Санкт-Петербургский государственный университет Кафедра высшей математики

Селихова Анастасия Владимировна

Выпускная квалификационная работа бакалавра

Математическое моделирование загрязнений атмосферы города

Направление 01.03.02 Прикладная математика и информатика

> Научный руководитель, кандидат физ.-мат. наук, доцент Старков В. Н.

Рецензент, доктор физ.-мат. наук, профессор Перегудин С. И.

Санкт-Петербург 2018

Содержание

Введение	3
Постановка задачи	5
Обзор литературы	6
Глава 1. Моделирование задымления города от лесных пожа-	
ров	7
§1. Математическое описание	9
§2. Случай трёх источников загрязнения	10
§3. Исследование задымления городов при учёте розы ветров	12
Глава 2. Исследование загрязнения атмосферы городов от про-	
мышленных источников	15
§1. Исследование конвективных течений в атмосфере города	18
§2. Симметричный случай	22
§3. Модель, учитывающая наличие тени	24
§4. Нахождение положения центров конвективных	
ячеек	26
Выводы	28
Заключение	29
Список литературы	31
Приложение	33

Введение

Проблема загрязнения атмосферы бесспорно актуальна, ведь в настоящее время вопрос экологической обстановки в крупных городах и целых странах является довольно острым. Существует множество факторов, загрязняющих окружающую среду, среди них промышленные источники, природные катаклизмы. Такие воздействия могут носить как постоянный характер, так и происходить кратковременно, но с большой степенью оказываемого загрязнения. Зачастую такие источники загрязнений носят неустранимый (по крайней мере в ближайшее время) характер, например: постоянные песчаные ветра из пустынных районов в Африке и Китае, распространяемые на весьма общирные площади вплоть до Америки, и непрекращающееся воздействие грязного воздуха от промышленных производств Европы, достигающих российского Алтая. На более локальном масштабе можно привести случаи пожаров, возникающие в непосредственной близости от города, извержений вулканов или какого-либо химического загрязнения (промышленный объект, свалка, разлив перевозимых опасных химикатов).

Основными веществами, которые загрязняют воздушную среду являются:

- Диоксид углерода парниковый газ, влияющий на теплообмен Земли с окружающим пространством, а значит, и на климат.
- Оксид углерода или угарный газ, попадая в организм человека или животного, вызывает отравление (вплоть до летального исхода).
- Углеводороды токсичные химические вещества, раздражающие глаза и слизистые оболочки.
- Производные серы способствуют образованию кислотных дождей и усыханию растений, провоцируют болезни дыхательных путей и аллергию.
- Производные азота приводят к воспалениям лёгких, крупам, бронхитам, частым простудам, усугубляют течение сердечно-сосудистых заболеваний.

• Радиоактивные вещества, накапливаясь в организме, становятся причиной рака, генных изменений, бесплодия, преждевременной смерти.

Данные вещества, а также тяжёлые металлы, растворённые в воздухе, причиняют большой вред здоровью человека. Накапливаясь в организме и не оказывая мгновенного воздействия, они приводят к тяжёлым заболеваниям, оказывают мутагенное влияние на наследственность.

При мониторинге качества атмосферного воздуха в городе учитывают не только концентрацию вредных для здоровья человека веществ, но и временной промежуток их воздействия. С математической точки зрения эти характеристики хорошо описываются моделями динамики совместного движения газов или жидкостей со взвешенными в них твердыми частицами. В таких процессах наряду с течением несущей среды (газа или жидкости) надо рассматривать и динамику дисперсной фазы (примеси).

Для моделирования поведения примеси в атмосфере города в данной работе были использованы два подхода, имеющие в настоящее время широкое распространение. Когда частиц примеси весьма мало и они не влияют на движение друг друга, а также не влияют и на динамику основного потока, то следует изучать движение (траекторию) отдельной частицы в основном потоке. Иногда же примесь в основном потоке рассматривают как континуум, характеризующийся некоторой концентрацией. Тогда поведение примеси описывают уравнением конвективной диффузии.

В силу сложности математического описания любого из упомянутых процессов приходится прибегать к упрощениям, отказываясь от каких-либо свойств системы. В данной работе не учитывались химические процессы и процессы, отвечающие за изменение массы и размеров частицы. Не рассматривалось также влияние вращения частицы на её траекторию в потоке воздуха.

4

Постановка задачи

Целью данной работы является моделирование загрязнений атмосферы города, построение математических моделей, правильно и удобно описывающих динамику соответствующих процессов.

Поставленной цели соответствует решение следующих задач:

- 1. Разработка математической модели задымления атмосферы города, моделирование случая нескольких источников возгорания.
- 2. Исследование зоны задымления территории города, расчёт линий одинаковых концентраций загрязнений.
- 3. Анализ тепловых конвекционных течений в приземном слое атмосферы города.
- 4. Определение поля скоростей, вызванных тепловыми течениями воздуха.
- 5. Моделирование движений загрязняющих частиц в рассмотренных полях скоростей.

Обзор литературы

При написании выпускной квалификационной работы были использованы научная и учебно-методическая литература, статьи периодичных изданий и интернет-ресурсы.

Исследованием поведения примесей в жидкостях и газах занимались многие деятели науки.

В книге известных американских ученых Р. Берда, В. Стьюарта и Е. Лайтфута «Явления переноса»[1], впервые опубликованной в 1960 г., довольно доступно, но при этом в строгой математической форме, излагаются физические аспекты переноса количества движения, энергии и вещества.

Известно, что даже при малой неоднородности температуры в среде возникают конвективные течения.

Начало исследованию конвекции положили опыты Бенара [2], [3], обнаружившего пространственно-периодическое конвективное движение в жидкости, подогреваемой снизу. Данную циркуляцию стали называть ячейками Бенара. Впоследствии Рэлей [4] изучил в теории устойчивость равновесия в горизонтальном слое и в случае, когда обе границы являются свободными, определил предельные значения параметров конвекции.

В следствие трудностей вычисления, дальнейшее изучение данной проблемы продвигалось медленно. В книге "Устойчивость конвективных течений"[5] авторы рассмотрели конвективные течения, возникающие при перепадах температуры. Главной темой были плоскопараллельные течения, и на их примере были исследованы в том числе и среды, в которых содержались примеси.

Для математических расчетов была использована книга "Уравнения математической физики"Арамановича И. Г., Левина В. И. [6]

Глава 1. Моделирование задымления города от лесных пожаров

Проблема пожаров и задымления имеет длительную историю [7]. Летом 2010 года в России возникла чрезвычайно опасная пожарная обстановка из-за аномально высокой температуры воздуха и отсутствия осадков. Около 200 тыс. га территории нашей страны было охвачено пожарами (рис. 1).

Рис. 1: Пожарная опасность в России: а) в 2010 г., б) в 2016 г.

Во многих областях были зафиксированы в том числе торфяные пожары. Вследствие таких пожаров в Подмосковье, в Москве наблюдалось сильное задымление и чувствовался запах гари. На рис. 2 представлены фотографии ул. Айвазовского в Москве до начала пожаров и после.

Рис. 2: а) 17 июня 2010, 20:22, б) 7 августа 2010, 17:05

На второй фотографии видно сильное задымление. Такое загрязнение атмосферы не могло не повлечь за собой рост числа заболеваний и смертности. По информации, предоставленной Департаментом здравоохранения Москвы, на 9 августа уровень смертности в Москве увеличился почти в 2 раза (с 360–380 человек в день до 700). Также примерно на 30% увеличилось число вызовов службы скорой медицинской помощи и на 10% — количество госпитализаций.

Изменение концентрации примеси осуществляется также за счет переноса ветром. Дымовые шлейфы на севере Западно-Сибирской низменности, возникшие в результате массовой вспышки лесных и болотных пожаров во время грозы, хорошо видны из космоса [8, 9]. На рис. 3 представлен аэрокосмический снимок пожаров и его схема.

Рис. 3: а) телевизионное изображения с ИСЗ "Метеор полученное 5 августа 1977 г.; b) схема снимка: 1 — дымовые "языки". 2—облака, 3—очаги пожаров [10]

В левом углу схемы видны облака, дым представляет собой языки, в вершинах которых находятся очаги возгораний.

Аналогичная картина наблюдается при извержении вулканов. Вулкан Эйяфьятлайокудль в Исландии в 2010 году поверг весь мир в ужас.

Раннее прогнозирование задымления территории, в частности города, позволит вовремя принять меры по обеспечению безопасности граждан и тем самым уменьшить последствия задымления.

§1. Математическое описание

Рассмотрим распространение в толще атмосферы мелких частиц дыма. Пусть C(x, y, z, t) — концентрация частиц примеси в слое атмосферы, заполняющей область

$$G: \{-\infty < x < \infty, -\infty < y < \infty, 0 \le z \le h\},\$$

где (x, y, z) — декартовы координаты, плоскость (x, y) параллельна поверхности земли, а ось z направлена по вертикали от неё (z = 0), h — высота приземного слоя.

Нестационарное уравнение с учётом диффузии в пространстве, описывающее изменение концентрации частиц примеси, имеет вид [1]:

$$\frac{\partial C}{\partial t} = D \frac{\partial^2 C}{\partial x^2} + D \frac{\partial^2 C}{\partial y^2} + D \frac{\partial^2 C}{\partial z^2},$$

где D — коэффициент диффузии частиц примеси в воздухе.

Можно исключить диффузию по вертикали, учитывая незначительность потоков частиц на границах слоя z = 0 и z = h. Проинтегрировав уравнение по переменной z, тем самым введя среднюю по высоте концентрацию примеси, сведём задачу к двумерной

$$\frac{\partial C}{\partial t} = D \frac{\partial^2 C}{\partial x^2} + D \frac{\partial^2 C}{\partial y^2}.$$

§2. Случай трёх источников загрязнения

Рассмотрим три источника загрязнения, расположенных вне города и представляющих собой прямоугольники, параллельные осям, с площадями $S_1 = (x_2 - x_1)(y_2 - y_1), S_2 = (x_4 - x_3)(y_4 - y_3)$ и $S_3 = (x_6 - x_5)(y_6 - y_5)$, где $x_1, \ldots, x_6, y_1, \ldots, y_6$ — границы прямоугольников по осям.

Обозначим через C_1, C_2, C_3 мощности источников, пропорциональные площадям возгорания: $C_1 = k_1 S_1, C_2 = k_2 S_2, C_3 = k_3 S_3$. Для трёх источников распределение примеси загрязнения имеет вид, записанный с помощью $\eta(\cdot)$ — двумерной функции Хевисайда:

$$C(x, y, 0) = C_1 (\eta(x - x_1) - \eta(x - x_2)) (\eta(y - y_1) - \eta(y - y_2)) + + C_2 (\eta(x - x_3) - \eta(x - x_4)) (\eta(y - y_3) - \eta(y - y_4)) + + C_3 (\eta(x - x_5) - \eta(x - x_6)) (\eta(y - y_5) - \eta(y - y_6)).$$

Решение уравнения диффузии имеет вид [6]:

$$C(x, y, t) = \frac{C_1}{2} \left(\Phi\left(\frac{x - x_1}{2\sqrt{Dt}}\right) - \Phi\left(\frac{x - x_2}{2\sqrt{Dt}}\right) \right) \left(\Phi\left(\frac{y - y_1}{2\sqrt{Dt}}\right) - \Phi\left(\frac{y - y_2}{2\sqrt{Dt}}\right) \right) + \frac{C_2}{2} \left(\Phi\left(\frac{x - x_3}{2\sqrt{Dt}}\right) - \Phi\left(\frac{x - x_4}{2\sqrt{Dt}}\right) \right) \times$$

$$\times \left(\Phi\left(\frac{y-y_3}{2\sqrt{Dt}}\right) - \Phi\left(\frac{y-y_4}{2\sqrt{Dt}}\right) \right) + \frac{C_3}{2} \left(\Phi\left(\frac{x-x_5}{2\sqrt{Dt}}\right) - \Phi\left(\frac{x-x_6}{2\sqrt{Dt}}\right) \right) \left(\Phi\left(\frac{y-y_5}{2\sqrt{Dt}}\right) - \Phi\left(\frac{y-y_6}{2\sqrt{Dt}}\right) \right).$$

Здесь $\Phi(\zeta) = \frac{2}{\sqrt{\pi}} \int_{0}^{\zeta} e^{-\mu^2} d\mu$ — интеграл вероятностей.

Функция C(x, y, t) даёт значения концентрации примеси по поверхности земли в различные моменты времени. Для этого построим графики уровней постоянной концентрации на поверхности C(x, y, t) = const в различные моменты времени t (рис. 4).

Рис. 4: а) Пример начального распределения загрязнения для трех источников, b) Распределение дымов через t = 30 дней (см. приложение N_{2} 1)

На первом графике представлено распределение загрязнения в начальный момент времени. Заштрихованный прямоугольник представляет собой город, а три маленьких прямоугольника — очаги возгорания. На втором графике представлена ситуация через тридцать дней. Распределение дыма изображено в виде линий концентраций: чем ближе точка к очагу возгорания, тем сильнее концентрация и тем ярче данная линия.

§3. Исследование задымления городов при учёте розы ветров

Рассматривается только поперечная диффузия, так как продольная диффузия значительно меньше переноса примеси ветром.

Уравнение, описывающее изменение концентрации C(x, y) в плоскости (x, y) запишем в виде:

$$\frac{\partial C}{\partial y} = \frac{D}{\nu} \frac{\partial^2 C}{\partial x^2}.$$

Можно записать распределение примеси на краю города y = 0 в виде функции Хевисайда (начальные условия). График одного из вариантов такой функции

$$C(x,0) = C_0 \big(\eta(x-x_1) - \eta(x-x_2) \big) + C_1 \big(\eta(x-x_3) - \eta(x-x_4) \big)$$

изображен на рис. 5:

Рис. 5: Распределение дыма на границе города при $x \in [x_1, x_2] \cup [x_3, x_4], y = 0$

Считаем, что внутри каждого источника мощность распределена равномерно. Решение этого уравнения известно [6]:

$$\begin{split} C(x,y) &= \frac{C_0}{2} \left(\Phi\left(\frac{x-x_1}{2\sqrt{\frac{D}{\nu}y}}\right) - \Phi\left(\frac{x-x_2}{2\sqrt{\frac{D}{\nu}y}}\right) \right) + \\ &+ \frac{C_1}{2} \left(\Phi\left(\frac{x-x_3}{2\sqrt{\frac{D}{\nu}y}}\right) - \Phi\left(\frac{x-x_4}{2\sqrt{\frac{D}{\nu}y}}\right) \right), \end{split}$$

где C_0, C_1 — концентрации примеси на границе города y = 0 при $x \in [x_1, x_2] \cup [x_3, x_4].$

График C(x, y) для разных коэффициентов диффузии приведён на рис. 6,7. Распределение дыма по всей площади города при D/(vL) > 1, где L — характерный размер города, представлено на рис. 6, а в случае D/(vL) < 1 — на рис. 7. Указаны границы одинаковых концентраций: C = 4200, C = 5500, C = 6500.

Рассмотрим случай, при котором D/(vL) > 1, т.е. случай малой скорости ветра. На рис. 6а представлен график распределения мощности по территории города. По вертикали отражена мощность загрязнения. На крае города — два столбца исходной мощности, которые под действием ветра переносятся на площадь города. Так как скорость ветра мала, то растекание загрязнения происходит по широкому фронту с постоянным спаданием мощности, что видно из графика 6b.

Рис. 6: а) График С(х,у), b) линии одинаковых концентраций (см. приложение № 2) Рассмотрим теперь случай, когда D/(vL) < 1, т.е. случай большой силы ветра. Из графика 7b видно, что поперечная диффузия слабая, пере-

нос загрязнения осуществляется в основном вдоль направления действия ветра, достаточно узко, при этом два очага загрязнения долгое время не пересекаются.

Рис. 7: а) График C(x,y), b) линии одинаковых концентраций

Видим, что диффузионные и переносные процессы конкурируют друг с другом.

Глава 2. Исследование загрязнения атмосферы городов от промышленных источников

Другим фактором, влияющим на экологию, является наличие промышленных предприятий в городе и распространение аэрозольных загрязнений от них в атмосфере. На данное распространение влияет не только наличие ветра, но и особые конвективные течения, речь о которых и пойдёт в данной работе.

Конвекция — движение жидкости или газа в поле тяжести под влиянием потока теплоты, идущего снизу (иногда сверху). Движущей (подъёмной) силой является сила Архимеда

$$F_A = g\Delta\rho V.$$

Разность плотностей $\Delta \rho$ поднимающегося объёма V и окружающей среды зависит от различия их температур. Вещество в объёме V должно быть горячее окружающей среды. Условия образования конвекции состоят в том, что температура T_1 в глубине конвективного слоя должна быть выше, чем на его поверхности T_2 , и температура поднимающегося элемента объёма должна быть выше, а плотность ниже, чем у окружающей среды. Давление ρ внутри и снаружи одинаково. Подъёмная сила на 1 см³ равна $F_A = g \cdot \Delta \rho$, где g — ускорение свободного падения.

Конвекция широко распространена в природе: она происходит в нижнем слое атмосферы Земли (тропосфере) и в атмосферах некоторых других планет [11, 12]. Объяснение возникновения атмосферной циркуляции от экватора до полюсов было дано еще в 1735 году английским ученым Хэдли. В его честь тропический круговорот воздуха называется ячейкой Хэдли (рис. 8). В данных ячейках воздух поднимается вверх у экватора и опускается у 30° северной и южной широт. Между 30° и 60° широты в обоих полушариях также имеются меридиональные атмосферные циркуляции, называемые ячейками Феррела. Стоит отметить, что в них направление движения обратное по сравнению с ячейками Хэдли [13].

Рис. 8: Система конвективных ячеек циркуляции воздуха в атмосфере Земли, соответствующие ячейкам приповерхностные ветры (черные стрелки) и направление силы трения атмосферы о поверхность планеты (красные стрелки)

Также возникновение конвективных течений связано как с неоднородностью подстилающей поверхности, так и с неравномерностью солнечного обогрева (рис. 9). Над сухим участком почвы образуется слой все более и более нагревающегося воздуха. Этот слой, вследствие своей большей лёгкости, отрывается и поднимается вверх. Над менее нагретыми участками воздух, наоборот, опускается. Вечером, после прекращения нагревания почвы, направление термического потока меняется, так как сырые участки почвы сохраняют тепло дольше, чем сухие, и поэтому над сухим участком воздух теперь опускается [14].

Рис. 9: Конвективные потоки воздуха

Сильное нагревание поверхности почвы вызывает интенсивное образование конвективных токов. В результате большего нагрева над городом может образоваться область пониженного атмосферного давления, что вызывает появление слабых потоков воздуха от периферии к центру города. Такие потоки наблюдаются в действительности. Направление воздушных потоков из пригородных лесов к центру города является благоприятным моментом. Если же, как это обыкновенно бывает, на периферии города расположены промышленные предприятия, то направленные к центру города потоки воздуха будут приносить с собой и воздушные загрязнения в виде промышленных аэрозолей (рис. 10). В городе, где сила ветра значительно

Рис. 10: Схема конвективных токов воздуха над городом

ослабляется постройками, аэрация тоже уменьшается. Таким, образом, чистый и умеренно влажный естественный воздух заменяется в городе воздухом, загрязнённым огромным количеством разнообразных твёрдых, жидких и газообразных примесей, вредных для здоровья и создающих значительного размера дымовую и пылевую завесу над городом (500–2000 м в высоту). В наиболее благоприятном положении в отношении аэрации находятся города на берегу моря, где ввиду наличия местных бризового характера ветров, дующих днём с прохладной поверхности моря, а ночью — с суши, легче расположить промышленные районы так, чтобы загрязнённый воздух не мог заноситься в жилые районы. Плохая аэрация наблюдается в городах, расположенных в низинах и долинах, где скорость ветра понижена и возможен застой загрязнённого воздуха. Потоки воздуха от периферии к центру могут наблюдаться в тихую, жаркую погоду, особенно в утренние часы.

Изучение микроклимата города даёт возможность организовать и строить города таким образом, чтобы благоприятные для человека факторы были усилены, а неблагоприятные ослаблены или устранены.

§1. Исследование конвективных течений в атмосфере города

Возникновение конвективных течений в атмосфере городов связано с неравномерным нагревом домов, улиц, скверов. Днём на солнечной стороне улицы наблюдается восходящий поток воздуха, а на теневой — нисходящий. При меридиональном расположении улицы солнце нагревает обе её стороны. В таком случае наблюдается нисходящий поток посередине улицы и восходящий — у ограничивающих её домов (рис. 11).

Рис. 11: Схема конвекционных потоков воздуха около домов: a) при косых лучах солнца, б) при зенитных луча солнца [15]

Для описания процессов тепловой конвекции в атмосфере будем использовать уравнения сплошной среды в приближении Обербека-Буссинеска [5]. Изменение скорости $\vec{v}(x, y, z, t)$, плотности $\rho(x, y, z, t)$, температуры T(x, y, z, t), давления p(x, y, z, t) во времени и в пространстве описывается системой уравнений:

$$\rho \left(\frac{\partial \vec{v}}{\partial t} + (\vec{v}\nabla)\vec{v} \right) = -\nabla p + \mu \nabla^2 \vec{v} + \rho \vec{g},$$

$$\frac{\partial \rho}{\partial t} + \nabla (\rho \vec{v}) = 0,$$

$$\nabla (T\vec{v}) = k \nabla^2 T,$$
(1)

где

$$\nabla = \frac{\partial}{\partial x}\vec{i} + \frac{\partial}{\partial y}\vec{j} + \frac{\partial}{\partial z}\vec{k}$$

векторный оператор Гамильтона, $(\vec{i}, \vec{j}, \vec{k})$ — орты прямоугольной системы координат, μ — коэффициент вязкости, \vec{g} — ускорение силы тяжести, k — коэффициент теплопроводности.

В уравнении состояния вещества $\rho = f(p, T)$ предполагаем линейную зависимость плотности от температуры. Она получается при разложении

уравнения состояния

$$\rho = \rho_0 \big(1 - \beta (T - T_0) \big).$$

Здесь ρ_0 — плотность вещества при некоторой равновесной температуре T_0

$$\beta = -\frac{1}{\rho_0} \left(\frac{\partial \rho}{\partial T} \right)_p$$

коэффициент теплового расширения среды. Несмотря на то, что неоднородность плотности учитывается только в уравнении движения, приближение Буссинеска достаточно хорошо отражает важнейшие особенности тепловой конвекции.

Для плоского течения несжимаемой жидкости в проекциях на оси декартовых координат (x, y) уравнения движения имеют вид [16]:

$$\begin{split} \rho \left(\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} \right) &= -\frac{\partial \rho}{\partial x} + \mu \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} \right), \\ \rho \left(\frac{\partial v}{\partial t} + u \frac{\partial v}{\partial x} + v \frac{\partial v}{\partial y} \right) &= -\frac{\partial \rho}{\partial y} + \mu \left(\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} \right) - \rho g, \\ \frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} &= 0, \\ \frac{\partial T}{\partial t} + u \frac{\partial T}{\partial x} + v \frac{\partial T}{\partial y} &= k \left(\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} \right), \end{split}$$

где (u, v) — компоненты вектора скорости, ось x направлена вдоль земной поверхности, ось y — перпендикулярно к ней.

Упрощение уравнений для функции тока

При решении в двумерной постановке удобно из уравнений движения исключить давление p, введя функцию тока $\psi(x, y)$ по формулам

$$u = \frac{\partial \psi}{\partial y}, \quad v = -\frac{\partial \psi}{\partial x}.$$
 (2)

Тогда уравнения в безразмерном виде запишутся так:

$$\frac{\partial \Delta \psi}{\partial t} + \frac{1}{Pr} \left(\frac{\partial \psi}{\partial y} \frac{\partial \Delta \psi}{\partial x} - \frac{\partial \psi}{\partial x} \frac{\partial \Delta \psi}{\partial y} \right) = \Delta \Delta \psi - Ra \frac{\partial T}{\partial x},$$
$$Pr \frac{\partial T}{\partial t} + \left(\frac{\partial \psi}{\partial y} \frac{\partial T}{\partial x} - \frac{\partial \psi}{\partial x} \frac{\partial T}{\partial y} \right) = \Delta T.$$

Здесь Pr — число Прандтля, Ra — температурное число Релея.

Для стационарного случая в линейном приближении (отбросив произведения функций и производных) получим

$$\Delta \Delta \psi = Ra \frac{\partial T}{\partial x},$$
$$\Delta T = 0$$

с соответствующими краевыми условиями для температуры и для функции тока. Верхнюю границу слоя y = H предположим свободной, причём деформацией границы, вызванной конвекцией, пренебрежём, а нижнюю границу y = 0 будем считать твёрдой (поверхность земли). Обозначив объём газа, перемещающегося в направлении оси x за единицу времени, через ψ_0 ($\psi_0 > 0$), имеем следующие граничные условия для функции тока

$$\psi(x,H) = \psi_0, \quad \frac{\partial^2 \psi}{\partial y^2}(x,H) = 0, \quad \psi(x,0) = \frac{\partial \psi}{\partial y}(x,0) = 0.$$

Упростим уравнения, учитывая, что для узких пространств процессы поперёк слоя более значимы, чем процессы вдоль слоя:

$$\frac{\partial^4 \psi}{\partial x^4} << \frac{\partial^4 \psi}{\partial y^4} \quad \text{ и } \quad \frac{\partial^2 T}{\partial x^2} << \frac{\partial^2 T}{\partial y^2}.$$

Тогда получим систему

$$\frac{\partial^2 T}{\partial y^2} = 0,\tag{3}$$

$$\frac{\partial^4 \psi}{\partial y^4} = Ra \frac{\partial T}{\partial x}.\tag{4}$$

Проинтегрируем уравнение (4) для функции тока

$$\begin{split} \psi^{IV} &= A = Ra \frac{dT(x)}{dx}, \\ \psi''' &= Ay + B, \\ \psi'' &= A \frac{y^2}{2} + By + C, \\ \psi' &= A \frac{y^3}{6} + B \frac{y^2}{2} + Cy + D, \\ \psi &= A \frac{y^4}{24} + B \frac{y^3}{6} + C \frac{y^2}{2} + Dy + E. \end{split}$$

Используя граничные условия при y = 0, получим D = 0, E = 0. Для других неизвестных:

$$B = -\frac{3}{H^3} \left(\psi_0 + \frac{5AH^4}{24} \right), \quad C = \frac{3\psi_0}{H^2} + \frac{AH^2}{8}.$$

Следовательно,

$$\psi(x,y) = \frac{A}{48} \left(2y^4 - 5Hy^3 + 3H^2y^2 \right) - \frac{\psi_0}{2} \left(\frac{y^3}{H^3} - 3\frac{y^2}{H^2} \right).$$
(5)

§2. Симметричный случай

Пусть изменение температуры в приземном слое атмосферы, вдоль земной поверхности (по оси x) зависит только от продольной координаты x. В случае симметричного распределения температуры около домов (см. рис. 11б) примем

$$T(x) = T_0 + ae^{-\alpha(x-x_1)^2} + be^{-\beta(x-x_2)^2},$$
(6)

где T_0 — некоторая равновесная температура (температура окружающей среды — всего воздушного слоя), x_1, x_2 — координаты расположения домов, α, β — положительные коэффициенты, определяющие остывание воздуха до равновесной температуры в зависимости от расстояния до источника нагрева, a, b — положительные параметры, характеризующие мощность нагревания воздуха для каждого из домов (зависит от площади поверхности домов, характеристик материалов покрытия домов и т.п.).

Эта функция удовлетворяет уравнению температуры (3) и её график представлен на рис. 12, в случае одинаковых характеристик домов и окружающей среды

$$a = b, \quad \alpha = \beta.$$

Рис. 12: Распределение температур в приземном слое атмосферы при зенитных лучах солнца

Тогда функция тока примет вид

$$\psi(x,y) = \frac{Ra}{48} \left(-2a\alpha(x-x_1)e^{-\alpha(x-x_1)^2} - 2a\alpha(x-x_2)e^{-\alpha(x-x_2)^2} \right) \times \left(2y^4 - 5Hy^3 + 3H^2y^2 \right) - \frac{\psi_0}{2} \left(\frac{y^3}{H^3} - 3\frac{y^2}{H^2} \right).$$

Построим график неявной функции тока $\psi(x, y) = \text{const}$, принимая, что собственное движения воздуха в слое $\psi_0 = 0$ (рис. 13).

Рис. 13: Линии тока в симметричном случае распределения температур

В симметричном случае (солнце находится в полдне) получаем четыре симметричные тепловые конвективные ячейки с правильным чередование восходящих (вдоль домов) и нисходящих потоков воздуха.

§3. Модель, учитывающая наличие тени

Пусть изменение температуры в приземном слое атмосферы, вдоль земной поверхности (по оси x), происходит по закону

$$T(x) = T_0 + ae^{-\alpha(x-x_1)^2} + be^{-\beta(x-x_2)^2} + \bar{a}e^{-\bar{\alpha}(x-x_3)^2} + \bar{b}e^{-\bar{\beta}(x-x_4)^2}.$$
 (7)

Здесь x_1, x_2 — по прежнему координаты домов, x_3, x_4 — координаты условного центра отбрасываемой тени (точка максимального воздейсвия тени на охлаждение воздуха) для каждого из домов соответственно, положительные параметры $\bar{\alpha}, \bar{\beta}$ — характеризуют остывание воздуха, находящегося в зоне действия тени, в зависимости от растояния до центра тени, и отрицательные коэффициенты \bar{a}, \bar{b} задают максимальное падение температуры воздуха в центре тени.

Снова будем считать, что характеристики домов и окружающей среды одинаковые, т.е.

$$a = b, \quad \alpha = \beta, \quad \mu \quad \bar{\alpha} = \bar{\beta}.$$

Тогда график, учитывающий наличие тени будет выглядеть следующим образом (рис. 14.

Рис. 14: Распределение температур в приземном слое атмосферы при наличии теней у домов (рис. 11а)

Тогда функция тока примет вид

$$\begin{split} \psi(x,y) &= \frac{Ra}{48} \bigg(-2a\alpha(x-x_1)e^{-\alpha(x-x_1)^2} - 2a\alpha(x-x_2)e^{-\alpha(x-x_2)^2} - \\ &-2\bar{a}\bar{\alpha}(x-x_3)e^{-\bar{\alpha}(x-x_3)^2} - 2\bar{a}\bar{\alpha}(x-x_4)e^{-\bar{\alpha}(x-x_4)^2} \bigg) \times \\ &\times \Big(2y^4 - 5Hy^3 + 3H^2y^2 \Big) - \frac{\psi_0}{2} \left(\frac{y^3}{H^3} - 3\frac{y^2}{H^2} \right). \end{split}$$

Построим график неявной функции тока $\psi(x, y) = \text{const}$, по прежнему считая $\psi_0 = 0$ (рис. 15).

Рис. 15: Линии тока в случае наличия тени у домов

В данном случае видим, что несимметричность температурного поля в приземном слое атмосферы приводит к сложным конвективным течениям. Количество тепловых конвективных ячеек стало в 2 раза больше, по сравнению с симметричным случаем. При этом чередование восходящих и нисходящих потоков воздуха также остается согласованным.

§4. Нахождение положения центров конвективных ячеек

Найдем положения центров конвективных ячеек, где воздух покоится, т. е. u = v = 0, пользуясь формулами (2) находим

$$u = \frac{\partial \psi}{\partial y} = 0 = \frac{A}{48} \Big(8y^3 - 15Hy^2 + 6H^2y \Big).$$

Отсюда получаем y = 0, ил
иA = 0, или $8y^2 - 15Hy + 6H^2 = 0$. Последнее уравнение даёт

$$y = \frac{15H \pm H\sqrt{9 \cdot 25 - 3 \cdot 64}}{16} = H\frac{15 \pm \sqrt{33}}{16}$$

Подходит только

$$y = H \frac{15 - \sqrt{33}}{16}.$$

Условие

$$A = Ra\frac{dT}{dx} = 0$$

связано с распределением температуры в приземном слое. Для симметричной схемы

$$-2a\alpha(x-x_1)e^{-\alpha(x-x_1)^2} - 2a\alpha(x-x_2)e^{-\alpha(x-x_2)^2} = 0.$$

Получаем

$$e^{-\alpha(x-x_1)^2 + \alpha(x-x_2)^2} = -\frac{x-x_2}{x-x_1}$$

Рассмотрим условие

$$v = -\frac{\partial \psi}{\partial x} = 0 = -\frac{dA}{dx}\frac{1}{48}y^2(2y^2 - 5Hy + 3H^2).$$

Уравнение

$$2y^2 - 5Hy + 3H^2 = (y - H)(2y - 3H)$$

даёт y = 0, y = H, y = 3H2. Эти точки лежат вне слоя.

Условие

$$\frac{dA}{dx} = \frac{d^2T}{dx^2} = 0$$

также связано с распределением температуры вдоль земной поверхности.

$$-2a\alpha e^{-\alpha(x-x_1)^2} + 4a\alpha^2(x-x_1)^2 e^{-\alpha(x-x_1)^2} - 2a\alpha e^{-\alpha(x-x_2)^2} + 4a\alpha^2(x-x_2)^2 e^{-\alpha(x-x_2)^2} = 0.$$

Получаем

$$e^{-\alpha(x-x_1)^2 + \alpha(x-x_2)^2} = -\frac{1-2\alpha(x-x_2)^2}{1-2\alpha(x-x_1)^2}.$$

Уравнение

$$\frac{1 - 2\alpha(x - x_2)^2}{1 - 2\alpha(x - x_1)^2} = \frac{x - x_2}{x - x_1}$$

даёт решение

$$x = \frac{1}{2}(x_1 + x_2 \pm \sqrt{x_1 - x_2 - \frac{2}{\alpha}}).$$

Для других случаев также можно найти центры ячеек. Математическая модель конвективных течений в приземном слое атмосферы, возникающих из-за неравномерности температуры в воздухе, отражает некоторые реальные черты процесса.

Выводы

- Исследована проблема задымления территоии города. Рассмотрен случай нескольких источников возгорания.
- Проведён анализ тепловых конвекционных течений в приземном слое атмосферы города.
- Изучена динамика движений загрязняющих частиц в рассмотренных полях скоростей, вызванных тепловыми течениями воздуха.

Заключение

Главной целью данной работы являлось моделирование загрязнений атмосферы города, построение математических моделей, правильно и удобно описывающих динамику соответствующих процессов.

Основные результаты представленной дипломной работы:

- Разработана математическая модель задымления атмосферы города, проведено моделирование случая нескольких источников возгорания.
- Исследованы зоны задымления территории города, расчитаны линии одинаковых концентраций загрязнений.
- Предложена удобная модель тепловых конвекционных течений в приземном слое атмосферы городаю. Получено аналитичексое решение.
- На основе выведенной функции тока определены поля скоростей, вызванных тепловыми течениями воздуха.
- Расчитаны траектоии движений загрязняющих частиц в рассмотренных полях скоростей.
- Произведено моделирование предложенных вариантов в среде математического программирования MATLAB.

Полученные результаты могут наити весьма широкое практическое применение в задачах по улучшению экологии городов.

Результаты были представлены на трёх конференциях: XLVIII и XLIX международной научной конференции аспирантов и студентов «Процессы управления и устойчивость», Международной конференции молодых ученых «Современные методы прикладной математики, теории управления и компьютерных технологий», а также вошли в 3 публикации:

 Селихова А. В., Старков В. Н., Степенко Н. А. Моделирование задымления городов от лесных пожаров // Процессы управления и устойчивость. СПб.: Издательский Дом Федоровой Г. В., 2017. Т. 4. № 1. С. 223–228.

- Селихова А. В., Старков В. Н., Степенко Н. А. Исследование конвективных течений в неравномерно прогретой атмосфере // Современные методы прикладной математики, теории управления и компьютерных технологий (ПМТУКТ-2017). Воронеж: Научная книга, 2017. С. 342–345.
- Селихова А. В., Старков В. Н., Степенко Н. А. Исследование конвективных течений в атмосфере города // Процессы управления и устойчивость. СПб.: Издательский Дом Федоровой Г. В., 2018. Т. 5. № 1. (в печати)

Список литературы

- Берд Р., Стюарт В., Лайтфут Е. Явления переноса. М.: Химия, 1974.
 688 с.
- [2] Benard H. Les tourbillons cellulaires dans une nappe liquid// Revue generale des Sciences, pures et appliquees, 1900, .v.12, 1261; 1309.
- [3] Benard H. Les tourbillons cellulaires dans une nappe liquide transportant de la chaleur par convection en regime permanent// Ann. Chim. Phys., 1901, v.7, 23, 62
- [4] Rayleigh, On convection currents in a horizontal layer of fluid, when the higher temperature is on the under side// Phil. Mag., 1916, v.6, 32, 529
- [5] Гершуни Г. З., Жуховицкий Е. М., Непомнящий А. А. Устойчивость конвективных течений. М.: Наука, 1989. 320 с.
- [6] Араманович И. Г., Левин В.И. Уравнения математической физики. М.: Наука, 1969. 288 с.
- [7] Раковская Э. М., Давыдова М. И. Физическая география России. Ч. 2.
 М.: Владос, 2001. 302 с.
- [8] Фуряев В. В. Использование аэрокосмических снимков для изучения и оценки последствий лесных пожаров // Исследования лесов аэрокосмическими методами. Новосибирск: Наука, 1987. С. 85–98.
- [9] Григорьев Ал. А., Липатов В. Б. Дымовые загрязнения атмосферы по наблюдениям из космоса. Л.: Гидрометеоиздат, 1978. 36 с.
- [10] Григорьев Ал. А., Кондратьев К. Я. Экодинамика и геополитика. Т. 2. Экологические катастрофы. СПб.: НИЦ экологической безопасности РАН, 2001. 687 с.

- [11] Голицын Г. С. Теоретические и экспериментальное исследование конвекции с геофизическими приложениями.-Л.: Гидрометеоиздат, 1980.-56 с.
- [12] Голицын Г. С. Введение в динамику планетных атмосфер: Гидрометеоиздат, 1973.- 104 с.
- [13] Витлицкий Г. Н. Циркуляция атмосферы в тропиках.-Л.: Гидрометеоиздат, 1971.
- [14] Качинский Н. А. Почва, ее свойства и жизнь.-М.: Наука, 1975.
- [15] Томсон Н. М. Аэрация городской застройки. М.: изд. Академии медицинских наук, 1947. 121 с.
- [16] Лойцянский Л. Г. Механика жидкости и газа. М.: Наука, 1973. 848 с.
- [17] Потапов Д. К. О решениях задачи Гольдштика. Сиб. журн. вычисл. матем. Т. 15. №4. 2012. 409-415 стр.
- [18] Starkov V. N., Stepenko N. A. Simulation of particle motion in the given speed fields (2015) 2015 International Conference on «Stability and Control Processes» in Memory of V.I.Zubov, SCP 2015 – Proceedings, art. no. 7342051, pp. 75-77
- [19] Селихова А. В., Старков В. Н., Степенко Н. А. Моделирование задымления городов от лесных пожаров // Процессы управления и устойчивость. СПб.: Издательский Дом Федоровой Г. В., 2017. Т. 4. № 1. С. 223–228.
- [20] Селихова А. В., Старков В. Н., Степенко Н. А. Исследование конвективных течений в неравномерно прогретой атмосфере // Современные методы прикладной математики, теории управления и компьютерных технологий (ПМТУКТ-2017). Воронеж: Научная книга, 2017. С. 342– 345.
- [21] Селихова А. В., Старков В. Н., Степенко Н. А. Исследование конвективных течений в атмосфере города // Процессы управления и устойчивость. СПб.: Издательский Дом Федоровой Г. В., 2018. Т. 5. № 1. (в печати)

Приложение

Приложение № 1

```
#Случай трёх источников возгорания
> assume*(n, integer); with(plots); with(inttrans);
> v := 1; d := 2*14.732; t := 0.1e-5; D1 := 5; D2 := 250; D3 := 1650;
x1 := 340; x2 := 390; x3 := 340; x4 := 390;
x5 := 1220; x6 := 1270; x7 := 400; x8 := 1200;
y1 := 12120; y2 := 12170; y3 := 11040; y4 := 11090;
y5 := 10200; y6 := 10250; y7 := 10000; y8 := 13000
> c := sqrt(d/v); C1 := (10*(x2-x1))*(y2-y1);
C2 := (10*(x4-x3))*(y4-y3); C3 := (10*(x6-x5))*(y6-y5);
> implicitplot([1-(Heaviside(x-x7)-Heaviside(x-x8))*
*(Heaviside(y-y7)-Heaviside(y-y8)) = 0,
C1*(erf((1/2)*(x-x1)/(c*sqrt(t)))-erf((1/2)*(x-x2)/(c*
*sqrt(t))))*(erf((1/2)*(y-y1)/(c*sqrt(t)))-erf((1/2)*(y-y2)/
/(c*sqrt(t))))+C2*(erf((1/2)*(x-x3)/(c*sqrt(t)))-erf((1/2)*
*(x-x4)/(c*sqrt(t))))*(erf((1/2)*(y-y3)/(c*sqrt(t)))-erf((1/2)*
*(y-y4)/(c*sqrt(t))))+C3*(erf((1/2)*(x-x5)/(c*sqrt(t)))-
-erf((1/2)*(x-x6)/(c*sqrt(t))))*(erf((1/2)*(y-y5)/(c*sqrt(t)))-
-erf((1/2)*(y-y6)/(c*sqrt(t)))) = D1,
C1*(erf((1/2)*(x-x1)/(c*sqrt(t)))-erf((1/2)*(x-x2)/(c*
*sqrt(t))))*(erf((1/2)*(y-y1)/(c*sqrt(t)))-erf((1/2)*(y-y2)/
/(c*sqrt(t))))+C2*(erf((1/2)*(x-x3)/(c*sqrt(t)))-erf((1/2)*
*(x-x4)/(c*sqrt(t))))*(erf((1/2)*(y-y3)/(c*sqrt(t)))-erf((1/2)*
*(y-y4)/(c*sqrt(t))))+C3*(erf((1/2)*(x-x5)/(c*sqrt(t)))-
-erf((1/2)*(x-x6)/(c*sqrt(t))))*(erf((1/2)*(y-y5)/(c*sqrt(t)))-
-erf((1/2)*(y-y6)/(c*sqrt(t)))) = D2,
C1*(erf((1/2)*(x-x1)/(c*sqrt(t)))-erf((1/2)*(x-x2)/(c*
*sqrt(t))))*(erf((1/2)*(y-y1)/(c*sqrt(t)))-erf((1/2)*(y-y2)/
/(c*sqrt(t))))+C2*(erf((1/2)*(x-x3)/(c*sqrt(t)))-erf((1/2)*
*(x-x4)/(c*sqrt(t))))*(erf((1/2)*(y-y3)/(c*sqrt(t)))-erf((1/2)*
*(y-y4)/(c*sqrt(t))))+C3*(erf((1/2)*(x-x5)/(c*sqrt(t)))-
erf((1/2)*(x-x6)/(c*sqrt(t))))*(erf((1/2)*(y-y5)/(c*sqrt(t)))-
```

erf((1/2)*(y-y6)/(c*sqrt(t)))) = D3], x = -100 .. 1500, y = -100 .. 15000, numpoints = 100000); #Меняя t, можно получить графики для других моментов времени.

Приложение № 2

#Моделирование с учётом розы ветров > CO := 10000; C1 := 30000; x1 := 200; x2 := 250; x3 := 700; x4 := 750; x7 := 250; x8 := 1050; y7 := 10000; y8 := 15000; d := 1.732; v := 24*(12*3600) > plot3d(proc (x, y) options operator, arrow; (1/2)*C0*(erf((1/2)*(x-x1)/sqrt(d*y/v))-erf((1/2)*(x-x1)/sqrt(d*y/v))-x2)/sqrt(d*y/v)))+(1/2)*C1*(erf((1/2)*(x-x3)/sqrt(d*y/v))--erf((1/2)*(x-x4)/sqrt(d*y/v))) end proc, 0 .. 1200, 0 .. 1200); > implicitplot([1-(Heaviside(x-x7)-Heaviside(x-x8))* *(Heaviside(y-y7)-Heaviside(y-y8)) = 0, (1/2)*C0*(erf((x-x1)/(2*sqrt(d*y/v)))-erf((x-x2)/(2*sqrt(d* *y/v))))+(1/2)*C1*(erf((x-x3)/(2*sqrt(d*y/v)))-erf((x-x4)/(2* *sqrt(d*y/v)))=2000, (1/2)*C0*(erf((x-x1)/(2*sqrt(d*y/v)))-erf((x-x2)/(2*sqrt(d* *y/v))))+(1/2)*C1*(erf((x-x3)/(2*sqrt(d*y/v)))-erf((x-x4)/(2* *sqrt(d*y/v)))=3000, (1/2)*C0*(erf((x-x1)/(2*sqrt(d*y/v)))-erf((x-x2)/(2*sqrt(d* *y/v))))+(1/2)*C1*(erf((x-x3)/(2*sqrt(d*y/v)))-erf((x-x4)/(2* *sqrt(d*y/v)))=6500, x = -1000 .. 2500, y = 0 .. 30000, numpoints = 100000)

Приложение № 3

TO = 10; H = 10; Ra = 1; a = 7; b = 7;

```
alpha = 0.04;
beta = 0.04;
x1 = -10;
x2 = 10;
d = 0;
psi0 = 0;
m=20;
for i=1:2
psi = @(x,y) (Ra/48).*(-2.*a.*alpha.*(x - x1).*exp(-alpha.*(x - x1).^2
    2.*b.*beta.*(x - x2).*exp(-beta.*(x - x2).^2) + d.*sin(x).*y).*...
    (2.*y.^4 - 5.*H.*y.^3 + 3.*H.^2.*y.^2) - m;
fimplicit(psi, [-30 30 0 10]);
hold on;
m=-20;
end
m=1;
for i=1:2
psi = @(x,y) (Ra/48).*(-2.*a.*alpha.*(x - x1).*exp(-alpha.*(x - x1).^2
    2.*b.*beta.*(x - x2).*exp(-beta.*(x - x2).^2) + d.*sin(x).*y).*...
    (2.*y.<sup>4</sup> - 5.*H.*y.<sup>3</sup> + 3.*H.<sup>2</sup>.*y.<sup>2</sup>) - m;
fimplicit(psi, [-30 30 0 10]);
hold on;
m = -1;
end
```

```
y=0:0.01:H;
n=length(y);
x11(1:n)=x1;
```

plot(x11,y); hold on; x22(1:n)=x2; plot(x22,y); hold on; axis xy; xlabel('x'); ylabel('y');

Приложение № 4

```
TO = 10; H = 10;
Ra = 1e0;
a = 7;
a1 = -5;
b = 7;
b1 = -5;
alpha = 0.4;
alpha1 = 0.1;
beta = 0.4;
beta1 = 0.1;
x1 = -10;
x2 = 10;
x3 = -12;
x4 = 8;
psi0 = 0;
m=40;
for i=1:2
psi = @(x,y) (Ra/48).*(-2.*a.*alpha.*(x - x1).*exp(-alpha.*(x - x1).^2
    2.*a1.*alpha1.*(x - x3).*exp(-alpha1.*(x - x3).^2) - ...
    2.*b.*beta.*(x - x2).*exp(-beta.*(x - x2).^2) -...
    2.*b1.*beta1.*(x - x4).*exp(-beta1.*(x - x4).^2)).*...
```

```
(2.*y.<sup>4</sup> - 5.*H.*y.<sup>3</sup> + 3.*H.<sup>2</sup>.*y.<sup>2</sup>) - m;
fimplicit(psi, [-30 30 0 10]);
hold on;
m = -40;
end;
m=0.01;
for i=1:2
psi = @(x,y) (Ra/48).*(-2.*a.*alpha.*(x - x1).*exp(-alpha.*(x - x1).^2
    2.*a1.*alpha1.*(x - x3).*exp(-alpha1.*(x - x3).^2) - ...
    2.*b.*beta.*(x - x2).*exp(-beta.*(x - x2).^2) -...
    2.*b1.*beta1.*(x - x4).*exp(-beta1.*(x - x4).^2)).*...
     (2.*y.<sup>4</sup> - 5.*H.*y.<sup>3</sup> + 3.*H.<sup>2</sup>.*y.<sup>2</sup>) - m;
fimplicit(psi, [-30 30 0 10]);
hold on;
m = -0.01;
end;
y=0:0.01:10;
```

```
n=length(y);
x11(1:n)=x1;
plot(x11,y);
hold on;
x22(1:n)=x2;
plot(x22,y);
```