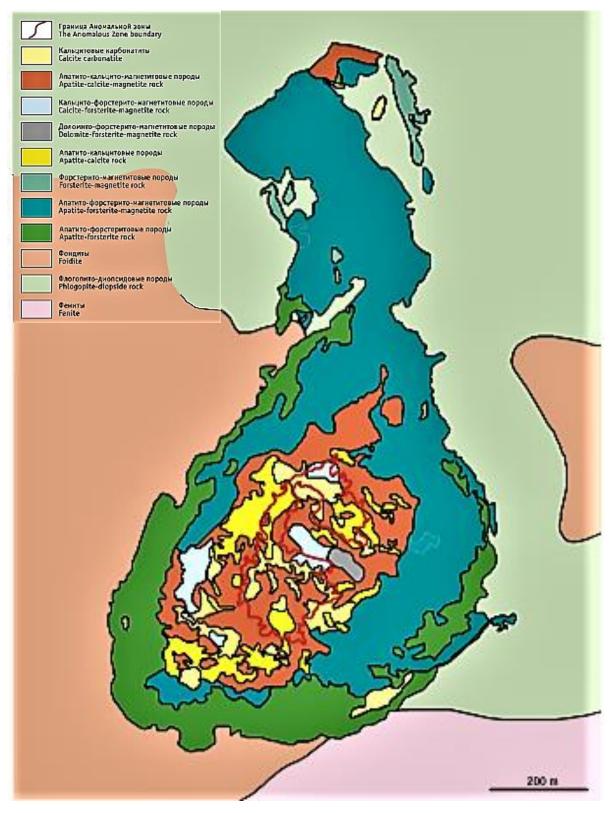
В большинстве случаев — это метасоматические образования, возникшие в процессе карбонатизации пироксенитов, щелочных пород, магнетитовых руд и фенитов, а в ряде случаев и путем заполнения трещин во вмещающих породах (Кухаренко А.А., 1971).

Карбонатиты рудной стадии связаны с комплексом апатит-форстеритмагнетитовых пород. К ним относятся различные кальцитовые, кальцитдоломитовые и доломитовые карбонатиты. Кальцитовые карбонатиты с апатитом, магнетитом, форстеритом, флогопитом наиболее развиты на западе и в центре массива, где они представлены серией крутопадающих тел. Наиболее крупные тела кальцитовых карбонатитов протяженностью до 100-150 м расположены среди фенитизированных гнейсов. Многочисленные линзы и жилы залегают также в оливинитах и в щелочных породах, сгруппировавшись в дугообразную зону. Часто наблюдаются постепенные переходы карбонатитовых тел к вмещающим породам, реже резкие и секущие контакты.

К более поздним карбонатитам относят кальцит-доломитовые карбонатиты с тремолитом, серпентином, тетраферрифлогопитом, ильменитом, цирконом. Доломитовые карбонатиты образуют крутопадающие тела небольшой мощности. Распространены преимущественно на территории железорудного комплекса (Рис.4.) (Кухаренко А.А., 1971) (Римская-Корсакова О.М., 1979).

Флогопитовые породы развиваются по оливинитам. Первоначально буровато-зеленый флогопит образует гнезда и скопления мелких чешуй с заключенными в них реликтовыми зернами оливина, а также новообразованные апатит и магнетит. В наиболее позднюю стадию кристаллы буровато-зеленого флогопита обрастают с периферии флогопитом более яркой зеленой окраски, а затем красно-бурым тетраферрифлогопитом, совместно с которым появляются апатит, кальцит и магнетит (Кухаренко А.А., 1971).

Флогопит-пироксен-оливиновые породы образуют полукольцевую зону длиной 8 км и мощностью 1–1,5 км в северо-западной части массива. Эти породы являются метосоматическими. Они развиваются по слюдянопироксеновыми породам, и по слабо измененным оливинитам ядра массива. Флогопитовый комплекс имеет зональное строение. Центральную часть флогопит-оливиновые периферии оливиниты породы, расположены флогопит-диопсидовые породы. Закономерно меняется их структура от гиганто- крупнозернистых в центре до средне-мелкозернистых в краевых зонах. К этим породам приурочены примышленные скопления крупнокристаллического флогопита (Ковдорское флогопитовое месторождение) (Кухаренко А.А., 1971; Афанасьев Б.В., 2011).


Комплекс апатито-форстеритовых и магнетитовых руд («рудный комплекс») размещается в юго-западной части массива. Рудный комплекс слагают несколько серий пород: форстеритовые, апатито-форстеритовые, флогопито-апатито-форстеритовые, существенно магнетитовые (флогопито-магнетитовые, кальцито-магнетитовые и т.д.) и существенно апатитовые (магнетито-апатитовые, кальцито-апатитовые). Породы этого комплекса слагают Ковдорское железорудное месторождение (Кухаренко А.А., 1971). Эти породы часто перемежаются, имеют нерезкие контакты, постепенные переходы одной в другую, однако магнетито-силикатные их разновидности отчётливо тяготеют к периферии столбообразного рудного тела, а магнетито-карбонатные — к его осевой зоне. Указанная зональность ещё более подчёркивается развитием безрудных апатито-форстеритовых пород по его внешней границе, а кальцито-магнетитовых пород с повышенным содержанием пирохлора (называемых "аномальными" рудами из-за их повышенной радиоактивности) — в осевой АЗ.

«Аномальные» руды слагают два пространственно обособленных вертикальных трубообразных тела: небольшое Северное (130 × 60 м) и в 30–60 м от него – более крупное Южное (230 × 190 м). Рудные тела имеют нечёткие контакты с вмещающими их апатито-форстерито-магнетитовыми и апатито-кальцито-магнетитовыми породами и довольно сложную форму на погоризонтных планах. Оба они разведаны скважинами на глубину до 600 м от поверхности, но глубокие единичные скважины показывают их присутствие и на глубине 800-900 м; установлено крутое южное склонение обеих залежей под углом 80-85°. (Эпштейн Е.М., 1970).

В завершающую стадию формирования массива, произошло внедрение регионально распространённых щелочных даек сиенитового этапа (Лапин А.В., 1971). Они образуют маломощные жилы, секущие все породы массива и представлены *нефелиновыми и канкринитовыми сиенитами* (Римская-Корсакова О.М., 1979).

В гипергенный этап на породах массива сформировалась линейноплощадная *кора выветривания*. Наиболее широко она развита на оливинитах и флогопитовых метасоматитах центральной части массива, достигая в некоторых местах 150 метровой глубины. С корой выветривания связано формирование двух промышленных месторождений: вермикулитового за счёт изменения флогопитовых метасоматитов и франколитового за счёт окисления пород железорудного комплекса (Иванюк Г.Ю., 1997).

Формирование всех щелочных и карбонатитовых пород связано с конической системой разломов внутри Ковдорского массива (Краснова Н.И., 1978). Сложное зональное строение Ковдорского массива, а также многочисленные факты пересечения одними типами пород других свидетельствуют о длительности формирования этой интрузии (Римская-Корсакова О.М., 1979).

Рис. 4. Красной линией отмечена граница руд (АЗ). Геологическая карта Железорудного комплекса по состоянию карьера на 1 января 2002 г. Составлена сотрудниками геологической службы АО «Ковдорский ГОК».

МЕСТОРОЖДЕНИЯ ПОЛЕЗНЫХ ИСКОПАЕМЫХ КОВДОРСКОГО МАССИВА

К комплексу щелочно-ультраосновных пород Ковдорского массива приурочен ряд месторождений: комплексное бадделеит-апатит-магнетитовое, апатит-штаффелитовое, флогопитовое, вермикулитовое, оливинитовое и кальцитовых карбонатитов (Афанасьев Б.В., 2011).

Комплексное бадделеит-апатит-магнетитовое месторождение (в дальнейшем просто Комплексное месторождение), рамки которого совпадают с границами Железорудного комплекса, расположено в западной части массива в зональной толще апооливинитовых флогопитодиопсидовых пород (на востоке), фоидолитов (в центре) и фенитов (на западе). Само месторождение приурочено к пересечению Главного конического разлома с разломом, который контролирует положение жил доломитовых карбонатитов и Малого Ковдорского массива. В месте пересечения этих двух разломов находится трубообразное рудное тело кальцито-форстерито-магнетитовых пород с "аномальными" рудами в осевой части.

В пределах Комплексного месторождения выделяются две основные части:

- 1. Главная залежь, концентрирующая в себе более 90 % запасов месторождения;
- 2. Юго-западная зона штокверковых и метасоматических руд с пониженными концентрациями рудных минералов.

Кроме того, на северном и восточном флангах рудного поля в фоидолитах и пироксенитах присутствуют мелкие (до 50 м мощностью и 400 м протяжённостью) линзы кальцито (доломито)-форстерито-магнетитовых пород. По соотношению промышленно ценных минералов в составе руд, подразделяются бадделеито-апатито-магнетитовые, последние на маложелезистые апатитовые И редкометальные. себя Бадделеито-апатито-магнетитовые включают В руды

кальцито-магнетитовые, доломито-магнетитовые, кальцито-форстерито-магнетитовые, флогопито-кальцито-магнетитовые, апатито-форстерито-магнетитовые и форстерито-магнетитовые породы.

Маложелезистые апатитовые руды представлены апатитофорстеритовыми породами и апатитсодержащими кальцитовыми карбонатитами. Апатито-форстерито-магнетитовые и кальцито-магнетитовые породы Аномальной зоны, характеризующиеся повышенным содержанием пирохлора, составляют редкометальные руды.

Апатито-кальцито-магнетитовые кальцито-(флогопито)-И форстерито-магнетитовые руды слагают трубообразное тело на пересечении Апатито-форстерито-магнетитовые рудоконтролирующих разломов. форстерито-магнетитовые руды в виде кольца мощностью 50–300 м окружают трубку кальцито-магнетитовых руд, образуя в северной части месторождения протяжённую меридиональную апофизу (300 × 600 м). Доломито-магнетитовые руды распространены в восточной части рудной структуры в виде линзовидных тел мощностью до 200 м и протяжённостью до 600 м, приуроченных к кон тактовой зоне месторождения с апооливинитовыми флогопито-диопсидовыми породами. Апатито-(флогопито)-форстеритовые породы окружают рудное ядро комплекса в виде полукольца мощностью до 150 м в его крайней южной части. Редкометальные руды образуют в осевой части рудной разобщенных рудных столба, прослеживаемых по всему погружению залежи (т. е. до отметки –350 м). Аналогичные участки редкометальных руд встречены в тремолито-доломито-магнетитовых северо-восточной рудах части месторождения (Иванюк Г.Ю., 2002).

Ковдорское месторождение апатит-штаффелитовых руд расположено в 3 км к юго-западу от г. Ковдор. Месторождение гипергенное и представляет собой "фосфатную шляпу" на апатитоносных кальцитовых карбонатитах (линейно-трещинный тип коры выветривания). Фосфатные коры выветривания, развившиеся по карбонатитам, не являются сплошными. Контуры отдельных тел штаффелитовых руд наследуют границы карбонатитовых жил, по которым

они сформировались в процессе интенсивного выщелачивания кальцита. Максимальная глубина распространения штаффелитовых кор достигает 160 м от поверхности. (Римская-Корсакова О.М., 1979) (Иванюк Г.Ю., 1997) (Афанасьев Б.В., 2011).

На месторождении выделяются два типа руды. Богатые руды собственно апатит-штаффелитового состава слагают 34% запасов месторождения с содержанием фосфатов свыше 50% (т. е. выше 18% P₂O₅). Они представлены плотными разновидностями, а также смесями рыхлых и каменистых руд, сформированных за счет мономинеральных карбонатитов (Афанасьев Б.В., 2011).

Бедные руды апатит-штаффелит-гидрослюдистого состава слагают 66% запасов и в среднем содержат 10,64% P_2O_5 , 7,43% железа валового и 1,7% двуокиси углерода. Они представлены рыхлыми и твердыми разновидностями, а также их смесями, содержащими значительное количество реликтов и ксенолитов боковых силикатных пород (Афанасьев Б.В., 2011).

Запасы апатит-штаффелитовых руд по категориям B+C₁ составляют 49 млн. т со средним содержанием P_2O_5 16,5%, из которых 7,7 млн. т попадают в контур действующего железорудного карьера (протокол ГКЗ № 7996 от 28.12.1977 г.) (Афанасьев Б.В., 2011).

Ковдорское апатит-магнетитовое месторождение, приуроченное к системе кольцевых разломов в фенитах с центром в районе Железорудного комплекса, сложено серией неправильной формы воронкообразных тел кальцитовых карбонатитов, связанных друг с другом густой штокверковой сетью карбонатитовых жил. Генетический тип - магматический. Комплексные руды месторождения слагают крупный шток длиной 1500 м при ширине в плане 300-800 м, падение близкое к вертикальному. На месторождении выделяются следующие типы руд: бадделеит-апатит-магнетитовые; маложелезистые апатитовые; редкометальные. По природе первая группа представляет все слагающие залежь богатых магматические руды, руд; вторая метасоматическое апатит-силикатное окружение, а также мелкие жильные тела маложелезистых апатитоносных карбонатитов; третья — узколокальные зоны постмагматического редкометального метасоматоза, охватывающие вторичными изменениями как железные руды, так и карбонатиты в центре залежи (Афанасьев Б.В., 2011).

Ковдорское флогопитовое месторождение расположено в 1,5 км к северо-западу от г. Ковдора. Генезис месторождения метасоматический (по ультраосновным щелочным породам). Месторождение приурочено к породам флогопитового комплекса, слагающим полукольцевую зону вокруг северной представленным части оливинитового ядра массива различными метасоматическими Промышленные скопления породами. крупнопластинчатого флогопита связаны с полукольцевой зоной флогопитоливин-диопсидовых пород. К северо-западной части полукольцевой зоны приурочена так называемая «Главная флогопитовая залежь» — наиболее мощная и богатая часть месторождения длиной около 800 м при ширине 50–200 м, перекрытая сверху вермикулитовыми корами выветривания мощностью до 70-80 м и четвертичными отложениями мощностью 6 м. Ядро залежи сложено апатитовыми и апатит-оливиновыми породами с реликтами гигантских кристаллов флогопита. Запасы апатитовых руд в ядре залежи составляют 1,2 млн. т при среднем содержании P_2O_5 7,5%. ГКЗ они не утверждались. Месторождение флогопита является крупнейшим в мире по объемам запасов высококачественной руды (Римская-Корсакова О.М., 1979) (Афанасьев Б.В., 2011).

Ковдорское вермикулитовое месторождение связано с меридиональной линейной зоной глубокой гидротермальной переработки. Месторождение вермикулита, будучи пространственно неразрывно связано с кольцевой зоной слюдоносных пород, располагается только в ее северной части. В южной половине зоны на существующем эрозионном срезе процесс выветривания и, следовательно, вермикулитизации слюд, не получил распространения. Месторождение вермикулита имеет в плане полукольцевую (подковообразную) форму, обращенную выпуклой частью к северу. Длина полукольца по

простиранию составляет 6 км, а ширина от 500 до 1500 м. Наиболее ценные рыхлые вермикулитовые руды залегают на глубине 20–30 м от поверхности (Римская-Корсакова, Краснова, 1979, Афанасьев, 2011).

Оливинитовое месторождение приурочено к внутренней части гипербазитового ядра. Площадь наиболее крупной оруденелой зоны составляет 0,5 км². Установлено два типа оруденения: а) вкрапленный, связанный с первичным титаномагнетитом; б) жильный, co штокверками крутопадающих жил форстерит-магнетитового состава (т. е. по возрасту это карбонатитовый этап). Вся площадь развития рудных оливинитов застроена городскими кварталами. Из рудных оливинитов с форстерит-магнетитовыми жилами магнитной сепарацией получен концентрат с содержанием Fe общ. – 63.8%; $TiO_2 - 2.42\%$; Ni - 0.08%. Из рудных оливинитов с первичным (вкрапленным) магнетитом концентрат получился несколько иным: Fe общ.— 59.9%; $TiO_2 - 3.70\%$; Ni - 0.17%. Выход концентратов от руды составил 12-16%, извлечение Fe общ. 52-62%. Из магнетитового концентрата с повышенным содержанием никеля методом избирательного восстановления в электропечах получен ферроникель с содержанием никеля до 5% и стальной полупродукт (Афанасьев Б.В., 2011).

ФАКТИЧЕСКИЙ МАТЕРИАЛ И МЕТОДИКА РАБОТЫ

На этапе полевых работ было отобрано 6 штуфных проб, массой до 10 кг и относящихся к визуально разным карбонатитам. В каждой из этих проб, для оптических исследований руд, были изготовлены препараты (прозрачно полированные шлифы, шайбы и аншлифы).

Проба №1. Кальцит-магнетит-форстеритовые;

Проба №2. Богатые апатит-магнетит-бадделеитовые;

Проба №3. Кальцит-магнетит-форстеритовые с тетраферрифлогопитом;

Проба №4. Кальцитовые карбонатиты;

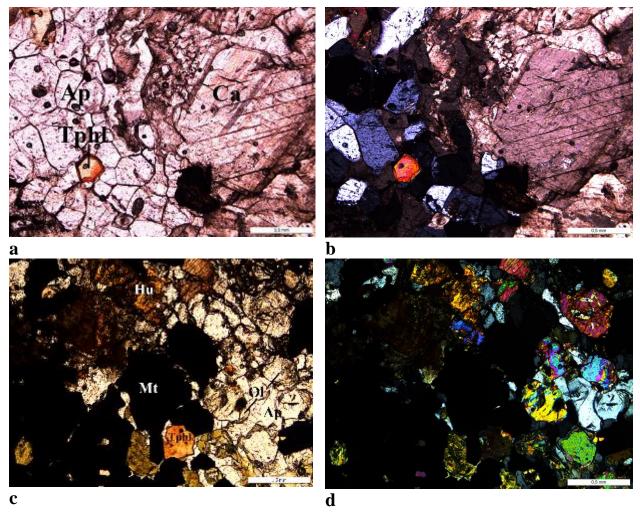
Проба №5. Апатит-форстерит-магнетитовые с медной минерализацией;

Проба №6. Апатит-магнетитовые;

Изучение вещественного состава пород и руд проводилось с использованием комплекса методов, который включает в себя: визуальные и оптические исследования минерального состава и текстурно-структурных особенностей, химический и микрозондовый анализы.

Петрографические и минераграфические исследования образцов пород проводились с использованием поляризационного микроскопа ЛОМО ПОЛАМ P-312 и Leica DM750 P, оборудованного цифровой камерой SIMAGIS 2P-3C.

Изучение химического состава пород проводилось путем применения рентгенофлуоресцентного анализа с целью получения элементного состава.


Микрозондовый анализ минералов в аншлифах и шайбах с тяжелой немагнитной фракцией был выполнен микрорентгеноспектральным методом на сканирующем электронном микроскопе Hitachi S-3400N.

ГЛАВА 1

ПЕТРОГРАФИЧЕСКОЕ ОПИСАНИЕ ПОРОД

Кальцитовый карбонатит:

ППШ 1.2.

Рис. 5. Фото: а-b общий вид *кальцитового карбонатита*; а - без анализатора; b - c анализатором; c-d — минерализация на контакте с рудной составляющей; а - без анализатора; b – c анализатором.

Порода: кальцитовый карбонатит.

Минеральный состав: кальцит - 90%; тетраферрифлогопит, оливин, апатит, гумит - 10%.

Кальцит представлен идиоморфными кристаллами. Размер варьирует от и 2,0 до 0,2 мм. Бесцветный, хорошо развитая спайность по ромбоэдру, очень сильное двупреломление (перламутровые цвета интерференции).

Тетраферрифлогопит представлен идиоморфными кристаллами до 0,25 мм, с характерной для них красно-коричневой окраской и обратной схемой абсорбции. Показатели преломления изменяются от IV до V группы Лодочникова. Наблюдается преимущественно вблизи рудных включений.

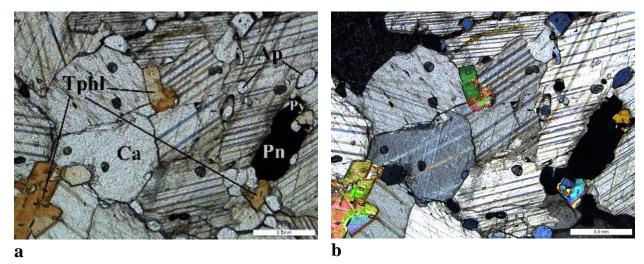
Оливин образует более или менее изометричные зерна размером до 0.5 мм В шлифах бесцветный, имеет сильное двупреломление. Наблюдается преимущественно вблизи рудных включений.

Апатит представлен в виде изометричных зерен шестиугольной формы, размером до 0,5 мм. Бесцветен, обладает невысокими цветами интерференции.

Гумит встречается в виде зерен неправильной формы с изрезанными края размером до 2,0 мм. Характерной особенностью является желто-оранжевая окраска с обратной схемой абсорбции. Показатели преломления изменяются от IV до V группы Лодочникова.

Структура: гипидиоморфнозернистая.

Текстура: массивная.


Таблица 1.

Химический состав, масс. %.

Sr	Cu	Fe ₂ O ₃	MnO	TiO ₂
0,10	0,13	0,00	0,21	0,00

Кальцитовый карбонатит:

ППШ 4.0.

Рис. 6. Фото: а - b общий вид *кальцитового карбонатита*; а - без анализатора; b - c анализатором;

Порода: кальцитовый карбонатит.

Минеральный состав: кальцит -90%; апатит, тетраферрифлогопит -10%.

Кальцит представлен идиоморфными кристаллами. Размер варьирует от 1,0 и до 2,0 мм. Бесцветный, хорошо развитая спайность по ромбоэдру, очень сильное двупреломление (перламутровые цвета интерференции).

Апатит представлен в виде изометричных зерен шестиугольной формы, размером до 0,25 мм. Бесцветен, обладает невысокими цветами интерференции.

Тетраферрифлогопит представлен идиоморфными кристаллами до 0,25 мм, с характерной для них красно-коричневой окраской и обратной схемой абсорбции. Показатели преломления изменяются от IV до V группы Лодочникова.

Структура: гипидиоморфнозернистая.

Текстура: массивная.

Таблица 2.

Химический состав, масс. %.

Sr	Cu	Fe ₂ O ₃	MnO
0,63	0,04	8,51	0,06

Тетраферрифлогопит -кальцитовый карбонатит:

ППШ 5.1

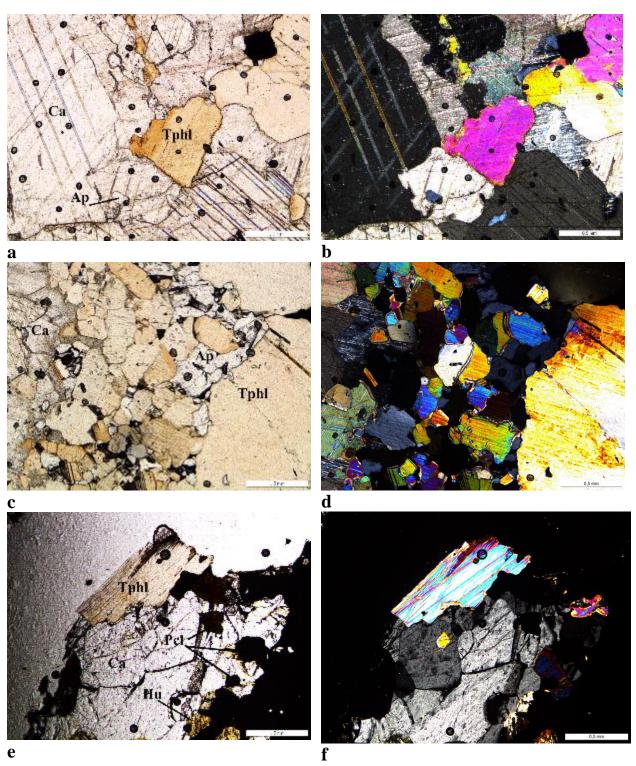


Рис. 7. Фото: a-f - общий вид породы mempa ферри флого num-кальцитовый карбонатит; a, c, e – без анализатора; b, d, f - в скрещенных николях.

Порода: тетраферрифлогопит -кальцитовый карбонатит

Минеральный состав: кальцит - 45%, тетраферрифлогопит - 45%; апатит - 8%; пирохлор, гумит -2%.

Кальцит представлен идиоморфными кристаллами. Размер варьирует от 1,0 и до 2,0 мм. Бесцветный, хорошо развитая спайность по ромбоэдру, очень сильное двупреломление (перламутровые цвета интерференции).

Тетраферрифлогопит представлен идиоморфными кристаллами до 2,0 мм, с характерной для них красно-коричневой окраской и обратной схемой абсорбции. Показатели преломления изменяются от IV до V группы Лодочникова.

Апатит представлен в виде изометричных зерен шестиугольной формы, размером до 0,25 мм. Бесцветен, обладает невысокими цветами интерференции.

Пирохлор представлен в виде изометричных зерен, размером до 0,25 мм. Имеет характерный бурый цвет до почти непрозрачного, обладает невысокими цветами интерференции. Изотропен. Внутренние рефлексы характерны: красновато- желтые до желтых.

Гумит встречается в виде зерен неправильной формы с изрезанными края размером до 0,5 мм. Характерной особенностью является желто-оранжевая окраска с обратной схемой абсорбции. Показатели преломления изменяются от IV до V группы Лодочникова.

Структура: гипидиоморфнозернистая.

Текстура: массивная.

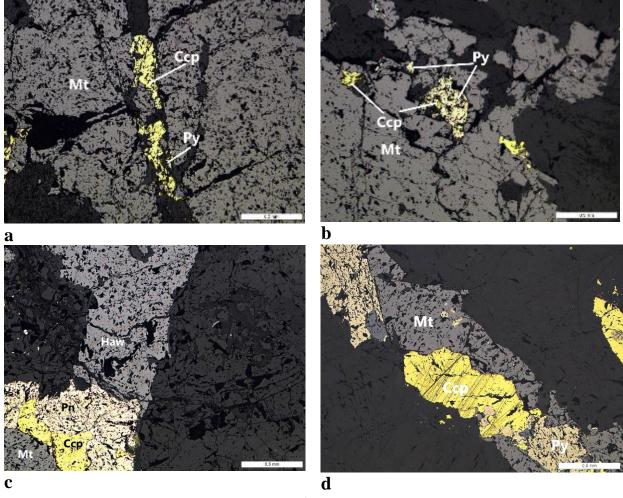
Таблица 3.

Химический состав, масс. %.

Sr	Cu	Fe ₂ O ₃	MnO	TiO ₂
0,15	0,26	0,00	0,21	0,00

ГЛАВА 2

МИНЕРАЛОГИЯ


Таблица 4

Характеристика рудных минералов

Характеристика рудных минералов			
Аншлиф 1.1.			
Минерал	Оптические и морфологические особенности и характер взаимодействия с другими минералами	Содержание, (%)	
Магнетит (Mt)	Имеет серый цвет с кричневатым оттенком., изотропен. Формирует аллотриоморфные, реже идиоморфные кристаллы. Ксенаморфен.	60	
Пентландит (Pn) или пирит (Py)???	Кремово-желтый,	10	
Халькопирит (Сср)	Имеет желтый цвет, изотропен. Ксеноморфен.		
	ППШ 1.2.		
Магнетит (Mt)	Имеет серый цвет с кричневатым оттенком., изотропен. Формирует аллотриоморфные, реже идиоморфные кристаллы. Ксенаморфен.		
Пентландит (Pn) или пирит (Py)???	Кремово-желтый,	8	
Халькопирит (Сср)	Имеет желтый цвет, изотропен. Ксеноморфен.	7	

Определение некоторых минералов оказалось затруднительным, поэтому, дополнительно был проведен микрозондовый анализ.

Взаимоотношения некоторых минералов удалось проиллюстрировать микрофотографиями (см. рис.)

Рис.8 а – b аншлиф 1.1; c, d - ППШ 1.2.

На основании изучения препаратов была составлена последовательность образования минеральных парагенезисов.

Аншлиф 1.1.

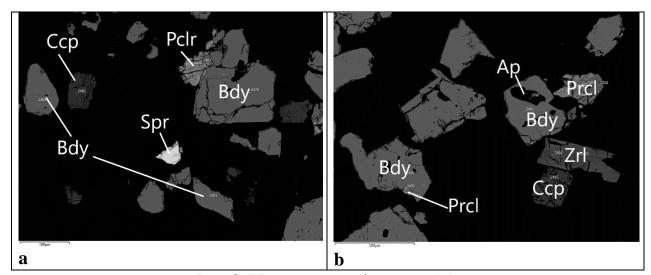
Магнетит \rightarrow халькопирит \rightarrow пирит;

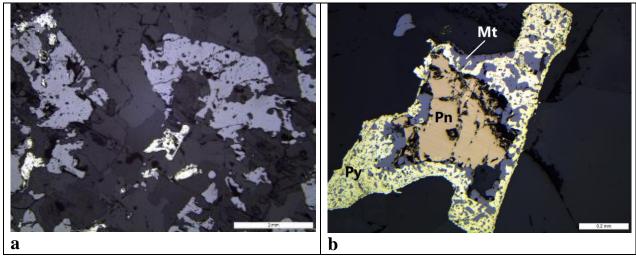
Судя по тому, что магнетит имеет более выпуклую форму на границе с халькопиритом, а пирит более выпуклую форму на границе с халькопиритом, то скорее всего сначала образовался магнетит, а затем пирит и халькопирит.

ППШ 1.2.

Магнетит-более ранняя фаза, а пирит и халькопирит — более поздняя. Магнетит → хаулеит → пирит → халькопирит; Судя по тому, что пирит и халькопирит находятся внутри магнетита, но халькопирит более идиоморфный, чем пирит, то скорее всего сначала образовался магнетит, а затем хальклопирит и пирит.

Анализ микрозонда




Рис.9. Немагнитная фракция 1.0.

Сперрилит PtAs₂ встречен в виде отдельного зерна.

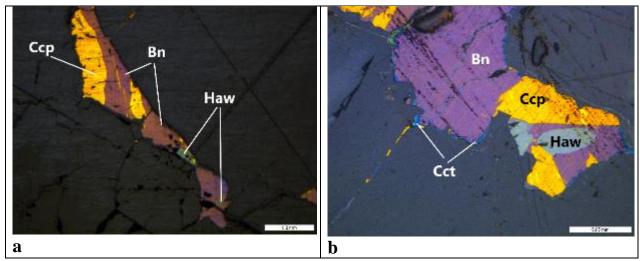
Характеристика рудных минералов

Аншлиф 2.0.			
Минерал	Морфологические особенности и характер взаимодействия с другими минералами	<u> </u>	
Магнетит (Mt)	Имеет серый цвет с кричневатым оттенком., изотропен. Формирует аллотриоморфные, реже идиоморфные кристаллы. Ксенаморфен.		
Пирит (Ру)	Светло-желтый, изотропен.		
Кремовый Пентландит (Pn)?	Кремово-желтый, .		

Взаимоотношения некоторых минералов удалось проиллюстрировать микрофотографиями (см. рис.)

Рис.10 а – b аншлиф 2.0;

На основании изучения препаратов была составлена последовательность образования минеральных парагенезисов.


Аншлиф 2.0.

Пирит →пентландит → магнетит.

Характеристика рудных минералов

Аарактеристика рудных минералов Аншлиф 3.0.				
Аншлиф э.v.				
Минерал	Морфологические особенности и характер взаимодействия с другими минералами	Содержание, (%)		
Магнетит Fe ₃ O ₄	Имеет серый цвет с кричневатым оттенком., изотропен. Формирует аллотриоморфные, реже идиоморфные кристаллы. Ксенаморфен.	90		
Борнит (Bn)	Розово-фиолетовый цвет, изотропен.	10		
Халькопирит (Сср)	Ксеноморфный кристаллы. Не выявлено рефлексов. Иногда с включениями пирита и галенита.			
Хаулеит (Haw)	Отдельные квадратные, в целом, изометричные индивиды в халькопирите.			
	Аншлиф 3.1.	1		
Магнетит (Mt)	Имеет серый цвет с кричневатым оттенком., изотропен. Формирует аллотриоморфные, реже идиоморфные кристаллы. Ксенаморфен.			
Борнит (Bn)	Розово-фиолетовый цвет, изотропен.	5		
Халькопирит (Сср)	Ксеноморфный кристаллы. Не выявлено рефлексов. Иногда с включениями пирита и галенита.			
Хаулеит (Haw)	Отдельные квадратные, в целом, изометричные индивиды в халькопирите.			
Халькозин (Cct)	Голубой. Изотропен.			

Взаимоотношения некоторых минералов удалось проиллюстрировать микрофотографиями (см. рис.)

Рис.11 а – b аншлиф 3.0; с -d аншлиф 3.1.

На основании изучения препаратов была составлена последовательность образования минеральных парагенезисов.

Магнетит \rightarrow халькопирит \rightarrow борнит \rightarrow хаулеит Аншлиф 3.1.

Магнетит \rightarrow халькопирит \rightarrow борнит \rightarrow хаулеит \rightarrow халькозин

Характеристика рудных минералов

ППШ 4.0.			
Минерал	Морфологические особенности и характер взаимодействия с другими минералами	Содержание, (%)	
Пирротин (Ро)	кремово-розовато-коричневый. (Не уточняла анизотропию)	60	
Пирит (Ру)	Светло-желтый, изотропен.	35	
Магнетит (Mt) Галенит (Gn)	Имеет серый цвет с кричневатым оттенком., изотропен.	5	
Tallehal (GII)	белый, изотропен.		

Взаимоотношения некоторых минералов удалось проиллюстрировать микрофотографиями (см. рис.)

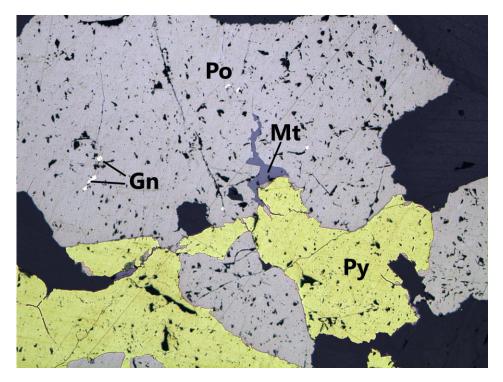
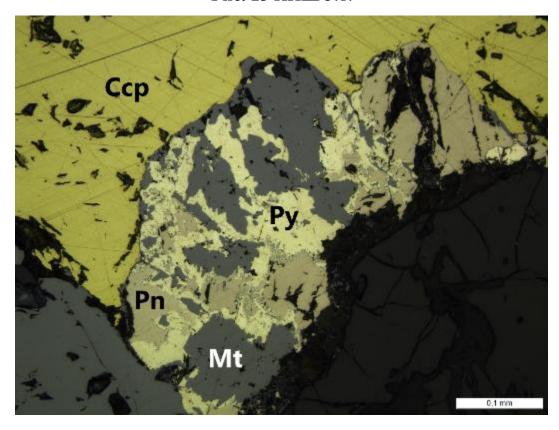


Рис. 12. ППШ 4.0;

На основании изучения препаратов была составлена последовательность образования минеральных парагенезисов.

ППШ 4.0.

Пирротин \rightarrow пирит \rightarrow магнетит+ галенит.


Характеристика рудных минералов

Характеристика рудных минералов				
	ППШ 5.1.			
Минерал	Морфологические особенности и характер взаимодействия с другими минералами	Содержание, (%)		
Магнетит (Mt)	Имеет серый цвет с кричневатым оттенком. изотропен. Формирует аллотриоморфные, реже идиоморфные кристаллы. Ксенаморфен.	25		
Борнит (Вп)	Розово-фиолетовый цвет, изотропен.	5		
Халькопирит (Сср) Галенит (Gn)	Желтый. Изотропен. Ксеноморфный кристаллы. белый, изотропен.			
Хаулеит (Haw)	Отдельные квадратные, в целом, изометричные индивиды в халькопирите.			
Халькозин (Cct)	Сине- голубой. Изотропен.			
, ,	Аншлиф 5.2.			
Магнетит (Mt) Fe ₃ O ₄	Имеет серый цвет с кричневатым оттенком. изотропен. Формирует аллотриоморфные, реже идиоморфные кристаллы. Ксенаморфен.			
Халькопирит (Сср) CuFeS2 Пирит (Ру) FeS2 Пентландит (Рп)	Желтый. Изотропен. Ксеноморфный кристаллы. Светло-желтый. Изотропен. Кремово-желтый	10		
Аншлиф 5.3.				
Магнетит (Mt) Fe ₃ O ₄	Имеет серый цвет с кричневатым оттенком. изотропен. Формирует аллотриоморфные, реже идиоморфные кристаллы. Ксенаморфен.			
Халькопирит (Сср) CuFeS2	Желтый. Изотропен. Ксеноморфный кристаллы.	<1		

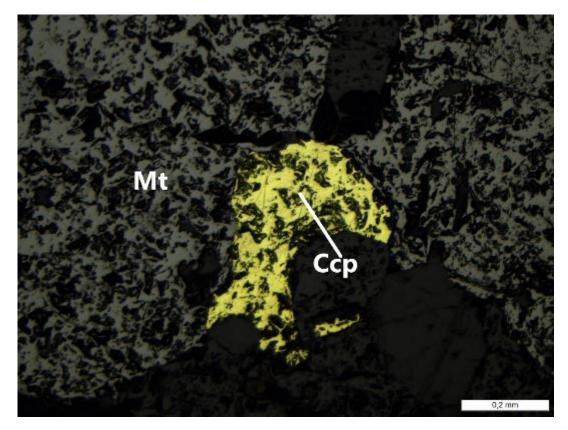

Взаимоотношения некоторых минералов удалось проиллюстрировать микрофотографиями (см. рис.)

Рис. 13 ППШ 5.1.

Рис.14 Аншлиф 5.2.

Рис.15 Аншлиф 5.3.

На основании изучения препаратов была составлена последовательность образования минеральных парагенезисов.

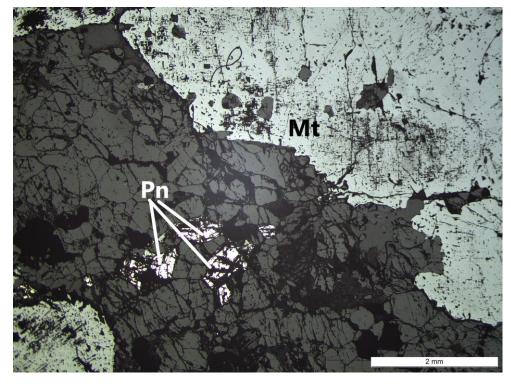
ППШ 5.1.

Магнетит \rightarrow халькопирит \rightarrow борнит \rightarrow халькозин

Хаулеит и галенит позже?

Аншлиф 5.2.

Магнетит \rightarrow халькопирит \rightarrow пирит \rightarrow пентландит.


Аншлиф 5.3.

Магнетит \rightarrow халькопирит.

Характеристика рудных минералов

жирактернетика рудивіх минералов				
	Аншлиф 6.1.			
Минерал	Морфологические особенности и характер взаимодействия с другими минералами	Содержание, (%)		
Магнетит (Mt) Fe ₃ O ₄	Имеет серый цвет с кричневатым оттенком. изотропен. Формирует аллотриоморфные, реже идиоморфные кристаллы. Ксенаморфен.	90		
Пентландит (Pn)	Кремово-желтый	1		
	Аншлиф 6.2.			
Магнетит (Mt) Fe ₃ O ₄	Имеет серый цвет с кричневатым оттенком. изотропен. Формирует аллотриоморфные, реже идиоморфные кристаллы. Ксенаморфен.			

Взаимоотношения некоторых минералов удалось проиллюстрировать микрофотографиями (см. рис.)

Рис.16 Аншлиф 6.1.

Рис.17 Аншлиф 6.2.

СПИСОК ЛИТЕРАТУРЫ

- **Афанасьев А.П., Сулимов Б.И., Терновой В.И. 1970.** *Схема формирования Ковдорского массива ультраосновных щелочных пород.* . б.м. : Известия Вузов. Геология и разведка. № 11., 1970. с. 83–89..
- **Афанасьев Б.В. 2011.** *Минеральные ресурсы щелочно-ультраосновных массивов Кольского п-ова.* СПб : "Роза Ветров", 2011. стр. 224.
- **Иванюк Г.Ю., Яковенчук В.Н. 1997.** *Минералы Ковдора.* Ковдор Апатиты : Кольский НЦ РАН, 1997. стр. 116.
- **Иванюк Г.Ю., Яковенчук В.Н., Пахомовский Я.А. 2002.** *Ковдор.* Апатиты : Изд. минералы Лапландии, 2002. с. 326.
- **Краснова Н.И., Соколова В.Б. 1978.** *Тектоника и механизмы формирования Ковдорского щелочн-ультроосновного интрузивного комплекса.* б.м. : Вестник ЛГУ. Сер. геология, география. Вып. 1. № 6. , 1978. с. 16-21.
- **Кухаренко А.А., Булах А.Г., Ильинский Г.А., Шинкарев Н.Ф., Орлова М.П. 1971.** *Металлогенические особенности Балтийского щита.* Л.: Недра, 1971. стр. 227.
- **Кухаренко А.А., Орлова М.П., Булах А.Г. и др. 1965.** Каледонский комплекс ультраосновных, щелочных пород карбнатитов Кольского п-ова и Северной Карелии. М.: Недра, 1965. стр. 768.
- **Лапин А.В. 1971.** Закономерности формирования щелочных дайковых комплексов в связи с проблемой генезиса карбонатитов (На примере Ковдорского массива). Ленинград: Наука, 1971. стр. 277 283.
- **Митрофанов Ф.П. 2001.** Геологическая карта Кольского региона (северовосточная часть Балтийского щита). 2001 г.
- **Римская-Корсакова О.М., Краснова Н.И. 2002.** Геология месторждений Ковдорского массива. б.м.: СПб.: Изд-во СПбГУ, 2002. стр. 145.
- Римская-Корсакова О.М., Краснова Н.И., Копылова Л.Н. 1979.
- Типохимические особенности апатитов Квдорского комплексного месторождения. Л.: ЛГУ, 1979. стр. 58-70.
- **Терновой В.И., Сулимов Б.И., Афанасьева Б.В и др. 1983.** Отчет о детальной разведке Западной залежи Ковдорского месторождения за 1979 1983. б.м.: Фонды Ковдорской тематической партии, 1983, стр. 107.
- Эпштейн Е.М., Басманов В.Н., Берёзина Л.А., Гольдфурт Т.Л., Журавлёва Л.Н., Нечаева Е.А., Соколов С.В., Чернышёва Л.В. 1970. Закономерности размещения, минералого реохимические особенности и оценка железо фосфоро редкометальных руд Ковдорского месторождения. Отчёт о НИР. Том 1. Москва: Фонды ГИ КНЦ РАН, 1970. с. 217.