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Reference hypernetted chain theory for ferrofluid bilayer:
Distribution functions compared with Monte Carlo
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Faculty of Physics, St. Petersburg State University, 198504 St. Petersburg, Russia
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Properties of ferrofluid bilayer (modeled as a system of two planar layers separated by a distance
h and each layer carrying a soft sphere dipolar liquid) are calculated in the framework of in-
homogeneous Ornstein-Zernike equations with reference hypernetted chain closure (RHNC). The
bridge functions are taken from a soft sphere (1/r12) reference system in the pressure-consistent
closure approximation. In order to make the RHNC problem tractable, the angular dependence of
the correlation functions is expanded into special orthogonal polynomials according to Lado. The
resulting equations are solved using the Newton-GRMES algorithm as implemented in the public-
domain solver NITSOL. Orientational densities and pair distribution functions of dipoles are com-
pared with Monte Carlo simulation results. A numerical algorithm for the Fourier-Hankel trans-
form of any positive integer order on a uniform grid is presented. © 2014 AIP Publishing LLC.
[http://dx.doi.org/10.1063/1.4894135]

I. INTRODUCTION

The inhomogeneous Ornstein-Zernike (OZ) equations
with reference hypernetted chain closure (RHNC) closure1, 2

is, to the authors’ knowledge, one of the most accurate theo-
ries to calculate the properties of inhomogeneous liquids on
the level of pair correlations. In particular, in the field of con-
fined liquids it has been successfully applied to the model of
Lennard-Jones particles in a narrow slit between two walls
with the Steele wall-particle potential.1 The theoretical den-
sity profiles and wall pressures are in excellent agreement
with simulations.1 Another application of RHNC is for elec-
tric double layers in mono- and divalent electrolytes modeled
as uniformly charged planes with charged point particles be-
tween them, where the theory correctly predicts interactions
and ion distribution functions.2–4 The theory5 was used to il-
lustrate the mechanisms behind such phenomena as charge
inversion and overcompensation of the surface charge.

In the field of quasi-two-dimensional ferrofluids, the
RHNC was applied to the ferrofluid monolayer model where
the hard sphere particles carrying three-dimensional magnetic
dipoles are constrained to a planar surface, and an external
field is acting perpendicular to the plane.6 Theoretical angu-
lar distribution functions and projections of the pair distribu-
tion functions on the standard rotational invariants agree with
Monte Carlo (MC) simulations.

The current situation provides an interesting opportu-
nity to combine the aforementioned RHNC theories. The sys-
tem of two parallel planar walls, each wall carrying a two-
dimensional dipolar fluid, with charged particles between
them can serve as a rough model to investigate the role of elec-
trostatic interactions in quite a different system, e.g., interac-
tion between lipid membranes with dipolar approximation of

a)Electronic mail: e.a.polyakov@gmail.com
b)Electronic mail: voron.wgroup@gmail.com

headgroups7–13 or clay platelets,14, 15 etc. As a first step in this
direction we present in this work RHNC calculations for the
model of symmetric ferrofluid bilayer. It is a system of two
planar layers separated by a distance h and each layer is carry-
ing a soft sphere dipolar liquid of dipole moment μ. This sys-
tem itself can serve as a crude model of interactions between
layers in magnetic films,16–18 or the aforementioned systems
of lipid membranes and clay platelets. Moreover, not long ago
a Monte Carlo study of such a system (with hard spheres in-
stead of soft ones) was carried out19 and we are unaware of
the corresponding theoretical treatment by integral equations.
There is HNC calculation for bilayer of dipoles with their di-
rection fixed perpendicularly to the bilayer’s plane,14 and a
series of works on bilayer with orientable dipoles but treated
within perturbation theory.20–22

In this work, the angular distribution functions and pair
correlations for a model of ferrofluid bilayer are calculated
and compared with Monte Carlo simulation. A number of
methodological issues are considered. The dipole-dipole pair
correlation functions in this system are five-dimensional, tak-
ing into account circular symmetry. In order to make the
RHNC problem tractable, the angular dependence of the cor-
relation functions is expanded into special polynomials ac-
cording to Lado.23, 24 These polynomials are constructed to
be orthogonal with respect to one-body orientational distri-
bution function f(cos θ ). In order to speed up the solution of
integral equations we employ Newton-GRMES algorithm25

as implemented in the public-domain solver NITSOL.26 This
algorithm solves a system of nonlinear algebraic equations
F(x) = 0 where F(x) is a vector function in a space of dimen-
sion n (F : Rn → Rn). In our case F(x) is formed from differ-
ences in distribution functions between successive iterations
of RHNC equations. Finally, since the symmetry of bilayer
pair functions is lower than that of monolayer ones, we have
to compute the Hankel transforms of even and odd orders on
a common grid. To address this issue, a numerical algorithm

0021-9606/2014/141(8)/084109/13/$30.00 © 2014 AIP Publishing LLC141, 084109-1
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for the Fourier-Hankel transform of any positive integer order
on uniform grid is presented.

In Sec. II, we describe the bilayer model and extend the
integral equations of Ref. 6 to the bilayer case. In Sec. III,
we describe our Monte Carlo simulations. Section IV is de-
voted to the comparison of RHNC and Monte Carlo results
and a conclusion is made. In Appendix A, we describe our
approach to the numerical Fourier-Hankel transform and in
Appendix B we summarize the numerical procedure of the
solution of RHNC equations.

II. INTEGRAL EQUATION FORMULATION

The system consists of particles with permanent point
dipole moment μ interacting via soft sphere and dipolar po-
tentials. The particle positions are constrained to one of the
two planar layers (hereinafter denoted as b (bottom) and t
(top)), separated by a distance h. The particles are distributed
in each layer with a uniform average surface number density
ρ. They are allowed to move along the layers they belong to,
and the dipole moments can orient in full 3D space. No ex-
change of particles between layers b and t is allowed. The
interaction potential between the particles is pairwise additive
and is presented as27

u
(
r ij , μ̂i , μ̂j

) = 4λ

(
d

rij

)12

−
(

1

rij

)3

μ2

× [3(μ̂i · r̂ ij )(μ̂j · r̂ ij ) − μ̂i · μ̂j ], (1)

where μ̂i is the unit direction vector of the dipole moment of
the particle i, r̂ ij = r ij /rij is the unit direction vector from
particle j to i, λ is the energy scale, and d is the length scale.
Reduced units ρ� = ρd2 for surface density, μ� = μ/

√
d3λ

for dipole moment, s� = s/d for length and β� = βλ for in-
verse temperature are used throughout the paper. In further
relations the stars are omitted. Due to the lateral translational
and circular symmetry of the system we split the radius vector
r ij as

r ij = sij + zij êz, (2)

where êz is the unit vector perpendicular to the layers (di-
rected from b to t) and zij can have values 0, +h, −h depend-
ing on what layer the particles i and j belong to.

The hamiltonian of the model (1) possesses the vertical
(transverse) reflection symmetry. However, the correspond-
ing thermodynamic state can break this symmetry. Since
currently there is no clear evidence for such symmetry break-
ing in thin films,19, 28 and we are mainly interested in exten-
sion of this model to colloids, we will look only for symmet-
rical solutions of the integral equations. This will allow us
to reduce by half the number of the unknowns. So we map
the bilayer onto a monolayer system of two components (b
and t) with identical thermodynamical properties. We define
the interaction potential (1) between the particles of the same

component as

ubb(sij , μ̂i , μ̂j ) = utt (sij , μ̂i , μ̂j )

= 4

(
1

sij

)12

−
(

1

sij

)3

μ2

× [3(μ̂i · ŝij )(μ̂j · ŝij ) − μ̂i · μ̂j ] (3)

and between the particles of different components as

ubt (sij , μ̂i , μ̂j ) = 4

(
1

s2
ij + h2

)6

−
(

1

s2
ij + h2

)5/2

μ2

× [3(μ̂i · [sij + hêz])

× (Sμ̂j · [sij + hêz]) − μ̂i · Sμ̂j ], (4)

where we have introduced the reflection symmetry opera-
tion S: Sμ̂j is the vector μ̂j but with inverted sign of its z-
component; thus we take into account the fact that b- and t-
components face each other from the opposite directions but
otherwise are indistinguishable.

The one-body density at each layer is defined as

ρ(1) (s, ω) =
〈∑

j

δ(s − sj )δ
(
ω − ωj

)〉

= ρ

4π
f (ω) , (5)

where ω = (θ , φ) are spherical angles of the dipole moment
and the orientational distribution function of dipoles f(ω) is
one of the unknowns of the integral equations. Due to the lat-
eral translational and circular symmetry, f depends only on
zenith angle θ of the dipole moment with respect to zenith
direction êz, f(ω) = f(cos θ ). The intralayer two-body density

ρ
(2)
bb (s, ω, s′, ω′) = ρ

(2)
t t (s, ω, s′, ω′)

=
〈 ∑

i, j∈b

i �=j

δ(s − si)δ(ω − ωi)

× δ(s′ − sj )δ(ω′ − ωj )

〉

= ρ2

(4π )2 f (ω) f (ω′)

× gbb(s − s′, ω, ω′) (6)

defines the intralayer generalized distribution function
gbb (12) = gtt (12) = gbb(s12, ω1, ω2) between the particles
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of the same component. The interlayer two-body density

ρ
(2)
bt (s, ω, s′, ω′) = ρ

(2)
tb (s′, ω′, s, ω)

=
〈∑

i∈b

δ(s − si)δ(ω − ωi)

×
∑
j∈t

δ(s′ − sj )δ(ω′ − ωj )

〉

= ρ2

(4π )2 f (ω) f (ω′)

× gbt (s − s′, ω, ω′) (7)

defines the interlayer generalized distribution function
gbt (12) = gtb (21) = gbt (s12, ω1, ω2) between particles of dif-
ferent components.

The functions f(cos θ ), gbb(12), and gbt(12) represent the
list of the quantities to be found from the integral equa-
tions. To determine them we follow the work of Lomba, Lado
et al.6 and generalize the theory to the bilayer case. The first
Kirkwood-Born-Green-Yvon (KBGY) equation,

d

dx
ln[f (x)] = −βρ

4π

∫
ds dω′f (ω′)gbb(s, ω, ω′)

× d

dx
ubb(s, ω, ω′)

− βρ

4π

∫
ds dω′f (ω′)gbt (s, ω, ω′)

× d

dx
ubt (s, ω, ω′), (8)

couples one-body to two-body distributions; here (and below)
x = cos θ = ωz. The inhomogeneous OZ equations

hμν(s12, ω1, ω2) = cμν(s12, ω1, ω2)

+ ρ

4π

∑
η

∫
ds3 dω3f (x3)

×hμη(s13, ω1, ω3)cην(s32, ω3, ω2)

(9)

represent exact relations between the generalized total cor-
relation functions hμν = gμν − 1 and the generalized direct
correlation functions cμν . Here greek letters denote the com-
ponent (b or t). Since OZ equation introduces additional un-
known variables cμν , in order to make the system complete we
need a closure, i.e., a relation between hμν and cμν . In HNC
family of theories, this is29

cμν(s, ω1, ω2) = exp[−βuμν(s, ω1, ω2) + γμν(s, ω1, ω2)

+ bμν(s, ω1, ω2)] − 1 − γμν(s, ω1, ω2),

(10)

where the indirect correlation function γ μν = hμν − cμν .
The relation (10) is exact. However, the bridge function
bμν(s, ω1, ω2) is not known in any efficiently computable
form. It is the computational recipe for bμν(s, ω1, ω2) where
the approximation comes. In HNC, one simply sets bμν = 0.

However, according to the RHNC procedure we select a
reference system: particles interacting with the soft sphere
potential

uref(sij ) = 4λref

(
1

sij

)12

, (11)

with the same geometry and at the same surface density ρ as
the full system. Then we determine the indirect correlation
function γ ref

μν of the reference system by solving the homoge-
neous variant of OZ equation (9) and the pressure-consistent
(PC) closure30–32 (also called the Rowlinson-Lado closure33),

cref
μν (s) = href

μν (s) − (1 − ξ )
[
gref

μν (s) eβuref
μν (s) − 1

]
− ξ ln

[
gref

μν (s) eβuref
μν (s)

]
, (12)

where the two-component version uref
μν of uref is constructed

similar to (3) and (4). The parameter ξ is chosen to achieve
consistency of the virial pv and compressibility pressures
pc,30–32 where for our case

pv = 2β−1ρ − 1

2
ρ2

∫
gref

bb (s) s
∂uref

bb

∂s
(s) 2πs ds

− 1

2
ρ2

∫
gref

bt (s) s
∂uref

bt

∂s
(s) 2πs ds, (13)

∂pc

∂ρ
= 2β−1

{
1 − ρ

∫ [
cref
bb (s) + cref

bt (s)
]

2πs ds

}
. (14)

The bridge function is approximated as33

bμν(s, ω1, ω2) ≈ (1 − ξ )
{

ln
[
gref

μν (s) eβuref
μν (s)]

− gref
μν (s) eβuref

μν (s) + 1
}
. (15)

The value of the reference potential parameter λref was chosen
as λref = 1.0.

Equations (8)–(15) now form a closed set. Then we
should transform them into a form suitable for numerical
computation. We expand the angular dependence of pair func-
tions into the generalized spherical harmonics,23

Ylm (ω) = 1√
4π

(−1)m eimφPlm (cos θ ) , (16)

which are constructed to be orthogonal with respect to the
weight f(ω),∫

dω f (ω)Ylm (ω)Y∗
l′m′ (ω) = δll′δmm′ . (17)

The reader is referred to Refs. 23 and 24 for additional in-
formation on the computational procedure. Here we note
for completeness that the generalized Legendre polynomials
Plm (x) are defined as

Plm (x) = (sgn m̄)m

Nlm

(1 − x2)|m|/2Q|m|
l−|m| (x) , (18)

where m = −m and Qm
l (x) are monic polynomials of the

order l. The Qm
l (x) are constructed to be orthogonal with
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respect to the weight f(x)(1 − x2)m ,

1

2

1∫
−1

dx f (x) (1 − x2)mQm
l1

(x)Qm
l2

(x) = δl1l2
N 2

lm, (19)

where Nlm is their normalization factor. The orthogonality is
achieved by defining them through the recursion relation

Qm
l+1 (x) = (x − al)Qm

l (x) − blQm
l−1 (x) (20)

and the coefficients al, bl of the recursion relation are calcu-
lated by Press and Teukolsky algorithm.34, 35 This algorithm
requires the f(x) to be defined on a grid of a fine Gaussian
quadrature rule. In this paper, we call this quadrature rule the
“reference” quadrature since it is fixed throughout the calcu-
lation. We use the Gauss-Legendre reference quadrature in
[−1, 1] with 128 grid points as the reference quadrature. Since
it is used only to store one-dimensional array of f(x) val-
ues, the dependence on the reference grid size is not mem-
ory intensive. However, the correlation functions are four-
dimensional in angular variables and the memory require-
ments become prohibitive rather quickly. In order to cope
with this the generalized spherical harmonics expansion is
truncated at the order lmax; here we use lmax = 3. Then an
(lmax + 1)-point Gaussian quadrature on x variable is con-
structed for the weight f(x). We call this quadrature “adaptive”
since it is recalculated for each new estimate of f(x). The de-
pendence on zenith angle of the pair functions is discretized
on the nodes of this quadrature. Due to the fundamental theo-
rem of Gaussian quadratures the orthogonality relations (19)
are exactly reproduced on the adaptive grid for m ≤ lmax and
l1, l2 ≤ lmax − m. The dependence on azimuth φ is uniformly
discretized in [0, 2π ) with the minimum number of points
2(lmax + 1) in order to avoid the Nyquist aliasing phenomena.
This grid is fixed throughout the calculation. Note that in this
work we use the smallest quadratures which are able to repro-
duce the orthogonality relations between the retained general-
ized spherical harmonics. In our case this proved to be enough
to accurately sample the closure (10). However according to
the paper36 in general it may be necessary to increase the num-
ber of points of the quadratures since the nonlinearity of (10)
widens its angular spectrum.

The pair functions are expanded into the generalized
spherical harmonics as

γμν(s, ω1, ω2) = 4π
∑

l1,l2,m1,m2

γμν(s; l1m1l2m2)

×Yl1m1
(ω1)Yl2m2

(ω2)

× exp[−i(m1 − m2)φs], (21)

where φs is the azimuthal angle of the planar vector s with
respect to the x-axis. The dependence on φs is necessary
when deriving symmetry properties of the expansion and the
Fourier transform relations. However in practical calculations
we always choose φs = 0. Note that in case of monolayer
systems the pair functions are symmetric with respect to the
inversion of the connecting vector r ij .6 This leads to the se-
lection rule for the coefficients in (21): they are non-zero only
if m1 − m2 is an even number.6 However, when we turn to the

bilayer case the symmetry is lost, and all values of m1, m2 are
allowed. It can also be shown by performing the generalized
spherical expansion of the pair potential (4): it contains the
terms such as Y11(ω1)Y10(ω2) and Y11̄(ω1)Y10(ω2).

The generalized spherical expansion coefficients are cal-
culated as

γμν(s; l1m1l2m2) = 1

4π

2π∫
0

φ1

2π∫
0

φ2

1∫
−1

dx1

1∫
−1

dx2

× f (x1)f (x2)γμν(s, x1, x2, φ1, φ2)

×Y∗
l1m1

(ω1)Y∗
l2m2

(ω2), (22)

where the fourfold integral is evaluated using the adaptive
Gaussian quadrature described above (see Appendix B for ex-
plicit expressions). Equation (22) should be applied for ex-
pansion of the closure (10) with care, in order not to lose
the numerical accuracy. We refer the reader to the paper36 for
comprehensive analysis of this point.

To transform the OZ equation (9) into numerically
tractable form, the convolution in the lateral variables
should be eliminated. We accomplish this by using the two-
dimensional Fourier transform

γ̃μν (12) =
∫

ds γμν (12) eik·s. (23)

The expansion coefficients of a pair function are related to
their Fourier transforms through Hankel transforms6

γ̃μν(k; l1m1l2m2) = 2πi|m1−m2|
∫ ∞

0
dr r

× γμν(s; l1m1l2m2)

× J|m1−m2|(ks), (24)

γμν(s; l1m1l2m2) = 1

2πi|m1−m2|

∫ ∞

0
dk k

× γ̃μν(k; l1m1l2m2)

× J|m1−m2|(ks), (25)

where Jm(x) is the Bessel function of the order m. For
the numerical calculation of the Hankel transforms the s-
dependence of pair functions is uniformly discretized in
[0, smax] with smax = 12 and with 1000 discretization points
being used. The discretization in s-space corresponds to the
conjugate discretization in k-space and the action of the Han-
kel transform of the order |m1 − m2| is represented as a matrix
operation

γ̃μν(kj ; l1m1l2m2) =
∑

i

B|m1−m2|(s → k)ji

× γμν(si ; l1m1l2m2), (26)

γμν(sj ; l1m1l2m2) =
∑

i

B|m1−m2|(k → s)ji

× γ̃μν(ki ; l1m1l2m2). (27)

Here the difficulty comes: in the bilayer case we have the
Hankel transforms of even and odd orders, and they are all
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coupled (see below (30)) and hence must be evaluated on the
same grid. However, the conventional algorithm of Lado6 and
Hoffmann37 for numerical Hankel transforms does not allow
to mix the Hankel transforms of different parity on the same
grid. We have devised a numerical algorithm to cope with this
complication and the reader is referred to Appendix A for de-
tails in order not to overburden the presentation. The matri-
ces Bm(s → k) and Bm(k → s) for Hankel transform of order
m are precomputed and stored before the actual computation
starts.

Having expanded the pair functions into the generalized
spherical harmonics and applied the Fourier transform opera-
tion, the OZ equation (9) gets the form

γ̃μ1μ2
(k; l1m1l2m2)

= ρ
∑

μ3,l3,m3

(−1)m3 [γ̃μ1μ3
(k; l1m1l3m3) + c̃μ1μ3

(k; l1m1l3m3)]

× c̃μ3μ2
(k; l3m3l2m2). (28)

Introducing the matrix notation for the expansion
coefficients

�̃ (k)(μ1l1m1),(μ2l2m2) = γ̃μ1μ2
(k; l1m1l2m2), (29)

we solve (28) for �̃ (k) as

�̃ (k) = ρC̃ (k) J C̃ (k) [I − ρJ C̃ (k)]−1, (30)

Here I is the unity matrix and

J(μ1l1m1),(μ2l2m2) = δμ1μ2
δl1l2

δm1m2
(−1)m1 . (31)

The direct correlation function at large distance s behaves
asymptotically as the potential,

cμ1μ2
(s; l1m1l2m2) ∼ −βuμ1μ2

(s; l1m1l2m2), (32)

and hence it has a long range tail. Since the numerical versions
of the Hankel transforms are truncated at a finite range, we are
in danger of losing numerical accuracy. In order to overcome
this difficulty, we subtract from the coefficients c the function
with the same long range behaviour but with an analytically
known Hankel transform.6, 37 Namely, from the coefficients
that transform with J0(ks) and J2(ks) kernels we subtract

−βu�(s; l1m1l2m2) = βμ2�(l1m1l2m2)
α2

24
s2

×
1∫

0

dx x4 exp(−αs x). (33)

From the coefficients that transform with a J4(ks) kernel we
subtract

−βu�(s; l1m1l2m2) = βμ2�(l1m1l2m2)
α7

720
s4

×
1∫

0

dx x6 exp (−αs x) , (34)

and from the coefficients that transform with a J6(kr) kernel
we subtract

−βu�(s; l1m1l2m2) = βμ2�(l1m1l2m2)
α9

40320
s6

×
1∫

0

dx x8 exp (−αs x) . (35)

Here �(l1m1l2m2) is a generalized spherical expansion
coefficient of 3(μ̂i · ŝij )(μ̂j · ŝij ) − μ̂i · μ̂j . The result-
ing coefficients c�

μ1μ2
(s; l1m1l2m2) = cμ1μ2

(s; l1m1l2m2)
+ βu�(s; l1m1l2m2) are short-ranged. We perform the nu-
merical Hankel transforms of the c�

μ1μ2
(s; l1m1l2m2) and

add back to them the corresponding analytical transforms
of (33)–(35). We will not burden the text with the explicit
expressions for u� since they can be readily obtained in any
symbolic computation suite such as Maple or Mathematica.
The numerical parameter α was chosen to be 1.4.

We go back to the KBGY equation (8) and rewrite it in
terms of the generalized Legendre functions Plm(cos θ ),6

d

dx
ln[f (x)] =

∑
l1,l2,m

ξl1,l2,m
Pl1m

(x)
dPl2m

(x)

dx
, (36)

ξl1,l2,m
= −ρ

∫
ds

∑
μ,l3,m3

gbμ(s; l1ml3m3)

×βubμ(s; l2ml3m3), (37)

where ubμ(s; l1ml3m3) are the expansion coefficients of the
pair potential ubμ(s, ω, ω′). In order to solve (36) with respect
to f(x) we expand the ln [f(x)] as

ln[f (x)] =
∞∑
l=1

ylPl0 (x) + const, (38)

where the constant term is determined from the normalization
condition for f(x). We insert (38) into Eq. (36) and after ex-
panding both sides of the equality into generalized Legendre
polynomials, we find

yl =
∑
l3

[D−1]ll3

∫
dx

∑
l1,l2,m

ξl1,l2,m
Pl1m

(x)

×
dPl2m

(x)

dx
Pl30 (x) , (39)

where the matrix D is

Dl1l2
=

∫
dx Pl10 (x)

dPl20 (x)

dx
. (40)

The derivatives
dP

lm
(x)

dx
are found from differentiation of the

definition of Plm (18) and of the recursion relation (20).
Now we need to solve Eqs. (10), (30), (38), and (39) for

the full system and for the reference system with the closure
(12). In the work of Lomba et al.,6 the solution is found by the
Picard iterations. In this paper, we use the Newton-GRMES
algorithm as implemented in the public-domain Newton iter-
ative solver NITSOL.26 In order to apply the algorithm we
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FIG. 1. Orientational distribution functions of dipolar moments in a bilayer
of dipolar soft spheres at T = 1.0, μ = 1.0, and h = 1.0. Red solid lines are
RHNC and black dotted lines are MC data. The curves correspond to surface
densities ρ = 0.3, 0.4, and 0.6 in the order of increasing extremum heights.

need to define the iteration functions and the nonlinear resid-
ual functions. We refer the interested reader to Appendix B
for the details.

III. MONTE CARLO SIMULATION

The MC simulations were carried out in the canonical
(NVT) ensemble with N = 288 particles equally distributed
among two square layers with sides L. The layers are sepa-
rated by the distance h. The simulation box formed by these
layers has periodic boundary conditions (PBCs) along x and
y directions and no PBCs are taken along z direction. The to-
tal number of steps was about 106, each step consisting of
sequential displacement, rotation and inversion of all the par-
ticles. The amplitude of the trial moves was chosen to main-
tain the acceptance ratio between 25% and 75%. The dipolar
part of the potential energy was computed by the 2D Ewald
summation method EW2D + h.38 Note that there is a typo in
Ref. 38 in the formulas and we refer the reader to the work19

for explicit expressions. All the Ewald method parameters
were setup according to Ref. 19.

IV. RESULTS AND CONCLUSION

In order to test the theory developed here, the RHNC
equations where solved for the bilayer system consisting of
particles with dipole moment μ = 1.0 on monolayers sepa-
rated by distance h = 1.0 at inverse temperature β = 1.0. We
considered the cases for surface densities ρ = 0.3, 0.4, and
0.6. The one-particle angular distribution functions are pre-
sented in Fig. 1. It is seen that up to ρ = 0.4 they agree well
with Monte Carlo results. It is known that when the dipolar
interaction becomes stronger, the dipoles are predominantly
oriented in plane19 and the distribution functions have distinct
peak around cos θ = 0. However in the case of μ = 1.0 treated
here the interaction is not so strong, and the distribution func-
tions on Fig. 1 are almost flat, i.e., the dipoles orient almost
freely in space.

Structural properties of the bilayer are characterized by
the angle-averaged center-to-center intra- and interlayer pair
distribution functions,

g000
μν (s) = 〈gμν(s, ω1, ω2)〉ω1ω2

= gμν (s; 0000) , (41)

which are presented in Fig. 2 for intralayer case and in
Fig. 3 for interlayer case. It is seen that in the intralayer
case the distribution functions agree with Monte Carlo almost
quantitatively up to ρ = 0.4. However in the interlayer case
small discrepancies are seen. To interpret the results in Figs. 2
and 3, we note that if h = 0, then g000

bb (s) = g000
bt (s), and they

both would be equal to the distribution function of monolayer
at the density 2ρ. If we start to increase h from zero, this can
be thought of as if the half of the particles in the monolayer,
the t species, would become penetrable and smeared out with
respect to another half, the b-species. That is why g000

bt (s) is
not zero and increasing in the neighborhood of s = 0, and has
the smaller peak heights, in contrast to g000

bb (s). The peaks in
g000

bt (s) are also shifted to smaller s with respect to g000
bb (s)

since t-species can come closer to b-species than b-species to
b-species.

The orientational properties are characterized by the
projections of distribution function onto standard rotational
invariants.6, 19 We compute the two most important projec-
tions, h110

μν (s) and h112
μν (s).6 They are defined as

h110
bb (s) = 3〈gbb(s, ω1, ω2)(μ̂1 · μ̂2)〉ω1ω2

= 3[〈x〉2 gbb (s; 0000) + σ 〈x〉 {gbb (s; 1000) + gbb (s; 0010)} + σ 2gbb (s; 1010)

+{〈x2〉 − 1}gbb (s; 1111) ], (42)

h112
bb (s) = 3

2
〈gbb(s, ω1, ω2)[3(μ̂1 · ŝ)(μ̂2 · ŝ) − (μ̂1 · μ̂2)]〉ω1ω2

= −3

2

[
〈x〉2 gbb (s; 0000) + σ 〈x〉 {gbb (s; 1000) + gμν (s; 0010)} + σ 2gbb (s; 1010)

+ {1 − 〈x2〉}
{

1

2
gbb (s; 1111) − 3

4
(gbb(s; 11̄11) + gbb(s; 1111̄)

}]
, (43)
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for the intralayer case, and

h110
bt (s) = 3〈gbt (s, ω1, ω2)(μ̂1 · Sμ̂2)〉ω1ω2

= 3[−〈x〉2gbt (s; 0000) − σ 〈x〉 {gbt (s; 1000) + gbt (s; 0010)} − σ 2gbt (s; 1010)

+{〈x2〉 − 1}gbt (s; 1111)], (44)

h112
bt (s) = 3

2
〈gbt (s, ω1, ω2)[3(μ̂1 · r̂)(Sμ̂2 · r̂) − (μ̂1 · Sμ̂2)]〉ω1ω2

= −3

2

[(
3

h2

s2 + h2
− 1

)

×{〈x〉2 gbt (s; 0000) + σ 〈x〉 (gbt (s; 1000) + gbt (s; 0010)) + σ 2gbt (s; 1010)}

+ (1 − 〈x2〉)
{(

3

2

s2

s2 + h2
− 1

)
gbt (s; 1111) − 3

2

s2

s2 + h2
gbt (s; 11̄11)

}

+ 3
sh

s2 + h2

√
1 − 〈x2〉

× {σ (gbt (s; 1110) + gbt (s; 1011)) + 〈x〉 (gbt (s; 1100) + gbt (s; 0011))}
]

, (45)

for the interlayer case. Note that in the definitions of h110
bt (s)

(44) and h112
bt (45), we reflect the dipole moment μ̂2 so that

we calculate the rotational invariant of the original bilayer
system, rather than the mapped monolayer one. The pro-
jections h110

bb and h110
bt characterize the degree of correlation

in orientations of the dipole pair at a distance s. Here 〈x〉
= 1

2

∫
f (x)xdx, 〈x2〉 = 1

2

∫
f (x)x2dx, and σ 2 = 〈x2〉 − 〈x〉2.

The results for the intralayer case are presented in Fig. 4, and
for the interlayer case in Fig. 5.

FIG. 2. Intralayer angle-averaged pair distribution function for the same sys-
tem as in Fig. 1. The curves correspond to surface densities ρ = 0.3, 0.4, and
0.6 in the order of increasing first peak heights.

The projections h112
bb and h112

bt carry information on ther-
modynamical properties of the system. The results for the in-
tralayer case are presented in Fig. 6 and for the interlayer case
in Fig. 7. The results in Figs. 6 and 7 can be interpreted us-
ing the same picture as we have used above for distribution
functions. The first peak in the orientation pair functions indi-
cates that the neighboring particles (in the same or in different
layers) tend to orient in the same direction.

It would be interesting to see how the theory compares to
Monte Carlo simulations at higher dipolar moments μ when
the dipoles are predominantly oriented in the plane. In case

(s
)

FIG. 3. Interlayer angle-averaged pair distribution function for the same sys-
tem and parameters as in Fig. 2.
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(c)(b)(a)
(s

)

FIG. 4. Projection of intralayer pair distribution function h110
bb (s) for the same system as in Fig. 1; (a) at surface density ρ = 0.3; (b) at surface density ρ = 0.4;

(c) at surface density ρ = 0.6.

of density values ρ = 0.3, 0.4, and 0.6, we have achieved the
convergence of RHNC equations up to μ ≈ 1.9 by gradually
increasing μ starting from the value of 1.0. Above the value μ

≈ 1.9, the convergence becomes extremely slow, and we did
not wait for the results. Whereas the value of μ = 1.9 is not
high enough to reach the mode of inplane dipole orientation,
we encounter problems also with Monte Carlo: starting from
μ ≈ 1.9 strong dependence on sample size is observed. We
have tried the particle numbers N = 288, 576, 1152, and each

time the shape of the pair functions changes considerably.
More over, h110

bb has a slowly decaying tail which oscillates
as the sample size is changed. So the quantitative comparison
to RHNC is not possible. To clarify what is happening, e.g.,
a phase transition, some structural reorganization, inefficient
Monte Carlo sampling, or a need to take much bigger simula-
tion sample, an additional research is required.

In conclusion, the RHNC theory was extended to the case
of the bilayer of dipolar particles. The procedure of numerical

(c)(b)(a)

)

FIG. 5. Projection of intralayer pair distribution function h110
bt (s) for the same system as in Fig. 1; (a) at surface density ρ = 0.3; (b) at surface density ρ = 0.4;

(c) at surface density ρ = 0.6.
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(c)(b)(a)
(s

)

FIG. 6. Projection of intralayer pair distribution function h112
bb (s) for the same system as in Fig. 1; (a) at surface density ρ = 0.3; (b) at surface density ρ = 0.4;

(c) at surface density ρ = 0.6.

solution using the Newton-GRMES method is presented and
validated on several test calculations. The isotropic center-to-
center distribution for intralayer case is in good agreement
with Monte Carlo up to ρ = 0.4 but for interlayer case we
clearly see the discrepancies. The projections onto rotational
invariants h112 are reproduced much better than h110 in in-
tralayer case, and again the interlayer projections are worse
than intralayer ones. It looks like in the hard-spheres mono-
layer case the RHNC gives slightly better orientational pair
functions6 at the intermediate densities ρ ≈ 0.4. We believe
that this can be explained by the influence of two factors. First,

at the same surface density the soft sphere monolayer sys-
tem is effectively denser than the hard sphere one treated in
Ref. 6. This can be seen from the center-to-center distribution
function which is more structured for the soft sphere system.
Then, in the bilayer case the repulsion from the second mono-
layer also makes the system effectively denser. The other fac-
tor is that in the bilayer case the pressure-consistent closure
(the reference system calculation) works slightly worse for
interlayer distribution functions. Perhaps the reason is that in
the monolayer case we have only the lateral pressure, and the
PC closure achieves consistency in it. However in the bilayer

(b) (c)
(a)

(s
)

FIG. 7. Projection of intralayer pair distribution function h112
bb (s) for the same system as in Fig. 1; (a) at surface density ρ = 0.3; (b) at surface density ρ = 0.4;

(c) at surface density ρ = 0.6.
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case we have also the normal pressure which reflects interac-
tion between the monolayers. So one possible direction of re-
search is to extend the notion of thermodynamic consistency
on the normal pressure, and to generalize the PC closure ap-
propriately, in the hope that this will improve the interlayer
reference distribution functions and hence the bridge func-
tions. Besides that, in this paper we compute only the distribu-
tion functions for the bilayer since here we are focusing our
efforts to extend the formalism onto bilayer case. However,
there are a lot more thermodynamic properties that should
be investigated: the internal energy; the normal and the lat-
eral pressure; the dependence of the interaction between the
monolayers upon the external or pair potentials acting upon
the soft spheres. More over, work currently is underway to
include the point charges between the monolayers into the
RHNC framework, to model theoretically the interaction be-
tween the (spatial charge) double layer and the dipolar struc-
ture of the interface surfaces.
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APPENDIX A: NUMERICAL HANKEL TRANSFORMS

To the authors’ knowledge, in the liquid structure calcu-
lations in planar setup there occur the Hankel transforms of
even order only. And the most robust algorithm is for J0(ks)-
transform which has been devised by Lado,39 and more than
two decades later was rediscovered by Yu et al.40 The trans-
forms of higher (even) order are reduced to zero order trans-
form by special “raising” and “lowering” operations.6, 37

According to Lado’s recipe,39 we assume that the func-
tion f(s) is defined for s ≥ 0, that f(s) vanishes for s ≥ S,
and that its Fourier (Hankel) transform f̃ (k) vanishes for k
≥ K, i.e., the function is band-limited both in space and in
frequency. Then the discrete version of the zero-order Hankel
transforms (24), (25) is

f̃
(
k

(0)
p

) = 4π

K2

N−1∑
q=1

f
(
s

(0)
q

) J0

(
k

(0)
p s

(0)
q

)
[
J1

(
Ks

(0)
q

)]2 , (A1)

f
(
s

(0)
p

) = 1

πS2

N−1∑
q=1

f̃
(
k

(0)
q

) J0

(
k

(0)
q s

(0)
p

)
[
J1

(
k

(0)
q S

)]2 . (A2)

Here

s
(0)
p = η

(0)
p

η
(0)
N

S, k
(0)
p = η

(0)
p

S
(A3)

are the zero-order Bessel grid points in space and in frequency
domain correspondingly; η

(0)
p is the p-th positive root of J0(s);

the spectral cut-off K = kN. This algorithm is very accurate
and now has become a standard in the field of planar liquid
structure calculations.

After a while in the field of optics, a generalization of
the Lado’s recipe was done for arbitrary integer order Hankel

transform.41 Under the same assumptions about the function
f(s), the discrete m-order transform is

f̃
(
k

(m)
p

) = im
4π

K2

N−1∑
q=1

f
(
s

(m)
q

) Jm

(
k

(m)
p s

(m)
q

)
[
Jm+1

(
Ks

(m)
q

)]2 , (A4)

f
(
s

(m)
p

) = i−m 1

πS2

N−1∑
q=1

f̃
(
k

(m)
q

) Jm

(
k

(m)
q s

(m)
p

)
[
Jm+1

(
k

(m)
q S

)]2 . (A5)

Here

s
(m)
p = η

(m)
p

η
(m)
N

S, k
(m)
p = η

(m)
p

S
(A6)

are the m-order Bessel grid points in space and in frequency
domain correspondingly; η

(m)
p is the pth positive root of Jm(s);

the spectral cut-off K = kN; i is imaginary unit. The accuracy
of the algorithm is the same41 as that of the original Lado’s
recipe.

The algorithm of Lado is quite popular in liquid struc-
ture calculation because it would be exact for the functions
which are band-limited both in space and in frequency (if such
functions existed), and in physics we usually have functions
f(s) which are extremely close to this class (after having sub-
tracted analytically the cusps, discontinuities, and tails if nec-
essary). We would like to devise an algorithm for integer order
Hankel transforms on a common grid with the same accuracy
characteristics as in the original Lado approach.

The discrete transforms (A1)–(A5) are defined on the
Bessel grid, and it is known that the band-limited functions
(in Hankel transform sense) can be discretized on Bessel grids
without the loss of information.42, 43 More precisely, there is a
theorem: if function f(s) is band-limited to [0, K] in frequency
then it has the following sampling expansion:42

f (s) =
∞∑

p=1

2η
(m)
p Jm (Ks)

Jm+1

(
η

(m)
p

)(
η

(m)2
p − K2s2

)f
(
s

(m)
p

)
. (A7)

Similarly in frequency domain we have

f (k) =
∞∑

p=1

2η
(m)
p Jm (Sk)

Jm+1

(
η

(m)
p

)(
η

(m)2
p − S2k2

)f
(
k

(m)
p

)
. (A8)

So if we define such a function on the Bessel grid, we can
freely interpolate between the grid points.

Now since we have the discrete transforms (A4)–(A5),
each defined on its own grid, we could choose one com-
mon grid, e.g., zero-order Bessel grid, and discretize the s-
dependence of all the pair functions on it. Then when calculat-
ing m-order Hankel transform, we could first interpolate from
the zero-order Bessel grid to m-order grid using (A7) or (A8),
then perform the transform using (A4) or (A5), and interpo-
late back to the zero-order grid. However having carried out
a number of numerical experiments we are led to the conclu-
sion that this procedure is not robust. Here are our empirical
findings:

(1) Interpolation from the even order Bessel grid is robust
if f(s) is even with high accuracy. Practically this means
that the leading terms in the Taylor expansion around
zero should be even powers of s.
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(2) Interpolation from the odd order Bessel grid is robust if
f(s) is odd with high accuracy. Practically this means that
the leading terms in the Taylor expansion around zero
should be odd powers of s.

(3) Interpolation from the m-order Bessel grid is robust if
f(s) behaves as O(sm) at s = 0.

The same considerations apply to the accuracy of dis-
crete transforms (A4), (A5). In fact, all these observations can
be understood if we look at (A7) and take into account that
Jm(Ks) ∼ (Ks/2)m/�(m + 1) at s = 0, and its Taylor expansion
is only in even or only in odd powers, in accordance with the
parity of m.

At first glance, based on the facts (1)–(3), one can con-
clude that the discrete transforms (A4)–(A5) are useless for m
> 0. However, the situation is not as hopeless. The key point
here is that for any given pair function h we perform the Han-
kel transform of order m only on the generalized spherical
expansion coefficient h(s; l1m1l2m2) with m1 − m2 = m. So
if the s-vector dependence of h can be expanded into Taylor
series around s = 0, then we have

h (s; · · ·) =
∑
mn

h(m,n) (· · ·)
m!n!

sm
x sn

y

=
∑
mn

h(m,n) (· · ·)
m!n!

sm+n

× cosm φs sinn φs. (A9)

This means that if h(s) is smooth enough, then

h(s; l1m1l2m2) ∼ s|m1−m2| (A10)

at s = 0, and the criteria (1)–(3) above are satisfied. The
discrete transforms (A4)–(A5) of order m are thus robust
for the corresponding generalized spherical expansion coef-
ficient. The only remaining task is to devise a common grid,
from which we can reliably interpolate irrespectively of the
asymoptic behaviour at s = 0. We have chosen the uniform
grid

si = i − 1

N − 1
S, ki = i − 1

N − 1

π

S
, K = kN, i = 1 . . . N

(A11)
as a common grid, and according to the Whittaker–Shannon
interpolation formula

f (s) =
N∑

i=1

f (si)

{
sin

[
π
�s

(s − si)
]

π
�s

(s − si)

± sin
[

π
�s

(s + si)
]

π
�s

(s + si)

}
(A12)

and

f (k) =
N∑

i=1

f (ki)

{
sin

[
π
�k

(k − ki)
]

π
�k

(k − ki)

± sin
[

π
�k

(k + ki)
]

π
�k

(k + ki)

}
, (A13)

which are exact for band-limited functions (in the Fourier
transform sense). Here the plus signs are taken for even f,
hence even m, and the minus signs are taken for odd f, hence
odd m. Note that all the transform and interpolation rela-
tions (A4)–(A13) can be represented as matrix multiplica-
tions. Then we have for the discrete transform matrices Bm(s
→ k) and Bm(s → k),

Bm (s → k) = Bk (m) H (m; s → k) Us (m) , (A14)

Bm (k → s) = Bs (m) H (m; k → s) Uk (m) , (A15)

where Us(m) and Uk(m) are the matrices corresponding to
interpolation from uniform to m-order Bessel grid in space
(subscript s) and frequency (subscript k) domain; Bk(m) and
Bs(m) correspond to interpolation from m-order Bessel to uni-
form grid in space (subscript s) and frequency (subscript k)
domain; H(m; s → k) and H(m; k → s) are the matrices of
the discrete transforms (A4) and (A5) of order m. Note that
the transforms (A14) and (A15) yield the same accuracy as the
original Lado approach (A1)–(A2) provided that the asym-
potics (A10) holds.

APPENDIX B: SUMMARY OF NUMERICAL
PROCEDURE

The solution of RHNC equations involves two stages.
First, we solve the pressure-consistent integral equation for
the reference system. We do it in terms of the variables Pμν ,
Hμν , Cμν which are multicomponent generalization of P, H, C
of the Lado’s work.31 The Newton solver’s iteration function
is chosen to be Hμν (s) = gref

μν (s) eβuref
μν (s) − 1 and the corre-

sponding nonlinear residual δHμν(s) is calculated through the
following steps:

Pμν (s) = Hμν (s) − ln[1 + Hμν (s)], (B1)

Cμν (s) = [1 + Hμν (s)]
(
e−βuref

μν (s) − 1
) + ξPμν (s) , (B2)

P̃μν(kj ) =
∑

i

B0 (s → k)ji Pμν(si), (B3)

C̃μν(kj ) =
∑

i

B0 (s → k)ji Cμν(si), (B4)

H̃ (k) = ξP̃ (k) + ρC̃ (k) C̃ (k) [1 − ρC̃ (k)]−1, (B5)

where H̃ (k), C̃ (k) , and P̃ (k) are matrices with the elements
H̃μν (k), C̃μν (k) , and P̃μν (k) correspondingly,

Hμν(next)(sj ) =
∑

i

B0 (k → s)ji H̃μν(ki), (B6)

δHμν (s) = Hμν(next) (s) − Hμν (s) . (B7)

After the solution is converged, the bridge functions are cal-
culated as

bμν (s) = (ξ − 1) Pμν (s) . (B8)
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Next the RHNC system is solved. We choose the iteration
functions to be y1(x) = ln [f(x)], γ bb(s, x1, x2, φ1, φ2), γ bt(s, x1,
x2, φ1, φ2), and η = ln {2/

∫
dx exp [y1(x)]}. Here the function

y1(x) is defined on the reference grid and the x-dependence of
the other functions is defined on the adaptive grid. The func-
tion η is used to ensure that the converged f(x) will have proper
normalization. Given a set of estimates for iteration functions,
the nonlinear residuals δy1, δγ bb, δγ bt, η for our system of in-
tegral equations are calculated by the following steps:

(1) Orientational distribution function f(x) is calculated from
y1(x) on the reference grid,

f (x) = exp[η + y1 (x)], (B9)

where

η = ln

{
2

/ ∫
dx exp[y1 (x)]

}
(B10)

is one of the residual outputs (the value of η on input is
ignored).

(2) A set of generalized spherical harmonics Ylm (ω) and the
corresponding adaptive quadrature weights ωi and grid
points xi are calculated for the current f(x). All the other
input iteration functions are regarded as defined on this
adaptive grid.

(3) Updated estimates of indirect correlation functions
γbb(next), γbt(next) are calculated,

gμν(s, x1, x2, φ1, φ2) = exp[−βuμν(s, x1, x2, φ1, φ2) + γμν(s, x1, x2, φ1, φ2) + bμν(s)], (B11)

cμν(s, x1, x2, φ1, φ2) = gμν(s, x1, x2, φ1, φ2) − γμν(s, x1, x2, φ1, φ2) − 1, (B12)

cμν(s; l1m1l2m2) = 1

16

1

(lmax + 1)2
(sgn m1)m1 (sgn m̄2)m2

1

Nl1m1
Nl2m2

∑
i,j

ωiωj

× (
1 − x2

i

)|m1|/2Q|m1|
l1−|m1|(xi)

(
1 − x2

j

)|m2|/2Q|m2|
l2−|m2|(xj )

×
∑
pq

cos(m1φp − m2φq)cμν(s, xi, xj , φp, φq), (B13)

c̃μν(kj ; l1m1l2m2) =
∑

i

B|m1−m2|(s → k)jicμν(si ; l1m1l2m2), (B14)

�̃(next)(k) = ρC̃(k)J C̃(k)[I − ρJ C̃(k)]−1, (B15)

γμν(next)(sj ; l1m1l2m2) =
∑

i

B|m1−m2|(k → s)ji γ̃μν(next)(ki ; l1m1l2m2), (B16)

γμν(next)(s, x1, x2, φ1, φ2) =
∑
l1m1

∑
l2m2

(sgn m1)m1 (sgn m̄2)m2
1

Nl1m1
Nl2m2

× (
1 − x2

1

)|m1|/2Q|m1|
l1−|m1|(x1)

(
1 − x2

2

)|m2|/2Q|m2|
l2−|m2|(x2)

× cos(m1φ1 − m2φ2)γμν(next)(s; l1m1l2m2), (B17)

and
δγμν(s, x1, x2, φ1, φ2) = γμν(next)(s, x1, x2, φ1, φ2) − γμν(s, x1, x2, φ1, φ2) (B18)

are parts of the residual outputs.

(4) Updated estimate of orientational distribution function
f(x) is calculated,

ξl1,l2,m
= −ρ

∫
ds

∑
μ,l3,m3

gbμ(s; l1ml3m3)

×βubμ(s; l2ml3m3), (B19)

yl =
∑
l3

[D−1]ll3

∫
dx

∑
l1,l2,m

ξl1,l2,m
Pl1m

(x)

×
dPl2m

(x)

dx
Pl30 (x) , (B20)

y1(next) (x) =
∞∑
l=1

ylPl0 (x) + const, (B21)

and

δy1 (x) = y1(next)(x) − y1(x) (B22)

is the last part of the residual outputs. The NITSOL
solver has a few more important parameters which we
specify. The maximum size of the Krylov subspace is
set to 30. Maximum allowable number of backtracks is
set to 1000. We use the default values for all the other
parameters.
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