Санкт-Петербургский Государственный Университет Физический факультет Кафедра квантовой механики

Уровни энергии основного и низших возбуждённых состояний тяжёлых двухъядерных квазимолекул

Выпускная квалификационная работа студента дневного отделения 4-ого курса Котова Артёма Артуровича

> Научный руководитель: к.ф.-м.н., **Глазов Д. А.**

Рецензент: д.ф.-м.н., **Ульянов С. В.**

Санкт-Петербург 2018

Содержание

1.	Введение	2
2.	Одноэлектронная задача	5
	2.1. Монопольное приближение	. 5
	2.2. Точный потенциал	. 6
3.	Двухэлектронная задача	10
4.	Результаты	11
	4.1. Одноэлектронная задача. Основное состояние	. 11
	4.2. Одноэлектронная задача. Возбужденные состояния	. 11
	4.3. Двухэлектронная задача	. 14
5.	Заключение	16
А.	Приложение	17
	А.1. Монопольное приближение потенциала со сферической моделью ядер	. 17
	А.2. Матричные элементы оператора межэлектронного взаимодействия	. 18
в.	Приложение	20
Сп	писок литературы	22

1. Введение

Одноэлектронная двухъядерная квазимолекула представляет собой простейшую молекулярную систему. В такой системе электрон находится в двухцентровом потенциале ядер с зарядами Z₁ и Z₂:

$$V(Z_1, Z_2, \mathbf{r}) = V_n(Z_1, |\mathbf{r} - \mathbf{R_1}|) + V_n(Z_2, |\mathbf{r} - \mathbf{R_2}|),$$
(1)

где R_1 и R_2 — радиус-векторы центра ядер.

Теоретический анализ таких систем начинается с нахождения решения уравнения Шрёдингера или уравнения Дирака с потенциалом (1). В нерелятивистском случае уравнение Шрёдингера может быть преобразовано к двум одномерным дифференциальным уравнениям и, таким образом, решено с очень высокой точностью. К тому же, масштабная замена r' = r/Z позволяет свести решение с межъядерным расстоянием R и суммарным зарядом ядер Z к решению таких же уравнений для молекулы H_2^+ с межъядерным расстоянием R/Z. Однако в релятивистском случае не удается разделить переменные в уравнении Дирака и приходится находить решения для компонент биспинора численно.

Наиболее интересными являются т. н. тяжелые квазимолекулы, т. е. такие двухъядерные системы, для которых $\alpha Z_{\text{eff}} \approx 1$, где $\alpha = e^2 \approx \frac{1}{137}$ — постоянная тонкой структуры. В таких системах низший электронный уровень дискретного спектра близок к погружению в отрицательный континуум [1, 2, 3, 4].

Рассмотрим квазимолекулу, состоящую из электрона и двух ядер урана — U₂¹⁸³⁺. Эффективный суммарный заряд такой системы будет меньше 184, но больше 173 при достаточно малых расстояниях между ядрами, поэтому в такой системе возможно погружение в отрицательный континуум (см. Рис. 2).

Рис. 2: Полная энергия электрона в основном состоянии в зависимости от эффективного заряда молекулы.

Полная энергия электрона основного состояния U₂¹⁸³⁺ в зависимости от расстояния между ядрами схематически изображена на следующем рисунке:

Рис. 3: Полная энергия основного состояния электрона в зависимости от межъядерного расстояния.

Процесс погружения уровня происходит при достижении межъядерного расстояния R значения, равного R_c — критического расстояния. Например, $R_c = 38,41$ [фм] для точечной модели ядра [5].

Расчеты энергий в основном состоянии для различных ядер $(U_2^{183+}, Th_2^{179+})$ выполнены, например, в работах [5], [6] (метод Дирака-Фока) и [7] (диагонализация гамильтониана в базисе одноцентровых функций).

Описанные выше задачи имеют прямое применение в процессах столкновения тяжелых ионов, т. к. позволяют изучить спектр системы в фиксированный момент времени.

Рис. 4: Рассеяние одного атома на другом.

В настоящее время эксперименты по столкновениям выполняются с многоэлектронными ионами, где корреляционные эффекты выходят на первый план, что существенно усложняет теоретическое рассмотрение [8]. Развитие экспериментальной техники в будущем позволит изучать столкновения всё более сильно ионизованных систем. В качестве системы промежуточного типа мы рассматриваем двухэлектронные квазимолекулы.

Формирование квазимолекул в столкновениях сильнозаряженных ионов с нейтрально заряженными атомами наблюдалось на установках в центре по изучению тяжёлых ионов имени Гельмгольца в Дармштадте (нем. GSI Helmholtzzentrum für Schwerionenforschung). Также планируются эксперименты в центре по исследованию ионов и антипротонов (англ. FAIR — Facility for Antiproton and Ion Research) по изучению квазимолекул в столкновениях ионов вплоть до U⁹¹⁺–U⁹²⁺ [9].

Первоначально опишем методы, которые применялись для решения поставленных задач. В данной работе предполагается использование релятивистской системы единиц ($\hbar = c = m_e = 1$).

2. Одноэлектронная задача

В случае двухцентрового потенциала стационарное уравнение Дирака имеет вид

$$\hat{H}_{\mathcal{D}}\psi_n(\boldsymbol{r}) = E_n\psi_n(\boldsymbol{r}),\tag{2}$$

где E_n — энергия стационарных состояний, $\hat{H}_{\mathcal{D}} = \boldsymbol{\alpha} \cdot \boldsymbol{p} + V(Z_1, Z_2, \boldsymbol{r}) + \beta$ — гамильтониан Дирака; в этом выражении $\boldsymbol{p} = -i\boldsymbol{\nabla}$ — оператор импульса, а β и $\boldsymbol{\alpha}$ — стандартные дираковские матрицы:

$$\beta = \begin{pmatrix} I & \mathbb{O} \\ \mathbb{O} & -I \end{pmatrix}, \quad \alpha_j = \begin{pmatrix} \mathbb{O} & \sigma_j \\ \sigma_j & \mathbb{O} \end{pmatrix}, \quad j \in \{x, y, z\},$$

здесь \mathbb{O} и I — нулевая и единичная матрицы размера 2 × 2 соответственно, а σ_j — матрицы Паули:

$$\sigma_x = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad \sigma_y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \quad \sigma_z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.$$

Как уже упоминалось, в таком уравнении для квазимолекулы не удается разделить переменные. Однако это становится возможным в *монопольном приближении*.

2.1. Монопольное приближение

Двухцентровой потенциал (1) в уравнении (2) представляют в виде мультипольного разложения [6]:

$$V(Z_1, Z_2, \boldsymbol{r}) = V_n(Z_1, |\boldsymbol{r} - \boldsymbol{R_1}|) + V_n(Z_2, |\boldsymbol{r} - \boldsymbol{R_2}|) = \sum_{l=0}^{\infty} V_l(r) P_l(\cos\theta), \quad (3)$$

где угол θ выбирают согласовано с осью симметрии системы (ось z на Рис. 1), P_l — полиномы Лежандра, $V_l(r)$ определяется следующим выражением [10]:

$$V_l(r) = \frac{2l+1}{2} \int_0^\pi \sin\theta \, d\theta \left[V_n \Big(Z_1, \left| \boldsymbol{r} - \boldsymbol{R_1} \right| \Big) + V_n \Big(Z_2, \left| \boldsymbol{r} - \boldsymbol{R_2} \right| \Big) \right] P_l(\cos\theta). \tag{4}$$

Монопольным приближением называют нулевой член формулы (3). Таким образом, явный вид монопольного приближения с использованием точечной модели ядра имеет вид (начало системы координат равноудалено от ядер):

$$V_{\text{mono}}(r, R) = \begin{cases} -\frac{Z}{r}; & r \ge R\\ -\frac{Z}{R}; & r \le R, \end{cases}$$

где Z — суммарный заряд ядер, $R = |\mathbf{R}_1| = |\mathbf{R}_2|$ — расстояние от начала координат до ядра.

При таком приближении получаем сферически симметричное уравнение, собственные значения и собственные вектора гамильтониана можно вычислять множеством различных способов, например, с помощью метода *DKB (dual-kinetic-balance)* [11].

В случае тяжелого урана нецелесообразно брать точечную модели ядра. Например, можно использовать модель равномерно заряженной сферы (см. Приложение A.1). Для более сложных моделей ядер монопольное приближение потенциала можно получить численным интегрированием в выражении (4).

2.2. Точный потенциал

Несмотря на то, что в случае двухъядерной квазимолекулы нарушается сферическая симметрия, существует метод нахождения волновых функций уравнения Дирака (2) в аксиально симметричном поле — метод *A-DKB* [12].

В случае аксиальной симметрии потенциала $V(r, \theta)$ полный момент импульса J не сохраняется, однако сохраняется z-проекция J_z (ось z — ось симметрии системы), так как она коммутирует с гамильтонианом системы:

$$[J_z; H] = 0.$$

Следовательно, H и J_z имеют общий набор собственных функций с явно выделенной зависимостью от азимутального угла φ . Также исследование координатой системы Кассини применительно к двухцентровому уравнению Дирака проведено в [13].

Таким образом, четырёх-компонентные волновые функции уравнения Дирака (2), т. н. биспиноры, могут быть представлены следующим образом в сферической системе координат:

$$\Psi(r,\theta,\varphi) = \frac{1}{r} \begin{pmatrix} G_1(r,\theta)e^{i(m_J - \frac{1}{2})\varphi} \\ G_2(r,\theta)e^{i(m_J + \frac{1}{2})\varphi} \\ iF_1(r,\theta)e^{i(m_J - \frac{1}{2})\varphi} \\ iF_2(r,\theta)e^{i(m_J + \frac{1}{2})\varphi} \end{pmatrix},$$
(5)

здесь 1/r выделена исключительно для дальнейшего удобства, m_J — собственное значение оператора J_z

Подстановка (5) в уравнение Дирака (2) дает следующее:

$$H_{m_J}\Phi = E\Phi,\tag{6}$$

где

$$\Phi(r,\theta) = \begin{pmatrix} G_1(r,\theta) \\ G_2(r,\theta) \\ F_1(r,\theta) \\ F_2(r,\theta) \end{pmatrix},$$

а матрица H_{m_J} имеет следующий вид:

$$H_{m_J} = \begin{pmatrix} 1+V & D_{m_J} \\ -D_{m_J} & -1+V \end{pmatrix},$$

где V — потенциал из (1), а D_{m_J} :

$$D_{m_J} = (\sigma_z \cos \theta + \sigma_x \sin \theta) \left(\frac{\partial}{\partial r} - \frac{1}{r} \right) + \frac{1}{r} (\sigma_x \cos \theta - \sigma_z \sin \theta) \frac{\partial}{\partial \theta} + \frac{1}{r \sin \theta} \left(i m_J \sigma_y + \frac{1}{2} \sigma_x \right).$$

Таким образом, задача нахождения волновых функций сведена к нахождению решения задачи (6).

Скалярное произведение в пространстве функций Φ определяется следующим образом:

$$\langle \Phi^a | \Phi^b \rangle = \int_0^\infty dr \int_0^\pi d\theta \sin \theta \left(G_1^a G_1^b + G_2^a G_2^b + F_1^a F_1^b + F_2^a F_2^b \right).$$

Накладывая граничные условия на Ф:

$$\Phi(r, \theta)\big|_{r=0} = \lim_{r \to \infty} \Phi(r, \theta) = 0,$$

сведем исходную задачу к эквивалентной вариационной задаче:

$$\delta \mathbb{S} = 0, \text{ rge } \mathbb{S} = \langle \Phi | H_{m_J} | \Phi \rangle - E \langle \Phi | \Phi \rangle.$$
(7)

Применение любого метода, основанного на конечном наборе базисных функций, начинается с приближенного разложения искомой функции в конечную комбинацию базисных функций. Пусть N — количество четырех-компонентных базисных функций, зависящих от r и θ . Введем базисный набор функций $\{W_i(r, \theta)\}_{i=1}^N$, для которых $r \in [0, r_{\text{max}}]$, а $\theta \in [0, \pi]$. Тогда приближенное разложение искомой в нашем случае функции Φ по этому базисному набору имеет вид:

$$\Phi(r,\,\theta) \simeq \sum_{i=1}^{N} C_i W_i(r,\,\theta),\tag{8}$$

где C_i — коэффициенты разложения.

Подстановка разложения (8) в вариационный принцип (7) даёт систему алгебраических уравнений на коэффициенты разложения C_i :

$$\frac{d\mathbb{S}}{dC_i} = 0$$

Эта система приводит к задаче на собственные значения оператора Гамильтона:

$$H_{ij}C_j = ES_{ij}C_j,\tag{9}$$

где предполагается суммирование по повторяющимся индексам (соглашение Эйнштейна).

Матричные элементы оператора Гамильтона H и матрицы перекрывания S определяются следующим образом:

$$H_{ij} = \int_{0}^{\infty} dr \int_{0}^{\pi} d\theta \sin \theta W_{i}^{*}(r, \theta) H_{m_{J}} W_{j}(r, \theta)$$
$$S_{ij} = \int_{0}^{\infty} dr \int_{0}^{\pi} d\theta \sin \theta W_{i}^{*}(r, \theta) W_{j}(r, \theta)$$

Уравнение (9) носит название секулярного уравнения и разрешимо при условии:

$$\det\left(\boldsymbol{H}-\boldsymbol{E}\boldsymbol{S}\right)=0$$

Рассмотрим подробнее структуру множества базисных функций. Опишем процедуру построения базисных четырёх-компонентных функций $W_i(r, \theta)$ из набора однокомпонентных функций $W_{i_r, i_{\theta}}^{(u)}(r, \theta)$.

Присвоим каждой одно-компонентной функции, зависящей от r или θ , индекс $i_r = 1, 2, \ldots, N_r$ и $i_{\theta} = 1, 2, \ldots, N_{\theta}$ соответственно, то есть составим два набора одно-компонентных функций $\left\{B_{i_r}(r)\right\}_{i_r=1}^{N_r}$ и $\left\{Q_{i_{\theta}}(\theta)\right\}_{i_{\theta}=1}^{N_{\theta}}$. Также введем индекс $u = 1, \ldots, 4$, который будет пересчитывать компоненты исходных четырёх-компонентных функций. Также пересчитаем в терминах $\{i_r, i_{\theta}, u\}$ исходный индекс $i = 1, 2, \ldots, N$, который нумеровал четырёх-компонентные базисные функции: $i = (u-1)N_rN_{\theta} + (i_{\theta}-1)N_{\theta} + i_r$, и, соответствующим образом, пересчитаем количество этих функций $N = 4N_rN_{\theta}$. Таким образом, мы можем составить четырёх-компонентные функции $W_{i_r, i_{\theta}}^{(u)}$, и исходное разложение (8) в терминах одно-компонентных функций примет вид:

$$\Phi(r, \theta) \simeq \sum_{u=1}^{4} \sum_{i_r=1}^{N_r} \sum_{i_{\theta}}^{N_{\theta}} C^u_{i_r, i_{\theta}} W^{(u)}_{i_r, i_{\theta}}(r, \theta),$$

В данной работе одно-компонентные функции двух переменных $W_{i_r,i_{\theta}}^{(u)}(r,\theta)$ строятся через введенные одно-компонентные функции $B_{i_r}(r)$ и $Q_{i_{\theta}}(\theta)$ следующим образом:

$$W_{i_r,i_\theta}^{(u)}(r,\,\theta) = B_{i_r}(r)Q_{i_\theta}(\theta)e_u,$$

где e_u — стандартный ортонормированный базис четырёхмерного пространства:

$$e_{1} = \begin{pmatrix} 1\\0\\0\\0 \end{pmatrix}, \quad e_{2} = \begin{pmatrix} 0\\1\\0\\0 \end{pmatrix}, \quad e_{3} = \begin{pmatrix} 0\\0\\1\\0 \end{pmatrix}, \quad e_{4} = \begin{pmatrix} 0\\0\\0\\1 \\0 \end{pmatrix}$$

Однако следует учесть, что решение уравнения Дирака (2) в конечномерном базисе неизбежно приводит к появлению *ложсных* состояний [14]. Для устранения ложных состояний используется метод *A-DKB*, который правильным образом учитывает связь между верхними и нижними компонентами биспинора в нерелятивистском пределе.

$$W_{i_r,i_\theta}^{(u)}(r,\,\theta) = \Lambda B_{i_r}(r)Q_{i_\theta}(\theta)e_u, \quad u = 1,\,\ldots,4,$$

где

$$\Lambda = \begin{pmatrix} 1 & -\frac{1}{2}D_{m_J} \\ -\frac{1}{2}D_{m_J} & 1 \end{pmatrix}.$$

В данной работе конкретный вид одно-компонентных функций одной переменной следующий: для радиальных функций $B_{i_r}(r)$ — В-сплайны некоторого порядка k, а для угловых функций $Q_{i_{\theta}}$ — полиномы Лежандра $P_l(\frac{2}{\pi}\theta-1)$. Состоятельность данного метода была показана в работе [12]

3. Двухэлектронная задача

Рассмотрим систему, состоящую из двух электронов и двух неподвижных ядер урана. Энергия системы двух электронов будет определяться как сумма энергий каждого электрона в двухцентровом поле и энергии взаимодействия электронов между собой, то есть $E_{2e} = E_e + E_e + E_{e-e}$. Несомненно, такая задача очень сложна даже для численного расчета, не говоря уже об аналитическом решении; к тому же уравнение Дирака составляется для одного электрона.

Целесообразно решать сначала упрощенную задачу электрон-U¹⁸⁴, а после учитывать поправки к энергии взаимодействия $E_{e-e} \approx E_{1\text{ph}} + E_{2\text{ph}} + \cdots$, где порядки поправок называются энергиями однофотонного, двуфотонного и т. д. обмена соответственно. В квантовой электродинамике такие поправки можно учитывать с помощью теории возмущений.

Учет взаимодействия между электронами можно проводить с помощью оператора межэлектронного взаимодействия $I(\omega) = \alpha_{\mu}^{1} \alpha_{\nu}^{2} D^{\mu\nu}(\omega, \mathbf{r})$, где $D^{\mu\nu}$ — фотонный пропагатор, а $\alpha_{\mu} = (\beta, \alpha)$ — стандартные матрицы Дирака [6].

Оператор межэлектронного взаимодействия в калибровке Фейнмана принимает следующий вид:

$$I_F = \alpha \frac{1 - \alpha_1 \alpha_2}{r_{12}} \exp(i|\omega|r_{12}), \qquad (10)$$

где индекс α_i (i = 1, 2) указывает на то, что данная α_i действует на функцию $\psi(r_i)$, где r_i — радиус-вектор *i*-ого электрона.

Поправка на однофотонный обмен для основного состояния $(1\sigma)^2$ двухэлектронной системы выражается следующим образом [15]:

$$\Delta E_{1\text{ph}} = \langle \uparrow \downarrow | I(0) | \uparrow \downarrow \rangle - \langle \uparrow \downarrow | I(0) | \downarrow \uparrow \rangle \tag{11}$$

В случае сферически симметричного поля (монопольное приближение) можно аналитически вычислить угловые интегралы с помощью разложение по сферическим функциям оператора межэлектронного взаимодействия $I(\omega)$ (см. Приложение A.2), и численный расчет сводится к двойному интегрированию по радиальным переменным r_1 и r_2 .

Энергия ионизации *E*_I определяется как разница между полными энергиями двухэлектронной и одноэлектронной систем:

$$E_I = E_{2e} - E_e,$$

что в первом приближении сводится к сумме энергии одного электрона и поправки на однофотонный обмен:

$$E_I = E_{1\sigma} + E_{1\text{ph}}.\tag{12}$$

4. Результаты

4.1. Одноэлектронная задача. Основное состояние

Первоначально получим численный расчет энергии связи электрона в основном состоянии $E_{1\sigma_g}$ с помощью метода A-DKB в точном двухцентровом потенциале (1) и с помощью метода DKB в монопольном приближении. Полученные данные сравним со значениями, приведенными в [6]. Наибольшая погрешность численного расчета составляет ± 50 эВ. Наибольшее различие между результатами, полученными с использованием метода A-DKB, и результатами, полученными в [6], не превосходит 0,48% (см. Таблицу 1 в Приложении В).

Рис. 5: Энергия связи основного состояния, подсчитанная в точном потенциале (метод A-DKB) и в монопольном приближении (метод DKB).

Из Рис. 5 видно, что энергия связи основного состояния приближается к границе отрицательного континуума при уменьшении межъядерного расстояния.

4.2. Одноэлектронная задача. Возбужденные состояния

Для классификации различных состояний в случае двухатомных молекул применяют систематику по квантовому числу $\lambda = |m_L| = 0, 1, ..., L$. В соответствии с атомными спектроскопическими обозначениями вводятся обозначения для молекулярных орбиталей:

$$\lambda$$
 0 1 2 ...
Символ МО σ π δ ...

При интерпретации спектров важную роль играют свойства чётности или нечётности, которыми обладают орбитали относительно центра симметрии. В случае молекул с одинаковыми ядрами такой центр имеется, в нашем случае начало координат расположено именно в нём. В соответствии с этим молекулярные орбитали подразделяются на четные (g) или нечетные (u). Соответствующий индекс указывается справа внизу у символа орбитали, например, σ_q [16].

В связи с тем, что главное (n) и орбитальное (l) квантовые числа, которые возникают в задачах с центральным полем, утрачивают свою значимость, то их применение сводиться лишь для указания из каких атомных орбиталей образована молекулярная орбиталь электрона, например, $\sigma 1s_g$ в случае четной орбитали и $\sigma 1s_u$ — нечетной. Такой способ указания атомного терма соответствует состоянию *разъединённого атома*, то есть электронное состояние в пределе бесконечно большого межъядерного расстояния $D \to \infty$. Также часто используют указание атомных термов слева от молекулярного терма, что говорит о состоянии так называемого *объединённого атома*, то есть такое состояние, в которое переходит молекулярная орбиталь в пределе нулевого межъядерго расстояния $D \to 0$ [17].

Все выше сказанное приводит к тому, что $\sigma 2s_g$ и $\sigma 2s_u$, построенные на 2s атомных орбиталях, аналогичны $\sigma 1s_g$ и $\sigma 1s_u$ и отличаются лишь только более высокой энергией [18].

В нашей задаче мы фиксируем $m_J = \frac{1}{2}$ — проекцию полного момента электрона на ось квазимолекулы. Такая фиксация однако не определяет однозначно терм молекулы, так, например, возможны следующие комбинации m_L и m_S : $(m_L = 0; m_S = +\frac{1}{2})$ и $(m_L = 1; m_S = -\frac{1}{2})$. Таким образом, возможные только σ - и π -термы для состояний одноэлектронной квазимолекулы U₂ при данной проекции полного момента.

Полученные результаты для первых десяти термов сопоставляются с результатами для свинца (Pb, Z = 82) [19].

Рис. 6: Термы первых десяти состояний одноэлектронной квазимолекулы U₂

Более подробные графики термов приведены далее:

Рис. 7: Термы 1–6 состояний одноэлектронной квазимолекулы U₂

Рис. 8: Термы 7–10 состояний одноэлектронной квазимолекулы U₂

4.3. Двухэлектронная задача

Также были вычислены поправки на однофотонный обмен как в монопольном приближении, так и в точном двухцентровом потенциале. В соответствии с формулой (12) вычислена энергия ионизации основного состояния. Соответствующая Таблица 2 приведена в Приложении В.

Рис. 9: Энергия однофотонного обмена, подсчитанная в точном потенциале (метод A-DKB) и в монопольном приближении (метод DKB).

Рис. 10: Энергия ионизации основного состояния, подсчитанная в точном потенциале (метод A-DKB) и в монопольном приближении (метод DKB).

Из приведенных графиков, видно, что энергия межэлектронного взаимодействия непостоянна и увеличивается по мере уменьшения межъядерного расстояния, что вносит существенный вклад в энергию ионизации в случае близких ядер.

5. Заключение

В данной работе были вычислены энергии связи одно-электронной квазимолекулы урана в основном и возбужденных состояниях при различных межъядерных расстояниях с использованием как монопольного приближения потенциала, так и точного аксиально симметричного потенциала для различных ядерных модель, таких как точечная, модель оболочки (равномерно заряженная сфера), модель равномерно заряженного шара и модель Ферми. Также подсчитана первая поправка на однофотонный обмен в приближении Брейта в точном потенциале.

При изучении такого явления, как погружение уровня в отрицательный Дираковский континуум, стоит принимать во внимание многие факторы, например, учет точного двухцентрового потенциал заметно улучшает точность расчета по сравнению с монопольным приближением (несколько десятков кэВ).

В таких динамических процессах, как столкновение ионов, неизбежно происходят возбуждения системы, расчет первых нескольких возбуждённых состояний показывает, что уже второй терм квазимолекулы урана обладает довольно высокой энергией, и погружение данного терма (и высших) в отрицательный энергетический континуум не представляется возможным.

А. Приложение

А.1. Монопольное приближение потенциала со сферической моделью ядер

Потенциал, создаваемый самим ядром имеет следующий вид:

$$V_{\text{nucl}}(r, R_{\text{nucl}}) = \begin{cases} -\frac{Z}{r}; & r \ge R_{\text{nucl}} \\ -\frac{Z}{R_{\text{nucl}}}; & r \le R_{\text{nucl}}; \end{cases}$$

где $R_{\rm nucl}$ — радиус ядра. Тогда монопольное приближение с использованием этой модели ядра выражается следующей формулой:

$$V_{\text{mono}}(r,R) = \begin{cases} -\frac{Z}{R}; & r \le R_{-}, \\ -\frac{Z}{Rr} \left(R + r - R_{\text{nucl}} - \frac{(r - R + R_{\text{nucl}})(r - R - R_{\text{nucl}})}{2R_{\text{nucl}}} \right); & r \in [R_{-}; R_{+}] \\ -\frac{Z}{r}; & r \ge R_{+} \end{cases}$$

где $R_{-} = R - R_{\text{nucl}}$ и $R_{+} = R + R_{\text{nucl}}, R$ — расстояние до центра сферы.

Рис. 11: Система ядер.

А.2. Матричные элементы оператора межэлектронного взаимодействия

Для вычисления матричных элементов в (11) удобно воспользоваться разложением оператора $I(\omega)$ из (10) по сферическим функциям:

$$\frac{1}{r_{12}} = 4\pi \sum_{lm} \frac{1}{2l+1} \frac{r_{<}^l}{r_{>}^{l+1}} Y_{lm}^*(\boldsymbol{n}_2) Y_{lm}(\boldsymbol{n}_1)$$
$$\frac{1}{r_{12}} \exp(i\omega r_{12}) = 4\pi \sum_{lm} \frac{1}{2l+1} g_l(\omega, r_1, r_2) Y_{lm}^*(\boldsymbol{n}_2) Y_{lm}(\boldsymbol{n}_1),$$

где

$$g_{l}(\omega, r_{1}, r_{2}) = i\omega(2l+1)j_{l}(\omega r_{<})h_{l}^{(1)}(\omega r_{>})$$
$$g_{l}(0, r_{1}, r_{2}) = \frac{r_{<}^{l}}{r_{>}^{l+1}}.$$

Здесь j_l и h_l — сферические функции Бесселя и Ханкеля соотвественно.

Члены матричного элемента $\langle ab|I(0)|cd\rangle$ (a, b, c, d — проекции спина на ось z первого и второго электронов) с учетом разложения после упрощения принимают вид:

$$\langle ab \left| \frac{1}{r_{12}} \right| cd \rangle = \sum_{l=0}^{\infty} \sum_{m=-l}^{m=l} \delta_{m,a-c} \,\delta_{m,d-b} \int_{0}^{\infty} dr_{1} \int_{0}^{\infty} dr_{2} \frac{r_{<}^{l}}{r_{>}^{l+1}} A_{lm}^{ac}(r_{1}) A_{lm}^{bd}(r_{2}),$$

где

$$A_{lm}^{ij}(r) = \sqrt{\frac{(l-|m|)!}{(l+|m|)!}} \int_{0}^{\pi} d\theta \sin \theta P_{l}^{|m|}(\cos \theta) \Big(G_{1}^{i}G_{1}^{j} + G_{2}^{i}G_{2}^{j} + F_{1}^{i}F_{1}^{j} + F_{2}^{i}F_{2}^{j}\Big).$$

$$\begin{split} \langle ab \left| \frac{\alpha_{1}\alpha_{2}}{r_{12}} \right| cd \rangle &= -\sum_{l=0}^{\infty} \sum_{m=-l}^{m=l} \int_{0}^{\infty} dr_{1} \int_{0}^{\infty} dr_{2} \frac{r_{<}^{l}}{r_{<}^{l+1}} \times \\ & \times \Big[\delta_{m,a-c} \, \delta_{m,d-b} D_{lm}^{ac}(r_{1}) D_{lm}^{bd}(r_{2}) + \\ & + \delta_{m,a-c-1} \, \delta_{m,d-b-1} L_{lm}^{ac}(r_{1}) U_{lm}^{bd}(r_{2}) + \\ & + \delta_{m,a-c+1} \, \delta_{m,d-b+1} U_{lm}^{ac}(r_{1}) L_{lm}^{bd}(r_{2}) \Big], \end{split}$$

где

$$\begin{split} D_{lm}^{ij} &= \sqrt{\frac{(l-|m|)!}{(l+|m|)!}} \int_{0}^{\pi} d\theta \sin \theta P_{l}^{|m|}(\cos \theta) \Big[G_{1}^{i}F_{1}^{j} - G_{2}^{i}F_{2}^{j} - F_{1}^{i}G_{1}^{j} + F_{2}^{i}G_{2}^{j} \Big] \\ L_{lm}^{ij} &= \sqrt{\frac{(l-|m|)!}{(l+|m|)!}} \int_{0}^{\pi} d\theta \sin \theta P_{l}^{|m|}(\cos \theta) \Big[G_{1}^{i}F_{2}^{j} - F_{1}^{i}G_{2}^{j} \Big] \\ U_{lm}^{ij} &= \sqrt{\frac{(l-|m|)!}{(l+|m|)!}} \int_{0}^{\pi} d\theta \sin \theta P_{l}^{|m|}(\cos \theta) \Big[G_{2}^{i}F_{1}^{j} - F_{2}^{i}G_{1}^{j} \Big]. \end{split}$$

В конечном итоге сам матричный элемент $\langle ab|I(0)|cd\rangle$:

$$\langle ab|I(0)|cd\rangle = \langle ab \left| \alpha \frac{1 - \alpha_{1}\alpha_{2}}{r_{12}} \right| cd\rangle = \alpha \left(\langle ab \left| \frac{1}{r_{12}} \right| cd\rangle - \langle ab \left| \frac{\alpha_{1}\alpha_{2}}{r_{12}} \right| cd\rangle \right) = = \alpha \sum_{l=0}^{\infty} \sum_{m=-l}^{m=l} \int_{0}^{\infty} dr_{1} \int_{0}^{\infty} dr_{2} \frac{r_{<}^{l}}{r_{>}^{l+1}} \Big[\delta_{m,a-c} \,\delta_{m,d-b} A_{lm}^{ac}(r_{1}) A_{lm}^{bd}(r_{2}) + + \delta_{m,a-c} \,\delta_{m,d-b} D_{lm}^{ac}(r_{1}) D_{lm}^{bd}(r_{2}) + + \delta_{m,a-c-1} \,\delta_{m,d-b-1} L_{lm}^{ac}(r_{1}) U_{lm}^{bd}(r_{2}) + + \delta_{m,a-c+1} \,\delta_{m,d-b+1} U_{lm}^{ac}(r_{1}) L_{lm}^{bd}(r_{2}) \Big].$$

$$(13)$$

В частном случае основного состояния: $a = +\frac{1}{2}(\uparrow), b = -\frac{1}{2}(\downarrow)$ для прямого вклада: $c = +\frac{1}{2}(\uparrow), d = -\frac{1}{2}(\downarrow)$ формула (13) принимает вид:

$$\langle \uparrow \downarrow | I(0) | \uparrow \downarrow \rangle = \alpha \sum_{l=0}^{\infty} \sum_{m=-l}^{m=l} \int_{0}^{\infty} dr_{1} \int_{0}^{\infty} dr_{2} \frac{r_{<}^{l}}{r_{>}^{l+1}} \Big[\delta_{m0} A_{lm}^{\frac{1}{2}\frac{1}{2}}(r_{1}) A_{lm}^{\frac{1}{2}\frac{1}{2}}(r_{2}) + \delta_{m0} D_{lm}^{\frac{1}{2}\frac{1}{2}}(r_{1}) D_{lm}^{\frac{1}{2}\frac{1}{2}}(r_{2}) + \delta_{m,-1} L_{lm}^{\frac{1}{2}\frac{1}{2}}(r_{1}) U_{lm}^{\frac{1}{2}\frac{1}{2}}(r_{2}) + \delta_{m1} U_{lm}^{\frac{1}{2}\frac{1}{2}}(r_{1}) L_{lm}^{\frac{1}{2}\frac{1}{2}}(r_{2}) \Big].$$

В. Приложение

	Монопольное приближение			Точный потенциал			
R, фм	$E_{1\sigma_g}^{\rm point}$	$E_{1\sigma_g}^{\text{shell}}$	$E_{1\sigma_g}^{\text{Artemyev}}$	$\overline{E_{1\sigma_g}^{\text{point}}}$	$E_{1\sigma_g}^{\text{shell}}$	$E_{1\sigma_g}^{\text{Fermi}}$	$E_{1\sigma_g}^{\text{Artemyev}}$
40	-960716	-947405	-948305	-1004847	-971886	-972084	-972435
50	-881452	-873922	-874272	-920015	-898835	-898990	-898796
60	-823909	-819153		-858756	-844004	-844069	
70	-779380	-776132		-811899	-800642	-800723	
80	-743377	-741017	-741070	-773564	-765172	-765246	-764878
90	-713278	-711517		-742142	-735349	-735402	
100	-687555	-686176	-686177	-715421	-709742	-709753	-709485
120	-645268	-644373		-671500	-667418	-667455	
140	-611405	-610775		-636427	-633497	-633507	
160	-583227	-582768		-607314	-605232	-605268	
180	-559152	-558798		-582983	-581148	-581154	
200	-538147	-537870	-537730	-561746	-560165	-560154	-559414
250	-495107	-494932	-494848	-518682	-517222	-517245	-516609
300	-461161	-461047		-484411	-483598	-483585	
350	-433210	-433131		-456147	-455999	-456010	
400	-409513	-409452		-433313	-432719	-432739	
450	-388989	-388941		-412887	-412671	-412682	
500	-370931	-370893	-370894	-395420	-395122	-395119	-394245
600	-340377	-340353		-365595	-365614	-365601	
700	-315277	-315261	-315253	-341671	-341550	-341560	-340752
800	-294129	-294117		-321608	-321462	-321478	
900	-275972	-275963		-304467	-304383	-304395	
1000	-260157	-260150	-260151	-290474	-289657	-289664	-288257

Таблица 1: Значения энергии связи $E_{1\sigma_g}[\exists B]$ в монопольном приближении и двухцентровом потенциале квазимолекулы U_2^{183+} .

	Монопо	ольное прибли	ижение	Точный потенциал			
R, фм	$\overline{E_{1\sigma_g}^{\mathrm{shell}}},\mathrm{sB}$	$\Delta E_{1\mathrm{ph}},\mathrm{sB}$	$E_{\rm ion}^{\rm shell},{ m sB}$	$\overline{E_{1\sigma_g}^{\text{shell}}},\mathrm{sB}$	$\Delta E_{1\mathrm{ph}},\mathrm{sB}$	$E_{\rm ion}^{\rm shell},{\rm sB}$	
40	-947405	13475.401	-933930	-971886	14053.673	-957832	
50	-873922	11807.474	-862115	-898835	12366.091	-886469	
60	-819153	10623.182	-808530	-844004	11154.487	-832850	
70	-776132	9731.866	-766400	-800642	10233.990	-790408	
80	-741017	9031.168	-731986	-765172	9507.409	-755665	
90	-711517	8461.753	-703055	-735349	8915.609	-726433	
100	-686176	7986.893	-678189	-709742	8421.701	-701320	
120	-644373	7232.794	-637140	-667418	7634.851	-659783	
140	-610775	6653.262	-604122	-633497	7030.928	-626466	
160	-582768	6188.308	-576580	-605232	6545.976	-598686	
180	-558798	5803.442	-552995	-581148	6145.804	-575002	
200	-537870	5477.271	-532393	-560165	5806.943	-554358	
250	-494932	4836.722	-490095	-517222	5141.759	-512080	
300	-461047	4358.426	-456689	-483598	4647.232	-478951	
350	-433131	3982.424	-429149	-455999	4258.641	-451740	
400	-409452	3676.317	-405776	-432719	3942.916	-428776	
450	-388941	3420.725	-385520	-412671	3679.873	-408991	
500	-370893	3203.173	-367690	-395122	3456.354	-391666	
600	-340353	2850.739	-337502	-365614	3094.725	-362519	
700	-315261	2575.922	-312685	-341550	2813.081	-338737	
800	-294117	2354.587	-291762	-321462	2587.118	-318875	
900	-275963	2171.942	-273791	-304383	2401.598	-301981	
1000	-260150	2018.317	-258132	-289657	2246.620	-287410	

Таблица 2: Значения энергии связи, энергии однофотонного обмена и энергии ионизации в монопольном и точном потенциале со сферической моделью ядер

Список литературы

- [1] С. С. Герштейн и Я. Б. Зельдович. *ЖЭТФ*, 57:654, 1969.
- [2] W. Pieper and W. Greiner. Z. Phys., 218:327, 1969.
- [3] Я. Б. Зельдович и В. С. Попов. Электронная структура сверхтяжёлых атомов. УФН, 105:403, 1971.
- [4] W. Greiner et al. Quantum Electrodynamics of Strong Fields. Springer-Verlag, Berlin, 1985.
- [5] D. V. Mironova et al. Relativistic calculations of the ground state energies and the critical distances for one-electron homonuclear quasi-molecules. *Chem. Phys.*, 449:10– 13, 2015.
- [6] A. N. Artemyev and A. Surzhykov. Quantum electrodynamical corrections to energy levels of diatomic quasimolecules. *Phys. Rev. Lett.*, 114(24):243004, 2015.
- [7] I. I. Tupitsyn and D. V. Mironova. Relativistic calculations of ground states of singleelectron diatomic molecular ions. Opt. Spectrosc., 117(3):351–357, 2014.
- [8] Y. S. Kozhedub, V. M. Shabaev, I. I. Tupitsyn, A. Gumberidze, S. Hagmann,
 G. Plunien, and Th. Stöhlker. Relativistic calculations of x-ray emission following a xe-bi⁸³⁺ collision. *Phys. Rev. A*, 90:042709, Oct 2014.
- [9] FAIR Conceptual Design Report: An International Accelerator Facility for Beams of Ions and Antiprotons. *Edited by W. Henning (GSI, Darmstadt)*, 2001.
- [10] S. R. McConnell et al. Solution of the two-center time-dependent dirac equation in spherical coordinates: Application of the multipole expansion of the electron-nuclei interaction. *Phys. Rev. A*, 86(5):052705, 2012.
- [11] V. M. Shabaev et al. Dual kinetic balance approach to basis-set expansions for the dirac equation. *Phys. Rev. Lett.*, 93(13):130405, 2004.
- [12] E. D. Rozenbaum et al. Dual-kinetic-balance approach to the dirac equation for axially symmetric systems: Application to static and time-dependent fields. *Phys. Rev. A*, 89(1):012514, 2014.
- [13] A. N. Artemyev et al. Finite basis set approach to the two-centre dirac problem in cassini coordinates. J. Phys. B, 43:235207, 2010.
- [14] I. I. Tupitsyn and V. M. Shabaev. Spurious states of the dirac equation in a finite basis set. Opt. Spectrosc., 105(2):183, 2008.

- [15] Л. Н. Лабзовский. Теория атома. Квантовая электродинамика электронных оболочек и процессы излучения. Наука, Москва, 1996.
- [16] Л. Д. Ландау и Е. М. Лифшиц. Квантовая механика. Нерелятивистская теория. Теоретическая физика. Наука, Москва, 1974.
- [17] В. И. Минкин. *Теория строения молекул*. Учебники и учебные пособия. Феникс, Ростов-на-Дону, 1997.
- [18] К. С. Краснов. Молекулы и химическая связь. Высшая школа, Москва, 1984.
- [19] G. Soff et al. Electrons in superheavy quasimolecules. *Phys. Rev. A*, 20:169–193, 1979.