Министерство образования и науки Российской Федерации Федеральное агентство по образованию Федеральное государственное бюджетное образовательное учреждение высшего образования «Санкт-Петербургский государственный университет» Физический факультет Кафедра вычислительной физики

Дипломная работа

Гусаров Дмитрий Сергеевич

«Квантово-механические методы исследования состояний молекулярного иона водорода»

Научный руководитель: д.ф.-м.н., доц. Е.А. Яревский Рецензент: к.ф.-м.н., доц. Г.В. Филиппенко

Санкт-Петербург 2018

Оглавление

Введение	3
Глава 1. Задача двух кулоновских центров	5
1.1. Угловые кулоновские сфероидальные функции	6
1.2. Радиальные кулоновские сфероидальные функции	9
1.3. Алгоритм	10
1.4. Результаты	11
Глава 2. Адиабатическое разложение волновой функции	18
2.1. Нахождение колебательного спектра для основного электронного состояния	20
Глава 3. Решение задачи методом конечных элементов	24
3.1. Вариационная формулировка	26
3.2. Результаты вычислений	27
Заключение	31
Список литературы	32
Приложение А. Алгоритм задачи двух центров	34
Приложение Б. Фрагменты кода для вычисления функций $C(R)$ и $H(R)$	43

Введение

С самого начала развития квантовой механики молекулярный ион водорода H_2^+ изучался очень подробно, потому что это простейшая молекулярная система, состоящая только из одного электрона и двух одинаковых ядер. Несмотря на эту кажущуюся простоту, теоретическое исследование H_2^+ являлось достаточно трудной проблемой, поскольку это типичная трёхчастичная кулоновская система.

В 20-х годах успешно разрабатывались методы решения упрощённой задачи, когда система состоит из двух неподвижных ядер и движущегося электрона [1] [2]. В это время обнаружили, что для такой системы уравнение Шрёдингера допускает разделение переменных в сфероидальных координатах и позволяет вычислить электронную энергию точно. Это позволило применять адиабатические приближение к трёхчастичной системе, а также продвинуться в использовании вариационных приёмов. С развитием первых ЭВМ(60-е годы) начинаются активные расчёты спектра этой системы. В это время применяются как адиабатические, так и вариационные методы. Типичная схема адиабатического метода в это время [3]: Расчёт решений задачи двух кулоновских центров вариационным методом [1], аналитический расчёт адиабатических поправок, и, наконец, решение дифференциального уравнения второго порядка интегрированием. Также появились неадиабатические методы [4].

С последующим развитием ЭВМ расчёты улучшали свою точность, а методы становились изощрённее. Методы, применяемые в последнее время: вариационно-возмущенный метод [5], вариационный метод с использованием полного трехмерного гамильтониана тела [6] и методом, полученным из физики столкновений [7]. Для вариационных методов [8] [9] [10] точность достигает 10^{-15} и даже 10^{-20} для нижних уровней. Оказывается, что такие высокоточные расчёты чувствительны к отношению массы протона к массе электрона. Это даёт возможность найти это отношение, проводя высокоточное измерения оптических переходов в H_2^+ , например между различными колебательно-вращательными уровнями электронного основного состояния $1s\sigma$.

Целью данной работы является исследование спектра молекулярного иона водорода H_2^+ различными методами, а также сравнение результатов этих методов. Дипломная работа включает в себя три задачи и имеет следующую структуру:

- 1. В первой главе приведён метод для решения приближенной системы состоящей из двух неподвижных ядер и движущегося электрона.
- 2. Во второй главе описывается решение трёхчастичной задачи с помощью адиабатического разложения волновой функции. При его реализации используются результаты, получаемые для задачи двух кулоновских центров.
- 3. В третьей главе описано сведение исходной задачи к вариационной для последующе-

го её решения с помощью метода конечных элементов.

4. В приложениях приведены фрагменты исходного кода, разработанного для расчёта адиабатических поправок, а также для решения задачи двух кулоновских центров.

Глава 1

Задача двух кулоновских центров

Сделаем приближение исходной задачи: считая массы положительно заряженных частиц бесконечными, найдём волновую функцию и термы электрона в поле неподвижных зарядов Z₁ и Z₂, которые находятся на расстоянии R друг от друга(Puc. 1.1).

Рис. 1.1. Система $Z_1 e Z_2$

Уравнение Шрёдингера(в атомных единицах) принимает вид

$$\Delta\Psi + 2\left[E - \left(-\frac{Z_1}{r_1} - \frac{Z_2}{r_2}\right)\right]\Psi = 0, \qquad (1.1)$$

где r_1 и r_2 - расстояния от нижнего и верхнего фокусов до электрона соответственно. Эту задачу удобно решать в вытянутых сфероидальных координатах. Они могут быть получены вращением вокруг большой оси эллипсов эллиптической системы координат(1.2) и связаны с прямоугольными координатами соотношениями:

$$\begin{aligned} x &= \frac{R}{2} [(\xi^2 - 1)(1 - \eta^2)]^{1/2} \cos \varphi, \quad y = \frac{R}{2} [(\xi^2 - 1)(1 - \eta^2)]^{1/2} \sin \varphi, \quad z = \frac{R}{2} \xi \eta, \\ \xi &= \frac{r_1 + r_2}{R}, \quad \eta = \frac{r_1 - r_2}{R}, \quad \varphi = \operatorname{arctg} \frac{y}{x}, \\ \xi &\in [1, \infty), \quad \eta \in [-1, 1], \quad \varphi \in [0, 2\pi). \end{aligned}$$
(1.2)

Удобство этих координат заключается в том, что уравнение (1.1) допускает разделение переменных

$$\Psi(\xi,\eta,\varphi) = \Pi(\xi)\Xi(\eta)\Phi(\varphi) \tag{1.3}$$

Рис. 1.2. Сечение сфероидальных координат плоскостью $\varphi = const$

и приводится [11] к системе

$$\begin{pmatrix}
\Phi_m = e^{\pm im\varphi}, \, m \in \mathbb{Z};
\end{cases}$$
(1.4)

$$\begin{cases} \frac{d}{d\xi}(\xi^2 - 1)\frac{d}{d\xi}\Pi + \left[-\lambda - p^2(\xi^2 - 1) + a\xi - \frac{m^2}{\xi^2 - 1}\right]\Pi = 0; \tag{1.5}$$

$$\left(\frac{d}{d\eta}(1-\eta^2)\frac{d}{d\eta}\Xi + \left[\lambda - p^2(1-\eta^2) + b\eta - \frac{m^2}{1-\eta^2}\right]\Xi = 0.$$
 (1.6)

В системе уравнений введены обозначения

$$a = R(Z_2 + Z_1), \quad b = R(Z_2 - Z_1), \quad p^2 = -\frac{ER^2}{2}.$$
 (1.7)

1.1. Угловые кулоновские сфероидальные функции

Угловые кулоновские сфероидальные функции (у.к.с.ф.) $\Xi(p, b, \eta)$ определяются [11] как решения уравнения (1.6) с граничными условиями

$$|\Xi(p,b,\pm 1)| < \infty, \quad -1 \leqslant \eta \leqslant 1.$$
(1.8)

Эта задача Штурма-Лиувилля имеет бесконечный невырожденный дискретный спектр. Функции $\Xi_{mq}(p, b, \eta)$ и соответсвующие собственные значения $\lambda_{mq}^{(\eta)}$ при заданных m, p, bнумеруются по числу нулей q на интервале $\eta \in [-1, 1]$.

Найдём производную $\lambda_{mq}^{(\eta)}$ по параметру p методом из книги [11]. Для этого рассмот-

$$\frac{d}{d\eta}(1-\eta^2)\frac{d}{d\eta}\Xi_{mq}(p,\eta) + \left[\lambda_{mq}^{(\eta)}(p) - p^2(1-\eta^2) - b\eta - \frac{m^2}{1-\eta^2}\right]\Xi_{mq}(p,\eta) = 0,$$

$$\frac{d}{d\eta}(1-\eta^2)\frac{d}{d\eta}\Xi_{mq}(p',\eta) + \left[\lambda_{mq}^{(\eta)}(p') - p'^2(1-\eta^2) - b\eta - \frac{m^2}{1-\eta^2}\right]\Xi_{mq}(p',\eta) = 0.$$

Умножим первое уравнение на $\Xi_{mq}(p',\eta)$, а второе на $\Xi_{mq}(p,\eta)$, проинтегрируем по η от -1 до 1 и вычтем одно из другого.

$$\left(\lambda_{mq}^{(\eta)}(p) - \lambda_{mq}^{(\eta)}(p')\right) \int_{-1}^{1} \Xi_{mq}(p,\eta) \Xi_{mq}(p',\eta) \, d\eta = \left(p^2 - p'^2\right) \int_{-1}^{1} \Xi_{mq}(p,\eta) \Xi_{mq}(p',\eta) (1 - \eta^2) \, d\eta.$$

Устремив теперь $p' \to p$, перейдём к производной

$$\frac{1}{2p} \frac{\partial \lambda_{mq}^{(\eta)}(p)}{\partial p} = \int_{-1}^{1} \overline{\Xi}_{mq}^{2}(p, b, \eta) (1 - \eta^{2}) \, d\eta.$$
(1.9)

Аналогичным образом

$$\frac{\partial}{\partial b}\lambda_{mq}^{(\eta)}(p,b) = -\int_{-1}^{1} \overline{\Xi}_{mq}^{2}(p,b,\eta) \,\eta \,d\eta, \qquad (1.10)$$

Здесь $\overline{\Xi}_{mq}^2(p,b,\eta)$ - нормированы:

$$\int_{-1}^{1} \overline{\Xi}_{mq}^{2}(p,b,\eta) \, d\eta = \delta_{qq'}.$$

Таким образом, $\lambda_{mq}^{(\eta)}(p, b)$ монотонно растущая по p, а по b знак производной может быть любой.

Разложение для функций $\Xi_{mq}(p,b,\eta)$ ищутся в виде [11]

$$\Xi_{mq}(p,b,\eta) = (1-\eta^2)^{m/2} e^{-p(1+\eta)} \sum_{s=0}^{\infty} c_s (1+\eta)^s, \qquad (1.11a)$$

$$\Xi_{mq}(p,b,\eta) = (1-\eta^2)^{m/2} e^{-p(1-\eta)} \sum_{s=0}^{\infty} c'_s (1-\eta)^s.$$
(1.11b)

Подстановка в (1.6) приводит к трёхчленным рекуррентным соотношениям

$$\rho_{sq}c_{s+1} - \chi_s c_s + \delta_s c_{s-1} = 0, \qquad c_{-1} = 0, \tag{1.12}$$

Для случая разложения (1.11а) коэффициенты в (1.12)

$$\rho_s = 2(s+1)(s+m+1),$$

$$\chi_s = s(s+1) + (2s+m+1)(2p+m) + b - \lambda,$$

$$\delta_s = b + 2p(s+m).$$
(1.13)

Бесконечная система (1.12) рекуррентных соотношений принимает вид

$$A \overrightarrow{c} = \begin{pmatrix} -\chi_0 & \rho_0 & 0 & 0 & \dots \\ \delta_1 & -\chi_1 & \rho_1 & 0 & \dots \\ 0 & \delta_2 & -\chi_2 & \rho_2 & \dots \\ \dots & \dots & \dots & \dots \end{pmatrix} \begin{pmatrix} c_0 \\ c_1 \\ c_2 \\ \vdots \end{pmatrix} = 0.$$
(1.14)

Собственные значения λ краевой задачи находятся из условия разрешимости этой однородной системы

$$J_0 = \det \mathbf{A} = 0. \tag{1.15}$$

Этот определитель является полиномом бесконечной степени от λ и его непосредственное вычисление, вообще говоря, невозможно, поэтому работать с ним неудобно. Заметим, что $J_0 = -\chi_0 J_1 - \rho_0 \delta_1 J_2$, где J_1 и J_2 - определители той же матрицы без одного и двух первых строк и столбцов соответсвенно. Если предположить, что $J_1 \neq 0$, то нетрудно видеть, что дробь J_0/J_1 представима в виде бесконечной цепной дроби

$$-\frac{J_0}{J_1} = \chi_0 - \frac{\rho_0 \delta_1}{\chi_1 - \frac{\rho_1 \delta_2}{\chi_2 - \dots}} \equiv \chi_0 - \frac{\rho_0 \delta_1}{\chi_1 - \frac{\rho_1 \delta_2}{\chi_2 - \dots}} \dots,$$
(1.16)

причём $J_0 = 0 \iff \frac{J_0}{J_1} = 0.$ Условие

$$\left|\frac{\rho_{s-1}\delta_s}{\chi_{s-1}\chi_s}\right| < \frac{1}{4}, \qquad s \ge 1 \tag{1.17}$$

является достаточным для сходимости цепной дроби. Для разложения (1.11a) выполняется

$$\left|\frac{\rho_{s-1}\delta_s}{\chi_{s-1}\chi_s}\right| \xrightarrow[s \to \infty]{} \left(\frac{p}{s}\right)^2,$$

поэтому условие (1.17) начинает выполняться с номера s > 2p + 1. Это следует иметь ввиду при выборе количества членов в цепной дроби (1.16).

Для коэффициентов c'_s из разложения (1.11b) соотношение (1.12) остаётся в силе, а в формулах (1.13) нужно заменить $p \to -p$. Такая замена не изменит вида цепной дроби

(1.16), так как χ_s и произведение $\rho_s \delta_{s+1}$ не зависят от знака *p*. Следовательно, в обоих случаях собственные значения λ находятся из одного и того же уравнения (1.15).

Поскольку бесконечная цепная дробь (1.16) сходится, её можно оборвать на достаточно большом элементе N, после чего собственные значения определителя J₀ вычисляются как корни полинома F_{N+1}(p, b, λ), заданного соотношением

$$F_{N+1}^{(\eta)}(p,b,\lambda) = \frac{J_{0(N+1)}(p,b,\lambda)}{J_{1(N+1)}(p,b,\lambda)} = \chi_0 - \frac{\rho_0 \delta_1}{\chi_1 - \chi_2 - \dots - \frac{\rho_N \delta_{N+1}}{\chi_{N+1}}.$$
(1.18)

Из определения (1.18) вытекают рекуррентные соотношения для полиномов $J_{0k}(p,b,\lambda)$ и $J_{1k}(p,b,\lambda)$

$$J_{0(k+1)} = \chi_k J_{0k} - \rho_{k-1} \delta_k J_{0(k-1)}, \quad J_{0(-1)} = 1, \quad J_{00} = \chi_0.$$

$$J_{1(k+1)} = \chi_k J_{1k} - \rho_{k-1} \delta_k J_{1(k-1)}, \quad J_{1(-1)} = 0, \quad J_{10} = 1.$$

1.2. Радиальные кулоновские сфероидальные функции

Радиальные кулоновские сфероидальные функции (р.к.с.ф.) $\Pi(p, a, \xi)$ определяются [11] как решения уравнения (1.5) с граничными условиями

$$|\Pi(p, a, 1)| < \infty, \quad \Pi_{mk}(p, a, \xi) \xrightarrow[\xi \to \infty]{} 0.$$

Эта задача при $p^2 > 0$ и фиксированных значениях m и a имеет дискретный спектр. Функции $\prod_{mk}(p, a, \xi)$ и соответсвующие собственные значения $\lambda_{mk}^{(\xi)}$ при заданных m, p, aнумеруются по числу нулей k = 0, 1, 2, ... на интервале $\xi \in (1, \infty)$.

Легко показать, как и в предыдущем пункте, что $\lambda_{mk}^{(\xi)}(p,a)$ являются монотонно убывающими по p и монотонно растущими по a.

Уравнение (1.5) для р.к.с.ф. после выделения особенностей [11] в точках $\xi = 1$ и $\xi = \infty$

$$\Pi_{mk}(p,a,\xi) = (\xi^2 - 1)^{m/2} e^{-p(\xi - 1)} f(\xi)$$
(1.19)

приведёт к следующему уравнению для функции $f(\xi)$

$$\left(\xi^{2}-1\right)f''(\xi)+\left(-2p\left(\xi^{2}-1\right)+2\left(m+1\right)\xi\right)f'(\xi)+\left(-\lambda+m(m+1)+2p\sigma\xi\right)f(\xi)=0,\ (1.20)$$

где

$$\sigma = \frac{a}{2p} - (m+1)$$

Вид функции $f(\xi)$ был предложен Яффе [2]

$$f(\xi) = (\xi + 1)^{\sigma} \sum_{s=0}^{\infty} g_s x^s,$$
(1.21)

где

$$x = (\xi - 1)/(\xi + 1).$$

Подстановка в уравнение (1.20) приводит рекуррентному соотношению

$$\alpha_s g_{s+1} - \beta_s g_s + \gamma_s g_{s-1} = 0, \tag{1.22}$$

с коэффициентами

$$\alpha_{s} = (s+1)(s+m+1),$$

$$\beta_{s} = 2s(s+2p-\sigma) - (m+\sigma)(m+1) - 2p\sigma + \lambda,$$

$$\gamma_{s} = (s-1-\sigma)(s-m-1-\sigma).$$
(1.23)

Поскольку

$$\left|\frac{\alpha_{s-1}\gamma_s}{\beta_{s-1}\beta_s}\right| \xrightarrow[s \to \infty]{} \frac{1}{4} \left(1 - \frac{4p}{s}\right),$$

то цепная дробь

$$F^{(\xi)}(p,a,\lambda) = \beta_0 - \frac{\alpha_0 \gamma_1}{\beta_1 - \beta_2 - \gamma_2} \cdots = 0$$
(1.24)

сходится при всех p > 0.

По аналогии с у.к.с.ф. для нахождения нулей (1.24) бесконечная дробь заменяется конечной

$$F_{N+1}^{(\xi)}(p,a,\lambda) = \frac{J_{0(N+1)}(p,a,\lambda)}{J_{1(N+1)}(p,a,\lambda)},$$
(1.25)

в которой

$$J_{0(k+1)} = \beta_k J_{0k} - \alpha_{k-1} \gamma_k J_{0(k-1)}, \quad J_{0(-1)} = 1, \quad J_{00} = \beta_0.$$
$$J_{1(k+1)} = \beta_k J_{1k} - \alpha_{k-1} \gamma_k J_{1(k-1)}, \quad J_{1(-1)} = 0, \quad J_{10} = 1.$$

1.3. Алгоритм

Представим алгоритм действий для нахождения терма $E_{kqm}(R)$, то есть нахождения таких $p_{kqm}(R)$ и $\lambda_{kqm}(R)$, чтобы оба уравнения(1.5, 1.6) выполнялись.

1. Из множества корней цепных дробей (1.18) и (1.25) необходимо выбрать соответствующий квантовым числам kqm. Для этого можно сначала решить задачу при $R = R_0 \approx 0$. В этом случае система близка к водородоподобному атому с квантовыми числами N', l', m', которые связаны с k, q, m исходной задачи выражениями

$$N' = k + l' + 1, (1.26)$$

$$l' = q + m',$$
 (1.27)

$$m' = m. \tag{1.28}$$

Энергию можно найти по теории возмущения([11]):

$$E_{kqm}(R_0) = -\frac{(Z1+Z2)^2}{2N'^2} - \frac{2Z_1Z_2[l'(l'+1)-3m'^2]}{N'^3l'(l'+1)(2l'-1)(2l'+1)(2l'+3)}(Z1+Z2)^2R^2,$$

отсюда $p_{kqm}(R_0) = \sqrt{-E_{kqm}(R_0)R_0^2/2}.$

Чтобы определить $\lambda_{kqm}(R_0)$, рассмотрим уравнение (1.6) с параметрами p = 0, b = 0:

$$\frac{d}{d\eta}(1-\eta^2)\frac{d}{d\eta}\Xi_{qm} + \left[\lambda - \frac{m^2}{1-\eta^2}\right]\Xi_{qm} = 0$$
(1.29)

Уравнение (1.29) называется обобщённым уравнением Лежандра, а спектром являются $\lambda_{qm} = (q+m)(q+m+1)$. Поэтому искомый корень $\lambda_{kqm}(R_0)$ ищется в окрестности (q+m)(q+m+1).

- 2. Затем, не меняя p, постепенно увеличиваем a и b до искомых значений $R(Z_1 + Z_2)$ и $R(Z_2 Z_1)$ сответственно, следя за положением корней $\lambda_{km}^{(\xi)}$ и $\lambda_{qm}^{(\eta)}$.
- 3. Наконец, постепенно увеличивая p(R), добиваемся того, чтобы корни $\lambda_{km}^{(\xi)}$ и $\lambda_{qm}^{(\eta)}$ совпали. Единственность p следует из того, что $\partial \lambda_{km}^{(\xi)} / \partial p$ и $\partial \lambda_{qm}^{(\eta)} / \partial p$ имеют разные знаки. Таким образом, энергия $E_{kqm}(R) = -2p_{kqm}^2/R^2$ найдена.
- 4. Найти волновые функции в виде рядов (1.11) и (1.21) можно, решая системы линейных уравнений (1.14) с найденными параметрами p и $\lambda = \lambda_{mk}^{(\xi)}(p, a) = \lambda_{mk}^{(\eta)}(p, b)$.

1.4. Результаты

Алгоритм, приведённый выше, был реализован на языке C++. Основные его фрагменты можно найти в приложении. В таблицах (1.1, 1.2) приведены результаты вычисления энергетического параметра *p* для некоторых состояний двух систем этим реализованным алгоритмом и программой ODKIL [12], основанной на методе Киллингбека [13].

-
\tilde{S}
1
Ŋ
2.
20
E
>
d 1
ba
IeT
an
ap
Ш
Ief
BI
ğ
9
[]
a]
ИЦ
БÚ
La(
L '

		Pacetos	ние между це	нтрами	
	0.1	1	c,	2	15
		$1s\sigma$			
0.099	4545637	0.8519936365	2.0246068478	3.9858566336	7.9846560361
0.099	4545642	0.8519936366	2.0246068478	3.9858566336	7.9847044938
		$2p\pi$			
0.0499	9834041	0.4868818935	1.3187104819	2.6033581804	4.6662461408
0.0495	834040	0.4868818934	1.3187104819	2.6033581804	4.6662461408
		$3d\sigma$			
0.033;	3354507	0.3355478267	1.0764615030	2.7488731881	4.9652952060
0.0333	3354507	0.3355478267	1.0764615030	2.7488731881	4.9652952059

		Pacero	ояние между це	антрами	
TIPUTPAMMA	0.1		3	2	15
		$1s\sigma$			
odkill	0.1972930925	1.6614705377	4.6638652665	10.6653779065	22.6660552774
данный алгоритм	0.1972930927	1.6614705377	4.6638652665	10.6653779065	22.6660552774
		$2p\pi$			
odkill	0.0999015466	0.9450977656	2.5471492924	5.5699335747	11.5776676634
данный алгоритм	0.0999015464	0.9450977650	2.5471492924	5.5699335747	11.5776676634
		$3d\sigma$			
odkill	0.0666793919	0.6819065346	2.3173201493	4.7953134792	8.8767710638
данный алгоритм	0.0666793919	0.6819065346	2.3173201493	4.7953134792	8.8767710638

Таблица 1.2. Сравнение параметра $p = \sqrt{-ER^2/2}, Z_1 = 1, Z_2 = 3$

12

Как видно из таблиц, значения параметра *p* практически идентичны. Интересно знать, как выглядят термы, которые получаются в результате вычислений. На рисунках (1.3, 1.4, 1.5) приведены термы для некоторых систем.

Рис. 1.3. Термы для системы $Z_1 = 1, Z_2 = 1$

Также интерес имеет распределение плотности вероятности электрона в пространстве. Оно приведено на рисунках (1.6, 1.7, 1.8) для различных конфигураций.

Отметим, что на малых межъядерных расстояниях распределение очень близко к распределению электрона водородоподобного атома.

Рис. 1.4. Термы для системы $Z_1 = 1, Z_2 = 3$

Рис. 1.5. Термы для системы $Z_1 = 1, Z_2 = 5$

Рис. 1.6. Распределение плотности вероятности для системы $Z_1 = 1, Z_2 = 1, 1s\sigma$: a) R = 0, 1, b) R = 2, c) R = 6, d) R = 10. Расположение непожвижных зарядов совпадает с максимумами плотности

Рис. 1.7. Распределение плотности вероятности для системы $Z_1 = 1, Z_2 = 2, 1s\sigma$: a) R = 0, 1, b) R = 0.3, c) R = 1, d) R = 2. Положение заряда 2 соответсвует максимуму плотности, положение заряда 1 отмечено розовой точкой.

Рис. 1.8. Распределение плотности вероятности для системы $Z_1 = 2, Z_2 = 2, 2p\pi$: a) R = 0, 1, b) R = 2, c) R = 5, d) R = 10. Положение зарядов отмечено розовыми точками.

Глава 2

Адиабатическое разложение волновой функции

Рассматриваемая система состоит из трёх частиц массами M_1 , M_2 и M_3 и зарядами $Z_1e, Z_2e, -e$ соответственно (Рис. 2.1).

Рис. 2.1. Схема

Стационарное уравнение Шрёдингера в этом случае имеет вид

$$\left[-\frac{\hbar^2}{2} \left(\frac{1}{M_1} \Delta_1 + \frac{1}{M_2} \Delta_2 + \frac{1}{M_3} \Delta_3 \right) + \frac{Z_1 Z_2 e^2}{|\mathbf{r_1} - \mathbf{r_2}|} - \frac{Z_1 e}{|\mathbf{r_1} - \mathbf{r_3}|} - \frac{Z_2 e}{|\mathbf{r_2} - \mathbf{r_3}|} \right] \psi(\mathbf{r_1}, \mathbf{r_2}, \mathbf{r_3}) = W \psi(\mathbf{r_1}, \mathbf{r_2}, \mathbf{r_3})$$

$$= W \psi(\mathbf{r_1}, \mathbf{r_2}, \mathbf{r_3}) \quad (2.1)$$

Удобно перейти в систему координат Якоби и преобразовать уравнение (2.1) к виду

$$\left[-\frac{\hbar^2}{2}\left(\frac{1}{M_t}\Delta_c + \frac{1}{M}\Delta_{\mathbf{R}} + \frac{1}{m}\Delta_{\mathbf{r}}\right) + V\right]\psi(\mathbf{R}, \mathbf{r}, \mathbf{r_c}) = W\psi(\mathbf{R}, \mathbf{r}, \mathbf{r_c}),$$
(2.2)

в котором

$$\mathbf{r_{c}} = \frac{M_{1} \mathbf{r_{1}} + M_{2} \mathbf{r_{2}} + M_{3} \mathbf{r_{3}}}{M_{t}}, \quad \mathbf{R} = \mathbf{r_{1}} - \mathbf{r_{2}}, \quad \mathbf{r} = \mathbf{r_{3}} - \frac{M_{1}}{M_{1} + M_{2}} \mathbf{r_{1}} - \frac{M_{2}}{M_{1} + M_{2}} \mathbf{r_{2}},$$

$$\frac{1}{M} = \frac{1}{M_{1}} + \frac{1}{M_{2}}, \quad \frac{1}{m} = \frac{1}{M_{3}} + \frac{1}{M_{1} + M_{2}}, \quad M_{t} = M_{1} + M_{2} + M_{3},$$

$$V = \frac{Z_{1}Z_{2}e^{2}}{|\mathbf{R}|} - \frac{Z_{1}e}{|\mathbf{r} - \frac{M_{2}}{M_{1} + M_{2}} \mathbf{R}|} - \frac{Z_{2}e}{|\mathbf{r} + \frac{M_{1}}{M_{1} + M_{2}} \mathbf{R}|}.$$
(2.3)

Зависимость волновой функции $\psi(\mathbf{R},\mathbf{r},\mathbf{r_c})$ от движения центра масс исключается стандартным образом

$$\psi(\mathbf{R}, \mathbf{r}, \mathbf{r}_{c}) = \exp\left(i(\mathbf{P}_{c}, \mathbf{r}_{c})/\hbar\right)\Psi(\mathbf{r}, \mathbf{R}), \qquad (2.4)$$

где $\mathbf{P_c}$ - импульс, связанный с движением центра масс.

Разложим волновую функцию по решениям задачи двух центров $\Phi_k(\mathbf{r}; R)$, построен-

ных в предыдущей главе (1.1)

$$\Psi(\mathbf{r}, \mathbf{R}) = \sum_{k} \Phi_k(\mathbf{r}; R) \psi_k(\mathbf{R}).$$
(2.5)

Разложение (2.5) называется адиабатическим представлением задачи трёх тел, поскольку используется приближение Борна — Оппенгеймера. В этом приближении скорость электронного движения значительно выше скорости относительного движения ядер, поэтому движение электрона можно рассматривать при неподвижных ядрах.

Подстановка ряда (2.5) в исходное уравнение (2.2) с последующим усреднением по координатам **r** даёт бесконечную систему уравнений на функции $\psi_k(\mathbf{R})$

$$\left(-\frac{1}{2M}\Delta_{\mathbf{R}} + \frac{Z_1 Z_2}{R} + E_k + C_{kk}(R)\right)\psi_k(\mathbf{R}) + \sum_j \left(H_{kj} + 2\mathbf{Q}_{kj}\nabla_{\mathbf{R}}\right)\psi_j(\mathbf{R}) = E\psi_k(\mathbf{R}).$$
 (2.6)

В этом уравнении введены обозначения

$$C_{kj}(R) = -\frac{1}{8M} \int \Phi_k^*(\mathbf{r}; R) \Delta_{\mathbf{r}} \Phi_k(\mathbf{r}; R) d\mathbf{r},$$

$$\mathbf{Q}_{kj}(\mathbf{R}) = -\frac{1}{2M} \int d\mathbf{r} \Phi_k^*(\mathbf{r}; R) (-\nabla_{\mathbf{R}}) \Phi_j(\mathbf{r}; R) = -\mathbf{Q}_{jk},$$

$$H_{kj}(\mathbf{R}) = -\frac{1}{2M} \int d\mathbf{r} \Phi_k^*(\mathbf{r}; R) \Delta_{\mathbf{R}} \Phi_j(\mathbf{r}; R),$$

(2.7)

В адиабатическом приближении недиагональных матричные элементы отбрасываются и система распадается на независимые уравнения для каждого состояния $\psi_k(\mathbf{R})$

$$\left(-\frac{1}{2M}\Delta_{\mathbf{R}} + \frac{Z_1Z_2}{R} + E_k + C_{kk}(R) + H_{kk}(\mathbf{R})\right)\psi_k(\mathbf{R}) = E\psi_k(\mathbf{R}).$$
(2.8)

Если $H_{kk}(\mathbf{R})$ не зависит от направления вектора \mathbf{R} (что выполняется, например, для основного электронного состояния), то можно перейти к одномерному уравнению на радиальную функцию $\chi_j(R)$ известной подстановкой $\psi_j(\mathbf{R}) = \chi_j(R) Y_{Jm_j}(\theta_R, \varphi_R)/R$

$$\chi_{j\nu}''(R) + 2M \left[E_{j\nu} - E_j(R) - \frac{Z_1 Z_2}{R} - \left(H_{jj}(R) + C_{jj}(R) \right) - \frac{J(J+1)}{2MR^2} \right] \chi_{j\nu}(R) = 0.$$
(2.9)

Здесь состояния нумеруются шестью квантовыми числами: j = (Nlm) - от электронного движения и три $\nu = (vJm_j)$ от ядерного. m_j - проекция полного момента J на вдоль оси, проходящей через заряды Z_1 и Z_2 , а v - вибрационное квантовое число, равное числу нулей функции $\chi_{j\nu}(R)$. Краевые условия выбираются естественным образом

$$\begin{cases} \chi_{j\nu}(0) = 0; \\ (2.10) \end{cases}$$

$$(\chi_{j\nu}(\infty) = 0. (2.11)$$

2.1. Нахождение колебательного спектра для основного электронного состояния

Найдём спектр для основного электронного состояния {100}. Уравнение (2.9) решается методом конечных разностей.

Величина H(R) вычисляется следующим образом [14]

$$(-2M)H_{11}(\mathbf{R}) = \int d\mathbf{r} \Phi_{100}^{*}(\mathbf{r}; R) \,\Delta_{\mathbf{R}} \,\Phi_{100}(\mathbf{r}; R) = = \int \Phi_{100}^{*}(\mathbf{r}; R) \,\frac{\partial^{2} \Phi_{100}(\mathbf{r}; R)}{\partial R^{2}} d\mathbf{r} - \frac{1}{R^{2}} \int \Phi_{100}^{*}(\mathbf{r}; R) \left(L_{x}^{2} + L_{y}^{2}\right) \Phi_{100}(\mathbf{r}; R) d\mathbf{r}, \quad (2.12)$$

где L_x и L_y операторы углового момента относительно осей x и y прямоугольной системы координат $\{xyz\}$, ось z которой направлена вдоль вектора **R**. Для вычисления этого выражения используем равенство

$$L_x^2 + L_y^2 = \mathbf{L}^2 - L_z^2$$

и известное выражение для квадрата углового момента и его компоненты

$$\mathbf{L}^{2} = -\left(\frac{1}{\sin\theta}\frac{\partial}{\partial\theta}\left[\sin\theta\frac{\partial}{\partial\theta}\right] + \frac{1}{\sin^{2}\theta}\frac{\partial^{2}}{\partial\varphi^{2}}\right),$$
$$L_{z} = -i\frac{\partial}{\partial\varphi}.$$

С учетом $\frac{\partial}{\partial \varphi} \Phi_{100}(\mathbf{r}; R) = 0$ окончательно получаем:

$$(-2M)H_{11}(\mathbf{R}) = \int \Phi_{100}^{*}(\mathbf{r};R) \frac{\partial^{2}\Phi_{100}(\mathbf{r};R)}{\partial R^{2}} d\mathbf{r} - \frac{1}{R^{2}} \int \Phi_{100}^{*}(\mathbf{r};R) \left(\frac{1}{\sin\theta} \frac{\partial}{\partial\theta} \left[\sin\theta \frac{\partial}{\partial\theta}\right]\right) \Phi_{100}(\mathbf{r};R) d\mathbf{r}.$$
 (2.13)

Производные по R и θ вычисляются стандартно конечно-разностным методом по трём точкам. Шаг h для производной по R при этом составляет 0.02 для промежутка $0.1 \leq R \leq 10$, и 0.1 для $10 < R \leq 15$. Интегралы вычисляются адаптивным методом, используя квадратурную формулу Гаусса-Кронрода с 15 точками. Этот метод реализован в библиотеке gsl(C++) и используется для вычислений на дискретном наборе значений R. Параметры: с относительной ошибкой не более 0.01 и максимальным количеством подынтервалов 100000. Шаг для производной по θ составляет 0.001. Величина C(R) вычисляется по формуле (2.7)

$$\begin{split} (-2M)C_{11}(R) &= \frac{1}{4} \int \Phi_{100}^{*}(\mathbf{r}; R) \Delta_{\mathbf{r}} \Phi_{100}(\mathbf{r}; R) d\mathbf{r} = \\ &= \frac{1}{4} \int \Phi_{100}^{*}(\mathbf{r}; R) \left[-2E_{100} + \left(-\frac{Z_{1}}{r_{1}} - \frac{Z_{2}}{r_{2}} \right) \right] \Phi_{100}(\mathbf{r}; R) d\mathbf{r} = \begin{bmatrix} \mathbf{r}_{1} = \mathbf{r} + \mathbf{R}/2 \\ \mathbf{r}_{2} = \mathbf{r} - \mathbf{R}/2 \end{bmatrix} = \\ &= \frac{1}{4} \left[-2E_{100} - \int \Phi_{100}^{*}(\mathbf{r}_{1}; R) \frac{Z_{1}}{r_{1}} \Phi_{100}(\mathbf{r}_{1}; R) d\mathbf{r}_{1} - \int \Phi_{100}^{*}(\mathbf{r}_{2}; R) \frac{Z_{2}}{r_{2}} \Phi_{100}(\mathbf{r}_{2}; R) d\mathbf{r}_{2} \right]. \end{split}$$

Данный интеграл вычисляется с теми же параметрами, что и величина H(R). Сравнивая результаты со значениями из статьи [15], приходим к выводу, что они отличаются друг от друга на величину порядка 10^{-7} а. ед. энергии. Ниже представлены графики.

Рис. 2.2. Графики функций H(R) и C(R)

Значения терма электрона основного состояния $E_{100}(R)$ при $0.1 \leq R < 15$ вычисляются методом, описанным в первой главе. Они совпадают до 7 знака со значениями, используемыми [16]. Согласно статье [17], в качестве энергий для расстояний $R \ge 15$ можно использовать приближение $E_{100}(R) = -0.5 - 1/R - 9/(4R^2)$, а для $R \leq 0.1 E_{100}(R) = -2 + 8/3R^2$. Собственные значения будут сравниваться со статьёй [16], поэтому значение параметра M выбирается 1836.09/2. Ограничивая правое краевое условие R(600) = 0 и выбирая шаг дискретизации 0.02, получим спектр для состояний моментами J = 0 и J = 1 с помощью функции "eigs" в Matlab.

Таблица 2.1. Спектр системы для первых вращательных уровней J = 0 и J = 1. Значения приводятся до 6 знаков после запятой, так как, предположительно, что погрешность вычисления потенциала вместе с поправками не превышает 10^{-6} .

	J =	0	J = 1	
ν	данная работа	H. Wind [16]	данная работа	H. Wind
0	-0.597140	-0.59713932	-0.596874	-0.59687398
1	-0.587160	-0.58715483	-0.586908	-0.58690345
2	-0.577762	-0.57775005	-0.577524	-0.57751216
3	-0.568928	-0.56890573	-0.568703	-0.56868092
4	-0.560636	-0.56060565	-0.560426	-0.56039359
5	-0.552881	-0.55283645	-0.552681	-0.55263686
6	-0.545643	-0.54558772	-0.545455	-0.54540041
7	-0.538917	-0.53885193	-0.538742	-0.53867676
8	-0.532698	-0.53262447	-0.532535	-0.53246140
9	-0.526984	-0.52690388	-0.526833	-0.52675294
10	-0.521777	0.52169191	-0.521638	-0.52155322
11	-0.517081	-0.51699381	-0.516954	-0.51686762
12	-0.512904	-0.51281871	-0.512790	-0.51270538
13	-0.509261	-0.50918001	-0.509161	-0.50908006
14	-0.506169	-0.50609594	-0.506083	-0.50601008
15	-0.503652	-0.50359010	-0.503580	-0.50351932
16	-0.501738	-0.50169188	-0.501683	-0.50163753
17	-0.500463	-0.50043456	-0.500426	-0.50039855
18	-0.499850	-0.49983658	-0.499830	-0.49982099
19	-0.499748	-0.49973177	-0.499746	-0.49972943

Как видно из таблицы, нижний уровень совпадает в пределах ожидаемой точности. Для более высоких уровней такого хорошего совпадения нет.

Для иллюстрации того, где локализованы волновые функции, построим графики некоторых из них.

Рис. 2.3. Волновая функция $\chi(R)$ основного состояния для J=0

Рис. 2.4. Волновая функция $\chi(R)$ 19 колебательного уровня для J=0

Глава З

Решение задачи методом конечных элементов

Определим приведённые координаты Якоби х и у следующим образом

$$\mathbf{x} = \sqrt{2M} \,\mathbf{R} \tag{3.1}$$

$$\mathbf{y} = \sqrt{2m} \,\mathbf{r},\tag{3.2}$$

где $\mathbf{R}, \mathbf{r}, M$ и r определены ранее (2.3). Выражение для Гамильтониана в соответствующих координатах

$$H = H_0 + V(\mathbf{x}, \mathbf{y}) = -\Delta_{\mathbf{x}} - \Delta_{\mathbf{y}} + V(\mathbf{x}, \mathbf{y}), \qquad (3.3)$$

Для исследования свойств симметрии удобно перейти в следующее представление для состояния системы

$$\{\mathbf{x}, \mathbf{y}\} = \{x, y, \theta, \Omega\},\tag{3.4}$$

где θ - угол между векторами **x** и **y**, $\Omega = \{\phi, \vartheta, \varphi\}$ - углы Эйлера, характеризующие ориентацию плоскости, содержащей все три частицы, по отношению к неподвижной системе координат.

Свободный гамильтониан H₀ имеет вид [18]

$$H_{0} = -\frac{\partial^{2}}{\partial y^{2}} - \frac{2}{y}\frac{\partial}{\partial y} - \frac{\partial^{2}}{\partial x^{2}} - \frac{2}{x}\frac{\partial}{\partial x} - \left(\frac{1}{y^{2}} + \frac{1}{x}\right)\left(\frac{\partial^{2}}{\partial \theta^{2}} + \cot\theta\frac{\partial}{\partial \theta} + \frac{1}{\sin^{2}\theta}\frac{\partial^{2}}{\partial \varphi^{2}}\right) + \frac{1}{y^{2}}\left(\mathbf{J}^{2} - \mathbf{K}\right)$$

$$(3.5)$$

Здесь оператор **К** описывает кориолисово взаимодействие, возникающее из-за вращения трёхчастичной системы как целого [19]

$$\mathbf{K} = -2\frac{\partial^2}{\partial\varphi^2} + \left\{\sqrt{2}\frac{\partial}{\partial\vartheta}\left(\mathbf{J}^+ + \mathbf{J}^-\right) + \sqrt{2}\cot\vartheta\left(\mathbf{J}^+ - \mathbf{J}^-\right)\frac{\partial}{\partial\varphi}\right\},\tag{3.6}$$

где

$$\mathbf{J}^{\pm} = \frac{i}{\sqrt{2}} e^{\mp i\varphi} \left\{ \pm \cot\vartheta \frac{\partial}{\partial\varphi} + i \frac{\partial}{\partial\vartheta} \mp \frac{1}{\sin\vartheta} \frac{\partial}{\partial\phi} \right\}.$$
 (3.7)

Со свободным гамильтонианом H_0 коммутируют три оператора:

1. Квадрат полного углового момента \mathbf{J}^2

$$\mathbf{J}^2 = -\left[\frac{\partial^2}{\partial\vartheta^2} + \cot\vartheta\frac{\partial}{\partial\vartheta} + \frac{1}{\sin^2\vartheta}\left(\frac{\partial^2}{\partial\phi^2} - 2\cos\vartheta\frac{\partial^2}{\partial\phi\partial\varphi} + \frac{\partial^2}{\partial\varphi^2}\right)\right];$$

2. Проекция полного углового момента на ось лабораторной системы координат \mathbf{J}_z

$$\mathbf{J}_z = -i\frac{\partial}{\partial\phi};$$

3. Оператор полной инверсии координат ${\cal P}$

$$P\Psi(x, y, \cos \theta, \phi, \vartheta, \varphi) = \Psi(x, y, \cos \theta, \pi + \phi, \pi - \vartheta, \pi - \varphi)$$

Поскольку потенциал взаимодействия $V(\mathbf{x}, \mathbf{y})$ не зависит от Эйлеровских углов (ϕ, ϑ , φ), то эти операторы коммутируют также с полным гамильтонианом H. Следовательно, их собственные функции образуют одинаковые множества. Элементами этого множества являются симметризованные D-функции Вигнера $\mathcal{D}_{MM'}^{J\tau}$:

$$\mathbf{J}^{2} \mathcal{D}_{MM'}^{J\tau} = J(J+1) \mathcal{D}_{MM'}^{J\tau}, \quad J = 0, 1, \dots
\mathbf{J}_{z} \mathcal{D}_{MM'}^{J\tau} = -M \mathcal{D}_{MM'}^{J\tau}, \quad M = -J, \dots, J
P \mathcal{D}_{MM'}^{J\tau} = \tau \mathcal{D}_{MM'}^{J\tau}, \quad \tau = \pm (-1)^{J},$$

которые выражены через стандартные D-функции Вигнера [20] следующим образом

$$\mathcal{D}_{MM'}^{J\tau}(\phi,\theta,\varphi) = \frac{(-1)^M}{\sqrt{2+2\delta_{M'0}}} \left((-1)^M \mathcal{D}_{MM'}^J + \tau (-1)^J \mathcal{D}_{MM'}^J \right).$$
(3.8)

Волновая функция системы $\Psi(\mathbf{x}, \mathbf{y})$, характеризующаяся полным угловым моментом J, его проекцией M и чётностью τ , представляется в виде

$$\Psi_M^{J\tau}(\mathbf{x}, \mathbf{y}) = \sum_{M'=0}^J (\mathcal{D}_{MM'}^{J\tau})^*(\phi, \vartheta, \varphi) \psi_{M'}^{J\tau}(x, y, \theta).$$
(3.9)

Подстановка представления (3.9) в уравнение Шрёдингера $H\Psi = E\Psi$ и проецирование на D-функции (3.8) даст систему уравнений

$$\sum_{M'=0}^{J} \left(H_{MM'}^{J\tau} - E\delta_{MM'} \right) \psi_{M'}^{J\tau}(x, y, \theta) = 0, \quad M = 0, ..., J$$
(3.10)

Диагональные элементы матричного оператора $H^{J au}_{MM'}$ заданы формулами

$$H_{MM}^{J\tau} = \left(1 + (1/2)(\tau(-1)^J - 1)\delta_{M0}\right) \times \left[-\frac{1}{x}\frac{\partial^2}{\partial x^2}x - \frac{1}{y}\frac{\partial^2}{\partial y^2}y + \frac{J(J+1) - 2M^2}{y^2} + V(x, y, \theta) - \left(\frac{1}{x^2} + \frac{1}{y^2}\right)\left(\frac{\partial^2}{\partial \theta^2} + \cot\theta\frac{\partial}{\partial \theta} - \frac{M^2}{\sin^2\theta}\right)\right], \quad (3.11)$$

а внедиагональные компоненты отличны от нуля только если M' = M + 1 и равны

$$H_{MM'}^{J\tau} = \left(1 + (1/2)(\tau(-1)^J - 1)(\delta_{M0} + \delta_{M'0})\right) \times \left[\pm \frac{\sqrt{J(J+1) - M(M\pm 1)}}{y^2} \left(\frac{\partial}{\partial\theta} + (1\pm M)\cot\theta\right)\right].$$
 (3.12)

Система (3.10) в случае положительной чётности $\tau = (-1)^J$ состоит из (J+1) уравнений, в случае отрицательной чётности состоит из J уравнений, так как $\mathcal{D}_{M0}^{J-} \equiv 0$ и суммирование в (3.9) происходит начиная с M' = 1.

Осталось добавить граничные условия. В силу ограниченности полной волновой функции квантовой системы, функции $\psi_{M'}^{J_{\tau}}(x, y, \theta)$ должны быть ограничены про x = 0, y = 0. В силу квадратичной интегрируемости, требуются условия убывания на бесконечности $\psi_{M'}^{J_{\tau}}(x, y, \theta) = 0$ при $x \to \infty$ или $y \to \infty$. По переменной θ граничное условие можно сформулировать следующим образом: функция $\psi_{M'}^{J_{\tau}}(x, y, \theta) / \sin^{M'} \theta$ должна быть ограничена.

3.1. Вариационная формулировка

Для использования метода конечных элементов необходимо переписать уравнение (3.10) в вариационной формулировке. Она формулируется следующим образом [18]: найти $\Psi \in \mathbf{H}^1(x \times y \times \theta)$ такую, что для любой $\widetilde{\Psi} \in \mathbf{H}^1(x \times y \times \theta)$ выполняется равенство:

$$\hat{H}(\Psi, \widetilde{\Psi}) - E\hat{S}(\Psi, \widetilde{\Psi}) = 0.$$
(3.13)

Функция Ψ состоит из компонент $\psi_{M'}^{J\tau}$, билинейные формы $\hat{H}(\Psi, \widetilde{\Psi})$ и $\hat{S}(\Psi, \widetilde{\Psi})$ являются матрицами по индексам компонент. Диагональные матричные элементы равны

$$\hat{H}_{MM}(\Psi, \widetilde{\Psi}) = \int dZ \left(\frac{\partial \psi_M^{J\tau}}{\partial x} \frac{\partial \widetilde{\psi}_M^{J\tau}}{\partial x} + \frac{\partial \psi_M^{J\tau}}{\partial y} \frac{\partial \widetilde{\psi}_M^{J\tau}}{\partial y} + \left[\frac{J(J+1) - 2M^2}{y^2} + V(x, y, \theta) \right] \psi_M^{J\tau} \widetilde{\psi}_M^{J\tau} + \left[\frac{1}{x^2} + \frac{1}{y^2} \right] \left[\frac{\partial \psi_M^{J\tau}}{\partial \theta} \frac{\partial \widetilde{\psi}_M^{J\tau}}{\partial \theta} + \psi_M^{J\tau} \widetilde{\psi}_M^{J\tau} \frac{M^2}{\sin^2 \theta} \right] \right);$$
(3.14)

$$\hat{S}_{MM}(\Psi, \widetilde{\Psi}) = \int dZ \psi_M^{J\tau} \widetilde{\psi}_M^{J\tau}; \qquad (3.15)$$

элементы на верхней и нижней субдиагонали матрицы \hat{H}

$$\hat{H}_{MM\pm1}(\Psi,\widetilde{\Psi}) = \pm \int dZ \left(H_{MM\pm1}\psi_M^{J\tau} \right) \widetilde{\psi}_{M\pm1}^{J\tau}; \qquad (3.16)$$

остальные элементы матриц $\hat{H}(\Psi, \widetilde{\Psi})$ и $\hat{S}(\Psi, \widetilde{\Psi})$ нулевые. Интегрирование в приведённых интегралах ведётся по области $\int_0^\infty dx \int_0^\infty dy \int_0^\pi d\theta$ и $dZ = x^2 y^2 \sin \theta dx dy d\theta$. Исходная система (3.10) таким образом сводится к обобщённой задаче на собственные значения (3.13).

3.2. Результаты вычислений

Решение задачи (3.13) методом конечных элементов выполняется в программе ACESPA (fortran 90). По задаваемым разбиению области, базисным функциям и их количеству вычисляются собственные значения и собственные функции системы. Более подробно о работе программы можно найти в диссертации [18]. На основе результатов, получаемых в предыдущих главах можно определить, где локализована волновая функция и, соответственно, построить оптимальное разбиение области. Для получения наиболее точной энергии основного состояния была подобрана область (3.1)

Рис. 3.1. Разбиение плоскост
иx-y на конечные элементы. По осям отложены неприведённые ко
ординаты Якоби.

данная работа	-0.59713
J. Ph. Karr [21]	-0.59713906307939
Korobov V. I. [9]	-0.597139063123405074

Таблица 3.1. Сравнение энергий основного состояния.

Мы ожидаемо получили несколько завышенные значения, так как метод вариационный. Расчёты показали, наиболее сильное влияние оказывает степень полиномов и её погрешность оценивается в 10⁻⁴ для низких уровней. Для высоких уровней ещё хуже порядка 10⁻³ а.ед.

В качестве проверки получаемых волновых функций можно вычислить различные физические величины. В таблице (3.2) приведены результаты вычисления некоторых величин, полученных с помощью квадратурных формул Гаусса - Лежандра.

Таблица 3.2. Сравнение средних величин, полученных для основного состояния. Область интегрирования: $[0, 15] \times [0, 10] \times [-1, 1]$ для неприведённых координат соответственно. Разбиение по каждой из координат осуществляется на 80, 40, 40 точек соответственно.

Величина	на основе в.ф. из acespa	Bhatia [22]
<1>	0.999994	-
Обратное межъядерное расстояние $<1/R>$	0.491	0.49071
Межъядерное расстояние <i><r></r></i>	2.064	2.06392
Квадрат межъядерного расстояния $<\!\!R^2\!>$	4.314	4.31097
Квадрат расстояния между цен- тром масс ядер и электроном $<\!r^2>$	2.481	2.48107
Расстояние от одного из ядер до электрона $<\!r_1\!>$	1.693	1.69297

Произведём подсчёты для двадцати колебательных уровней нулевого полного момента. Взято другое разбиение области (3.2). Результат вычисления энергий представлен в таблице 3.3.

Рис. 3.2. Разбиение плоскост
иx-yна конечные элементы. По осям отложены неприведённые ко
ординаты Якоби.

Колебательный уровень <i>v</i>	данная работа	J. Ph. Karr [21]
0	-0.59711	-0.59713906307939
1	-0.58712	-0.58715567909619
2	-0.57771	-0.57775190441508
3	-0.56886	-0.56890849873086
4	-0.56054	-0.56060922084967
5	-0.55276	-0.55284074989655
6	-0.54551	-0.54559265099383
7	-0.53877	-0.53885738696741
8	-0.53253	-0.53263037935627
9	-0.52679	-0.52691012401632
10	-0.52157	-0.52169836901424
11	-0.51685	-0.51700036527875
12	-0.51261	-0.51282520314556
13	-0.50891	-0.50918624836829
14	-0.50579	-0.50610168096876
15	-0.50323	-0.50359508499922
16	-0.5011	-0.50169577338703
17	-0.4995	-0.50043704046015
18	-0.4986	-0.49983743203023
19	-0.4976	-0.4997312306492

Таблица 3.3. Сравнение энергий для нулевого полного момента J=0

Заключение

Таким образом, в настоящей работе были получены результаты:

- Реализован алгоритм для нахождения энергий и волновых функций задачи двух кулоновских центров, описанный в книге [11]. Сравнение с другим источником показывает (1.1), что точность вычисления энергий на небольших межъядерных расстояниях не хуже 10⁻⁹ а. ед. Из графического анализа, а также из вычисления различных поправок (во второй главе) на основе волновых функций можно сделать вывод о том, что волновые функции электрона строятся правильно.
- На основе результатов, получаемых данным алгоритмом были вычислены энергии и собственные функции иона водорода H₂⁺ с помощью адиабатического разложения. Сравнение показывает, что нижние уровни совпадают с требуемой точностью(10⁻⁶), однако вышележащие уровни имеют гораздо бо́льшую погрешность.
- Произведены вычисления спектра в программе ACESPA, а также сравнение с результатами из статьи [21]. Можно сделать вывод, что в целом метод даёт правильные результаты, однако получены результаты с меньшей точностью, поскольку вычисления с помощью МКЭ требовательны к ресурсам вычислительной техники. Поэтому можно утверждать, что вычисления с бо́льшими вычислительными ресурсами дали бы более точные результаты.

Список литературы

- Guillemin V. Hydrogen-ion wave function / C. Zener // Proceedings of the National Academy of Sciences, 1929, Vol. 15, p. 314-318.
- Jaffe G. Zur Theorie des Wasserstoffmolekiilions // Zeitschrift fur Physik, 1934, Vol. 87, p. 535–544.
- Cohen S. Vibrational States of the Hydrogen Molecular Ion / J. R. Hiskes, R. J. Riddell // Physical Review, 1960, Vol. 119, num 3, p.1025 - 1027.
- W. Kolos Nonadiabatic Theory for Diatomic Molecules and Its Application to the Hydrogen Molecule / L. Wolniewicz // Rewiev of Modern Physics, 1963, Vol. 35, Num. 3, p. 473-483.
- 5. L. Wolniewicz The $1s\sigma_g$ and $2p\sigma_u$ states of the H_2^+ , D_2^+ and HD^+ ions / T. Orlikowski // Molecular Physics, 1991, Vol. 74, Num. 1, p. 103-111.
- 6. Moss R.E. Calculations for the vibration-rotation levels of H_2^+ in its ground and first excited electronic states // Molecular Physics, 1993, Vol. 80, Num. 6, p. 1541-1554.
- G. G. Balint-Kurti Calculations of vibration-rotation energy levels of HD⁺ / R. E. Moss, I. A. Sadler, M. Shapiro // Physical review A, 1990, Vol.41, Num. 9, p. 4913-4921.
- 8. Hilico L. Ab initio calculation of the J = 0 and J = 1 states of the H_2^+ , D_2^+ and HD^+ molecular ions / N. Billy, B. Gremaud, D. Delande // European physical journal D, 2000, Vol. 12, p. 449-466.
- Korobov V. I. Coulomb three-body bound-state problem: Variational calculations of nonrelativistic energies // Physical Review A, 2000, Vol. 61, 064503.
- 10. Bailey D. H. Universal variational expansion for high-precision bound-state calculations in three-body systems. Applications to weakly bound, adiabatic and two-shell cluster systems / D. H. Bailey and A. M. Frolov // Journal of Physics B: Atomic, Molecular and Optical Physics, 2002, Vol. 35, p. 4287-4298.
- 11. Комаров И.В. Сфероидальные и кулоновские сфероидальные функции / Комаров И.В., Пономарев Л.И., Славянов С.Ю. М.: Наука, 1976. 320 с.
- Scott T.C. New approach for the electronic energies of the hydrogen molecular ion / M. Aubert-Frecon, J. Grotendorst // Chemical Physics, 2006, Vol. 324, C. 323 - 338.
- Hadinger G. The Killingbeck method for the one-electron two-centre problem / M. Aubert-Frecon, Gerold Hadinger // Journal of Physics: B Atomic Molecular & Optical Physics, 1989, Nº 5, C. 697 - 712.
- R. McCarroll Adiabatic coupling between electronic and nuclear motion in molecules / A. Dalgarno // Proceedings of the Royal Society of London. Series A, 1956, Vol. 237, Num. 1210, p.383-394.
- Kolos W. Some accurate results for three-particle systems // Acta Physica Academiae Scientiarum Hungaricae, 1969, num 27, p. 241-252.
- Wind H. Vibrational States of the Hydrogen Molecular Ion // The journal of chemical physics, 1965, Vol. 43, num 9, p.2956 - 2958.

- 17. Wind H. Electron Energy for H_2^+ in the Ground State // The journal of chemical physics, 1965, Vol. 42, num 7, p.2371 2373.
- 18. Яревский Е. А. Единый аналитический и вычислительный подход к решению квантовой задачи трёх тел: Диссертация на соискание ученой степени доктора физико-математических наук. СПбГУ, Санкт-Петербург, 2017
- Curtiss C. F. The Separation of the Rotational Coordinates from the N-Particle Schroedinger Equation / Hirschfelder J. O., Adler F. T. // The Journal of Chemical Physics. 1950. Vol. 18, no. 12. P. 1638–1642.
- 20. Варшалович Д.А. Квантовая теория углового момента / Варшалович Д.А., Москалев А.Н., Херсонский В.К. Л.:Наука, 1975. 441 с.
- 21. J. Ph. Karr High accuracy results for the energy levels of the molecular ions H_2^+ , D_2^+ and HD^+ , up to J = 2 / L. Hilico // Journal of Physics B: Atomic, Molecular and Optical Physics, 2006, Vol. 39, p. 2095-2105.
- 22. Bhatia A. K. Properties of the ground state of the hydrogen molecular ion // Physical review A, 1998, Vol. 58, num 4, 2787-2789.
- Cohen S. Mu-Mesozoic Molecules. I. Three-Body Problem / D. L. Judd, R. J. Riddell // Physical Review, 1959, Vol. 119, num 1, p.384 - 397.

Приложение А

Алгоритм задачи двух центров

Ниже приведён основной функционал алгоритма.

```
//вычисление P[N]/Q_N(N,q,m,p,b,lambda)
  1
  \mathbf{2}
         double fract for eta(double p, double b, double lambda)
  3
         {
  4
                    //постоим последовательность из N+1 элементов rho[] для заданных q, m и p
  5
                    double* rho = build rho for lambda(b, p);
                    //постоим последовательность из N+2 элементов delta[] для заданных q, m и p
  6
  7
                    double* delta = build delta for lambda(b, p);
  8
  9
                    //построим массив xi по значению lambda
10
                    double* chi = new double [N+1];
11
                    for (int i = 0; i < N+1; i++) chi[i] = (i + m)*(i + m + 1) - lambda;
12
13
                    double P[2], Q[2];
14
15
                    P[-1 + OFFSET2] = 1;
16
                    P[-2 + OFFSET2] = chi[0];
17
                    Q[-1 + OFFSET2] = 0;
18
                    Q[-2 + OFFSET2] = 1;
19
                    for (int \ i = 1; \ i <= N; \ i++)
20
                     ł
                               P[i \ |\% \ 2] = P[(i + 1) \ |\% \ 2] * chi[i] - P[i \ |\% \ 2] * delta[i] * rho[i - P[i \ |\% \ 2] * delta[i] * rho[i] + 
21
                                          1];
                               Q[i \ \ 2] = Q[(i + 1) \ \ 2] * chi[i] - Q[i \ \ 2] * delta[i] * rho[i - 1]
22
                                          1];
                                if (abs(P[i | \% 2]) > 1E120 || abs(Q[i | \% 2]) > 1E120)
23
24
                                {
                                          P[0] = 1E - 120;
25
26
                                          P[1] = 1E - 120;
27
                                          Q[0] = 1E - 120;
28
                                          Q[1] *= 1E-120;
                                }
29
30
                    }
31
                     delete [] rho;
32
                     delete [] delta;
33
                     delete[] chi;
                     \label{eq:return P[N \ \ \ 2] / \ sqrt (1 \ + \ Q[N \ \ \ 2] \ \ * \ Q[N \ \ \ 2]);}
34
35
        }
36
       //постоение последовательности из N элементов rho [] для заданных q, m и p
37
38 double* build rho for lambda(double b, double p)
39 {
```

```
40
       double* rho = new double [N + 1];
       41
           1)) / (2 * (i + m) + 3);
42
       return rho;
43 }
44
45
   //постоение последовательности из N элементов rho[] для заданных q, m и p
   double* build delta for lambda(double b, double p)
46
47
   {
48
       double* delta = new double [N + 1];
       49
           + m) - 1);
50
       return delta;
  }
51
52
  // build rho, build delta, build chi отличаются от тех же с for lambda
53
  // sign, чтобы использовать теже коэфф для с і и с'і
54
   double* build rho(double b, double p, int sign)
55
56 {
57
       double* rho = new double [N + 1];
       for (int \ i = 0; \ i < N + 1; \ i++) \ rho[i] = 2 * (i+1) * (i+m+1);
58
59
       return rho;
60 }
61
  double* build delta (double b, double p, int sign)
62
63
  {
64
       double* delta = new double [N + 1];
       for (unsigned i = 0; i < N + 1; i++) delta[i] = sign * b + 2*p*(i+m);
65
       return delta;
66
67
  }
68
69
  double* build chi(double b, double p, double lambda, int sign)
70
   {
71
       double* chi = new double [N + 1];
72
       for (int i = 0; i < N + 1; i++) chi[i] = i*(i+1) + (2*i+m+1)*(2*p+m) + sign
          * b - lambda;
73
       return chi;
74 }
75
76
   //нахождение лямбда, удовлетворяющее ур-ию P/Q(0, a или b, lambda) = 0 вблизи
      begin lambda
77
   double find lambda from b for eta near(double b, double begin lambda)
78
   {
79
       if (fract for eta(0, b, begin lambda) == 0) return begin lambda;
       double step l = 0.0005;
80
81
       bool sign = (fract for eta(0, b, begin lambda) > 0);
82
       double left l = begin \ lambda;
```

35

```
83
        double right l = begin lambda;
 84
        do
 85
        {
 86
             left l \rightarrow tep l;
             right l += step l;
 87
        } while (fract for eta(0, b, left l) > 0 == sign \&\& fract for <math>eta(0, b, c)
 88
            right l > 0 = sign ;
        if (fract for eta(0, b, left l) > 0 != sign) begin lambda =
89
            dividing section for eta(0, b, left l, left l + step l, !sign);
         else begin_lambda = dividing_section_for_eta(0, b, right_l - step_l, right_l
90
            , sign);
91
        return begin lambda;
92
   }
93
    double find lambda from a for xi near(double p, double a, double begin lambda)
94
95
    {
96
        double step l = 0.1 > abs(begin lambda)*5E-4? 0.1 : abs(begin lambda)*5E-4;
         bool sign = (fract for xi(p, a, begin lambda - step l) > 0);
97
98
        double right l = begin lambda;
99
        do
100
        {
101
             right l \rightarrow t l + t l = t l;
102
        } while (fract_for_xi(p, a, right_l) > 0 == sign);
103
         return dividing_section_for_xi(p, a, right_l - step_l, right_l, sign);
104
105
   }
106
    double dividing section for xi(double p, double a, double left, double right,
107
        bool sign)
108
   {
109
        do
110
        {
             double center = (right + left) / 2;
111
             double val center = fract for xi(p, a, center);
112
113
             if ((right - left) / abs(center) < 1E-15) return center;
             else if (val center > 0 = \text{sign}) left = center;
114
115
             else right = center;
116
        } while (true);
117
    }
118
119
120
    //нахождение корня на отрезке [left, right] (если знак полинома на левой стороне
        равен sign) методом деления пополам
    double dividing section for eta(double p, double b, double left, double right,
121
        bool sign)
122
    {
123
        do
```

```
124
        {
125
             double center = (right + left) / 2;
126
             double val center = fract for eta(p, b, center);
127
             if (floor(val center * 1E10) / 1E10 == 0 || (right - left) / abs(center)
                 < 1E-13) return center;
128
             else if (val center > 0 = sign) left = center;
129
             else right = center;
130
        } while (true);
131
    }
132
133
    //для радиальной функции \Pi(p,a,lambda)
    double* build alpha for lambda(double a, double p)
134
135
    {
136
        double* alpha = new double [N + 1];
137
        for (unsigned i = 0; i < N + 1; i++) alpha[i] = (i + 1)*(i + m + 1);
138
        return alpha;
139
    }
140
    double* build gamma for lambda(double a, double p)
141
142
    {
143
        double* gamma = new double [N + 1];
144
        double sigma = (a / 2) / p - (m + 1);
145
        for (int i = 0; i < N + 1; i++) gamma[i] = (i-1-sigma)*(i-m-1-sigma);
146
        return gamma;
147
    }
148
    double* build gamma right (double a, double p)
149
150
    {
151
        double* gamma = new double [N + 1];
152
        double sigma = (a / 2) / p - (m + 1);
153
        for (int i = 0; i < N + 1; i++) gamma[i] = -(i - 1) * (i - 2 * sigma + m - m)
            3) + sigma * (sigma + m);
154
        return gamma;
155
    }
156
    //для вычисления волновой функции рядом с полиномами Лагерра
157
158
    double* build alpha Lagerr (double a, double p)
159
    {
160
        double* alpha = new double [N + 1];
161
        double sigma = (a / 2) / p - (m + 1);
162
        for (int i = 0; i < N + 1; i++) alpha[i] = (i + m + 1)*(i - m - sigma);
163
        return alpha;
164
    }
165
166
    double* build gamma Lagerr(double a, double p)
167
    {
168
        double* gamma = new double [N + 1];
```

169double sigma = (a / 2) / p - (m + 1);170for (int i = 0; i < N + 1; i++) gamma[i] = i * (i - 1 - sigma); 171return gamma; 172} 173174//вычисление Р N/Q N(N, k, m, p, a, lambda) double fract for xi (double p, double a, double lambda) 175176{ 177//постоим последовательность из N+1 элементов rho[] для заданных k, m, а и р 178double* alpha = build_alpha_for_lambda(a, p); 179//постоим последовательность из N+2 элементов delta [] для заданных k, m, а и р 180double* gamma = build_gamma_for_lambda(a, p); 181//построим массив beta по значению lambda double* beta = build beta (a, p, lambda); 182double P[2], Q[2]; 183P[-1 + OFFSET2] = 1;184P[-2 + OFFSET2] = beta[0];185Q[-1 + OFFSET2] = 0;186Q[-2 + OFFSET2] = 1;187 for (unsigned i = 1; $i \leq N$; i++) 188189{ 190 $P[i \ \ 2] = (P[(i + 1) \ \ 2] * beta[i] - P[i \ \ 2] * alpha[i - 1] *$ gamma[i]);191[i]; 192if (abs(P[i | % 2]) > 1E120 || abs(Q[i | % 2]) > 1E120)193{ 194P[0] = 1E - 120;195P[1] = 1E - 120;196Q[0] *= 1E-120;197Q[1] *= 1E-120;198} 199} 200delete [] alpha; 201delete [] gamma; 202delete [] beta; 203return $P[N \setminus \% 2] / sqrt(1 + Q[N \setminus \% 2] * Q[N \setminus \% 2]);$ 204} 205206double* build beta(double a, double p, double lambda) 207{ 208double* beta = new double [N + 1];209double sigma = (a / (2 * p)) - (m + 1);210for (int i = 0; i < N + 1; i++) beta[i] = 2 * i*(i + 2 * p - sigma) - (m + 1)sigma) *(m + 1) - 2 * p*sigma + lambda; 211return beta;

212} 213//начальное р из теории возмущений 214 double p from perturbation theory (double r) 215{ 216int Z = Z1 + Z2;217int l = q + m;int N = l + k + 1;218219double E; 220if (l == 0) = -(Z*Z / (2 * (double)N*N) + 2 * Z1*Z2*(l + 1) / (double)(N*N)*N * (l + 1) * (2 * l - 1) * (2 * l + 1) * (2 * l + 3)) * Z * Z * r * r);221else E = -(Z*Z / (2 * (double))X*N) + 2 * Z1*Z2*(l*(l + 1) - 3 * m*m) / (2 + 2)X*Z2*(l*(l + 1) - 3 * m*m) / (2 + 2)X*Z2*(l*(l + 1) - 3 * m*m) / (2 + 2)X*Z2*(l*(l + 1) - 3 * m*m) / (2 + 2)X*Z2*(l*(l + 1) - 3 * m*m) / (2 + 2)X*Z2*(l*(l + 1) - 3 * m*m) / (2 + 2)X*Z2*(l*(l + 1) - 3 * m*m) / (2 + 2)X*Z2*(l*(l + 1) - 3 * m*m) / (2 + 2)X*Z2*(l*(l + 1) - 3 * m*m) / (2 + 2)X*Z2*(l*(l + 1) - 3 * m*m) / (2 + 2)X*Z2*(l*(l + 1) - 3 * m*m) / (2 + 2)X*Z2*(l*(l + 1) - 3 * m*m) / (2 + 2)X*Z2*(l*(l + 1) - 3)X*Z2*(l*(l + 1) - 3)X*Z2*(l*(double) (N*N*N * l*(l + 1)*(2 * l - 1)*(2 * l + 1)*(2 * l + 3))*Z*Z*r*r);222double p = sqrt(-E*r*r/2.0);223return p; 224} 225226//находим начальное lambda для р из теории возмущений (ZR = 0.1) 227double find begin lambda() 228{ 229double r = 0.1 / (Z1 + Z2);double b = r * (Z2 - Z1);230231double lambda = find lambda for b for eta(b); //нашли lambda при p = 0232double p = p from perturbation theory(r); 233 $lambda = find \ lambda \ from \ p \ for \ eta \ near(p, b, \ lambda);$ 234return lambda; 235} 236//решение системы уравнений alpha k * c k+1 – beta k * c k + gamma k * c k-1 = 0 237238vector<double> solve system equations(double alpha[], double beta[], double gamma []) 239{ 240vector<double> koeff; 241koeff.push back(1); 242koeff.push back(beta[0] / alpha[0] * koeff[0]); 243for (int $i = 2; i \le N; i++$) 244{ 245koeff.push back((beta[i - 1] * koeff[i - 1] - gamma[i - 1] * koeff[i -2]) / alpha[i - 1]; 246} 247return koeff; 248} 249250void calculate koeff for angular function(double b, double p, double end lambda, vector < double > & c1, vector < double > & c2) 251{ //cout << "Koeff for angular function on segment (0,1)" << endl;</pre> 252253double * gamma = build delta(b, p);

```
254
        double * beta = build chi(b, p, end lambda);
255
        double * alpha = build rho(b, p);
256
        c1 = solve system equations(alpha, beta, gamma);
257
        double norm1 = 0; //нормирующий коэффициент, чтобы в нуле суммы
            коэффициентов совпадали
258
        int size = c1.size();
        for (int i = 0; i < size; ++i)
259
260
        {
261
             norm1 += c1 [i];
262
        }
263
         delete [] alpha;
264
         delete [] beta;
265
         delete [] gamma;
266
        //\operatorname{cout} << "Koeff for angular function on segment (-1,0)" << endl;
267
268
        double * delta = build delta(b, p, -1);
269
        double * chi = build chi(b, p, end lambda, -1);
270
        double * rho = build rho(b, p, -1);
        c2 = solve system equations(rho, chi, delta);
271
272
        double norm2 = 0;
         size = c2.size();
273
274
        for (int i = 0; i < size; ++i)
275
         ł
276
             norm2 += c2[i];
277
        }
278
        // нормируем с' і
279
        norm1 /= norm2;
280
        for (int i = 0; i < size; ++i)
281
        {
282
             c2[i] *= norm1;
283
        }
284
         delete [] rho;
285
         delete [] chi;
286
         delete [] delta;
287
    }
288
289
    void calculate_koeff_for_radial_function(double a, double p, double end_lambda,
        vector<double>& g)
290
   {
291
        double * alpha = build alpha for lambda(a, p);
        double * beta = build beta(a, p, end lambda);
292
        double * gamma = build gamma for lambda(a, p);
293
294
        g = solve_system_equations(alpha, beta, gamma);
295
        curtail vector(g);
296
         delete [] alpha;
297
         delete [] beta;
298
         delete [] gamma;
```

299} 300double build Psi(params for Psi& par, double x, double z) 301 302{ 303 double p(par.p), a(par.a); const vector <double> &c1(par.c1), &c2(par.c2), &g(par.g); 304305double R = par R;306 $\mathbf{x} = \mathbf{abs}(\mathbf{x});$ double xi, eta; 307 308double sigma = (a / (2 * p)) - (m + 1);double r1 (sqrt (x*x + (R / 2 + z)*(R / 2 + z))), r2 (sqrt (x*x + (-R / 2 + z))) 309 *(-R / 2 + z)));310xi = (r1 + r2) / R;eta = (r1 - r2) / R;311312if (abs(eta*R / r1) < 1E-15) eta = 0; if (abs(eta) > 1) eta = (eta > 0 ? 1 : -1);313 314 if (xi < 1) xi = 1; // связана с неточностью вычисления const vector $\langle \text{double} \rangle \& c = (\text{eta} > 0 ? c2 : c1);$ 315316 return part xi(p, xi, sigma, g) * part eta(p, eta, c); 317 } 318319//переводит из сферических в х и z 320double build Psi spher(params for Psi& par, double r, double theta, double vShift) 321{ 322return build Psi(par, r * sin(theta), r * cos(theta) + vShift);323} 324325//значение части волновой функции, зависящая от xi 326 double part xi (double p, double xi, double sigma, const vector <double>& g) 327 { 328double x = (xi-1)/(xi+1);329 //double x = 2*p*(xi-1);330 double sum = 0;//сумма ряда 331for (int i = 0; i < /*10*/g.size(); ++i) 332 { 333sum += g[i] * pow(x, i);334 } 335return pow(xi*xi - 1, m / 2.0) * $\exp(-p*(xi - 1))$ * pow(xi+1, sigma) * sum; 336} 337 //значение части волновой функции, зависящая от eta>0 338double part eta(double p, double eta, const vector <double>& c) 339{ 340double sum = 0;//сумма ряда 341eta = abs(eta); //для корректности следующих формул 342for (int i = 0; i < c.size(); ++i) sum += c[i] * pow(1-eta, i); 343 return pow(1-eta*eta,m/2.0) * exp(-p*(1-eta)) * sum;

```
344 }
345
346
    void find energy and wave(double begin p, koefficients& wave, double& Energy,
       double& Parameter, double& a)
347
   {
        double lambda a, lambda b, b, p;//а понадобится вне
348
        a = R * (Z1 + Z2);
349
        b = R * (Z2 - Z1);
350
351
        double begin lambda = find begin lambda();
        thread thra(find_lambda_for_a_for_xi, ref(lambda_a), begin_p, a,
352
            begin lambda, 0.001);
        lambda b = find lambda for b for eta(b, 0.0005); // здесь p=0
353
354
        lambda_b = find_lambda_from_p_for_eta(begin_p, b, lambda_b - 0.0005);
355
        thra.join();
356
357
        double end lambda = lambda b;
358
        p = dividing section for p(begin p, a, b, lambda a, lambda b, end lambda);
        double E = -2 * p*p / (R*R);
359
360
        Energy = E;
361
        Parameter = p;
        //вычисляем коэффициенты с і и с' і для угловой части волновой функции
362
363
        calculate koeff for angular function(b, p, end lambda, wave.c1, wave.c2);
364
365
        //вычисляем коэффициенты д і для радиальной части волновой функции
366
        calculate_koeff_for_radial_function(a, p, end_lambda, wave.g);
367 }
```

42

Приложение Б

Фрагменты кода для вычисления функций C(R) и H(R)

Содержимое главного файла

```
1 #pragma once
2 #include "stdafx.h"
3 \# include "functions.h"
4 using namespace std;
5 int Z1, Z2, k, q, m, N;
6
   double R;
7
8
   int main()
9
   {
10
       double R max, R min, h;
       bool inversion = false;
11
       Z1 = Z2 = 1;
12
       correctInput(R min, []() {string str = "Input_min_R>"; return str +
13
           to string (0.1 / abs(Z1 + Z2)); }(), [](wchar t* input) {return ((wcstod(
           input, NULL) \langle = 0.1 / abs(Z1 + Z2)); }; });
14
       correctInput (R_max, "Input_max_R>" + to _string (R_min), [R_min] (wchar_t*
           input) {return ((wcstod(input, NULL) \langle = R min)); });
15
       cout << "Input_step_dR_=_";
16
       \operatorname{cin} >> \operatorname{h};
17
18
       correctInput(N, "Input_main_quantium_number_N>0", [](wchar_t* input) {return
            (!(isPosInt(input)) || ( wtoi(input) <= 0)); });//главное кв число
19
       correctInput(q, "Input_orbital_quantium_number_l>=0", [](wchar t* input) {
           return (!(isPosInt(input)) || ( wtoi(input) < 0)); });//орбит кв число
20
       k = N - 1 - q;
21
       correctInput (m, []() { string str = "Input_magnetic_quantium_number_m<=";
           input)) || (wtoi(input) < 0) || (wtoi(input) > q)); \});
22
       q = q - m;
23
24
       N = 70;
25
       double r = 0.1 / (Z1 + Z2); // для теории возмущений
       double begin_p = p_from_perturbation_theory(r);
26
27
       double max r;
28
       cout << "Take_size_of_field_for_integration \n";</pre>
29
       cout \ll "Type_max r_="; cin >> max r;
30
31
       int j = static cast < int > ((R max - R min) / h) + 1; // j = всего точек, дл
           якаждой из них будут вычисляться параметры для вычисления волновой
           функции
32
       vector < koefficients > koeff(j);
```

```
33
        vector<double> Energies(j);
34
        vector<double> Parameters(j);
35
        vector < double > A(j);
36
        vector<double> Dist(j);
        for (int \ i = 0; \ i < j; ++i)
37
38
       {
            Dist[i] = R_{min} + i * h;
39
           R = Dist[i];
40
            find energy and wave(begin p, koeff[i], Energies[i], Parameters[i], A[i
41
               ]);
42
43
            //вычисляем интеграл от квадрата волновой функции
44
            funct<square_struct<params_for_Psi>> func = squarer;
            square struct < params for Psi> params = { build Psi spher, params for Psi
45
               ({Dist[i], Parameters[i], A[i], koeff[i].c1, koeff[i].c2, koeff[i].g
               }) };
46
            double integr = gsl integral < square struct < params for Psi >> (func, 0,
               max r, 0, M PI, params, 1000);
            cout \ll "Integral_in_R_=" \ll R \ll "_equals_" \ll integr \ll '\n';
47
            //нормировка волновой функции на единицу
48
            for_each(koeff[i].g.begin(), koeff[i].g.end(), [integr](double&g){g = g}
49
               /sqrt(integr);});
50
       }
       ofstream fout;
51
       fout.open("D:\\Диплом\\адиабатическое_разложение\\Задача_двух_кулоновских_
52
           центров\\peзультаты\\" + create name(R min, h, R max) + ".csv", ios base
           :: out);
        if (!fout.is_open())
53
            cout << "file_isnt_open" << endl;</pre>
54
        else
55
56
       {
            fout << "R,E,C,H,L 2,sum\backslashn";
57
58
            for (int i = 2; i < j - 2; ++i)
59
60
            {
                //нужно взять интеграл от Psi * (оператор лапласа от)Psi по всему
61
                    двумерному пространству (=C1(R))
62
                //он заменяется на интеграл от psi^2 *(-2*E - 2*Z1/r1 - 2*Z2/r2)
                //берём интеграл интеграл от psi^2/r1. Переходим в полярные
63
                    координаты с центром в точке, где находится Z1, и получаем
64
                //интеграл от psi^2 * theta dr dtheta.
                R = R \min + i * h;
65
66
                double integr1 = -2 * \text{Energies}[i];
67
                funct<two param struct<square struct<params for Psi>,
                    struct for Columb pot>> func1 = multiplier;
68
                two param struct<square struct<params for Psi>,
                    struct for Columb pot> params1 = { squarer, columb pot,
```

		$square_struct < params_fo$	r_Psi>({build_Psi_spher, params_for_Psi({
		Dist[i], $Parameters[i]$,	$A[\ i \] \ , \ \ koeff[\ i \] \ . \ c2 \ , \ \ koeff[\ i \] \ . \ c2$
		$g \}) \}) , struct_for_Column$	nb_pot({}) };
69		$egin{array}{rllllllllllllllllllllllllllllllllllll$	ntegral(func1, 0, max_r, 0, M_PI, params1,
70		${ m integr1} \; += \; -2 \; * \; { m Z1} \; * \; { m gsl_i} \ { m 1000000, -R} \; / \; 2):$	$mtegral(func1, 0, max_r, 0, M_PI, params1,$
71		integr1 = integr1 / 4;	
72			
73		//интеграл от второй произн	зодной
74		<pre>funct<two_param_struct<para func2="multiplier;</pre"></two_param_struct<para></pre>	ams_for_Psi, params_for_derivative_Psi>>
75		<pre>two_param_struct<params_for = { build_Psi_spher, my Dist[i], Parameters[i], g } , params_for_deriva Dist }) }:</params_for </pre>	<pre>r_Psi, params_for_derivative_Psi> params2 v_second_derivative_Psi_3, params_for_Psi{ A[i], koeff[i].c1, koeff[i].c2, koeff[i]. tive_Psi({ i, h, koeff, Parameters, A,</pre>
76		double integr $2 = gsl_integ$ 1000000, 0);	$ral(func2, 0, max_r, 0, M_PI, params2,$
77		<pre>funct<two_param_struct<para multiplier;<="" pre=""></two_param_struct<para></pre>	ms_for_Psi , params_for_L_y>> func3 =
78		two_param_struct <params_for build_Psi_spher, squareA Dist[i], Parameters[i], g } , params_for_L_y{ p l, koeff[i],c1, koeff[i]</params_for 	<pre>r_Psi, params_for_L_y> params3 = { angularMomentum_theta, params_for_Psi{ A[i], koeff[i].c1, koeff[i].c2, koeff[i]. arams_for_Psi{ Dist[i], Parameters[i], A[i] l.c2, koeff[i].g }, 0.001 } ;:</pre>
79		double integr $3 = gsl_integ$ 1000000. 0):	ral(func3, 0, max_r, 0, M_PI, params3,
80		integr $3 = -integr3$ / (R *]	3);
81		integr2 += integr3;	
82		<pre>cout << R << ', ' << setpre integr1 << ', ' << integ) << '\n';</pre>	cision (10) << Energies[i] << ',' << - r2 << integr2 - integr1 << setprecision(ss
83		fout << R << ',' << setpre integr1 << ',' << integ) << '\n';	cision (10) << Energies [i] << ',' << - r2 << integr2 - integr1 << setprecision (ss
84		}	
85		fout.close();	
86		}	
87		<pre>system("pause");</pre>	
88		return 0;	
89	}		
	Осн	сновные фрагменты из файла «functions.	h»

```
1 #pragma once
2 #include "gsl/gsl_integration.h"
3 #include "gsl/gsl_deriv.h"
```

```
4 extern int Z1, Z2, k, q, m, N;
   extern double R;
5
6
7
  using namespace std;
   struct koefficients
8
9
   {
10
        koefficients() : c1(N), c2(N), g(N) {};
        vector < double > c1, c2, g;
11
12
   };
13 template < typename parameters >
14 using funct = double(*)(parameters&, double r, double z, double vShift);
15
   //все параметры для Psi, кроме г и z
16
   struct params_for_Psi
17 {
18
        double R;
19
        double p, a;
20
        const vector <double> &c1, &c2, &g;
21
   };
22
23
   //структура для передачи параметров при интегрировании по r
24 \quad \texttt{template}{<}\texttt{typename} \quad \texttt{parameters}{>}
25
   struct gsl struct first
26 {
27
        funct<parameters> func;
28
        parameters& par;
29
        double z;
30
        double vShift;
31
   };
32
33
   template < typename parameters 1, typename parameters 2 > 
34
   struct two_param_struct
35
  {
36
        funct<parameters1> func1;
37
        funct < parameters 2 > func 2;
38
        parameters1& par1;
39
        parameters2& par2;
40
   };
41
42
   //интегрировании по theta
43
   template < typename parameters >
44
   struct gsl struct second
45
   {
46
        funct<parameters> func;
47
        double min r;
48
        double max r;
49
        parameters& par;
50
        int count;
```

```
51
       double vShift;
52
   };
53
54 //подынтегральная функция одномерного интеграла
55 template < typename parameters >
56
   double gsl integrand first (double r, void * param)
57 {
58
        gsl struct first <parameters >* par = static cast < gsl struct first <parameters
           > *>(param);
59
       double res = (par->func)(par->par, r, par->z, par->vShift)*r*r;
60
       return res;
61
   }
62
63 template<typename parameters>
64
   struct square struct
65
   {
66
       funct<parameters> func;
67
       parameters& par;
68
       double vShift;
69
   };
70
  //возводит в квадрат
71
72 template<typename parameters>
73 double squarer (parameters par, double r, double z, double vShift = 0)
74 {
75
       double res = (par.func)(par.par, r, z, vShift);
76
       return res * res;
77 }
78
79 //когда под интегралом умножение функций func1 и func2 с параметрами раг1 и раг2
80 template < typename parameters 1, typename parameters 2 > 2
   double multiplier (two param struct<parameters1, parameters2>& param, double r,
81
       double theta, double vShift = 0)
82
   {
83
       double res1 = (param.func1)(param.par1, r, theta, vShift);
84
       double res2 = (param.func2)(param.par2, r, theta, vShift);
85
       return res1 * res2;
86 }
87
   //интеграл по отрезку от min r до max r
88 template<typename parameters>
89
   double gsl integral r(funct<parameters> func, double min r, double max r,
       parameters & par, double theta, int count, double vShift = 0)
90
   {
91
       double res, err;
92
        gsl function F;
93
       F.function = &gsl integrand first < parameters >;
94
        gsl struct first cparameters> params = { func, par, theta, vShift };
```

```
95
        F. params = \& params;
96
         gsl integration workspace * workspace = gsl integration workspace alloc(count
            );
97
         gsl integration qag(&F, min r, max r, 0.0001, .01, count, 1, workspace, &res
            , &err);
         gsl integration workspace free(workspace);
98
99
         return res;
100 }
101
102
    //функция, связывающая двумерный интеграл с одномерным
103
    template<typename parameters>
    double gsl integral theta (double theta, void * params)
104
105
    {
106
         gsl struct second < parameters > * par = static cast < gsl struct second < 
            parameters > *>(params);
         return gsl integral r(par->func, par->min r, par->max r, par->par, theta,
107
            par \rightarrow count, par \rightarrow vShift) * sin(theta);
108
   }
109
110 template<typename parameters>
    double gsl integral (funct < parameters > func, double min r, double max r, double
111
        min theta, double max theta, parameters & par, int count, double vShift = 0)//
        verticalShift - сдвиг по вертикали
112 {
113
         double res, err;
114
         gsl function F;
115
        F.function = &gsl integral theta < parameters >;
116
         gsl struct second < parameters > params = \{ func, min r, max r, par, count, \}
            vShift };
117
        F. params = \& params;
118
         gsl integration workspace * workspace = gsl integration workspace alloc(count
            );
119
         gsl integration qag(&F, min theta, max theta, 0.0001, .01, count, 1,
            workspace, &res, &err);
120
         gsl integration workspace free(workspace);
121
         return res;
122
    }
123
124
    //все параметры для производной Psi по R, кроме r и z
125
    struct params_for_derivative_Psi
126
    {
         int i; double h;
127
128
         vector < koefficients > & koeff;
         vector<double>& Parameters;
129
130
         vector<double>& A;
131
         vector<double>& Dist;
132
    };
```

```
133
134
    //для производной от любой функции
135
    template<typename parameters>
136
    struct params for derivative 5
137
    {
138
        funct<parameters> func;
139
        parameters& par minus two;
140
        parameters& par minus one;
141
        parameters& par zero;
142
        parameters& par plus one;
143
        parameters& par plus two;
144
        double h;
145
    };
146
    template<typename parameters>
    double my derivative 5(\text{params for derivative } 5 < \text{parameters} \gg \text{par}, \text{ double } r,
147
        double theta, double vShift = 0)
148
   {
        double minus two = par.func(par.par minus two, r, theta, vShift);
149
        double minus one = par.func(par.par minus one, r, theta, vShift);
150
        double zero = par.func(par.par zero, r, theta, vShift);
151
        double plus one = par.func(par.par plus one, r, theta, vShift);
152
153
        double plus two = par.func(par.par plus two, r, theta, vShift);
154
        return (minus two -8 * minus one +8 * plus one - plus two) / (12 * par.h);
155
    }
156
    struct struct for Columb pot{};
    double columb pot(struct for Columb pot&, double r, double theta, double vShift)
157
        ;
```

Основные фрагменты из файла «functions.cpp»

```
1 double my derivative Psi 5 (params for derivative Psi& par, double r, double
      theta, double vShift)
2 {
3
       double minus two = build Psi spher(params for Psi{ par.Dist[par.i - 2], (par
          Parameters) [par.i - 2], par.A[par.i - 2], (par.koeff) [par.i - 2].c1, (
          par.koeff) [par.i - 2].c2, (par.koeff) [par.i - 2].g, r, theta, vShift);
4
       double minus one = build Psi spher(params for Psi{ par.Dist[par.i - 1], (par
          Parameters) [par.i - 1], par.A[par.i - 1], (par.koeff) [par.i - 1].c1, (
          par.koeff) [par.i -1].c2, (par.koeff) [par.i -1].g }, r, theta, vShift);
5
       double plus one = build Psi spher(params for Psi{ par.Dist[par.i + 1], (par.
          Parameters) [par.i + 1], par.A[par.i + 1], (par.koeff)[par.i + 1].c1, (par.koeff)[par.i + 1].c1
          . koeff) [par.i + 1].c2, (par.koeff) [par.i + 1].g }, r, theta, vShift);
6
       double plus two = build Psi spher(params for Psi{ par.Dist[par.i + 2], (par.
          Parameters) [par. i + 2], par. A [par. i + 2], (par. koeff) [par. i + 2]. c1, (par
          . koeff) [par. i + 2].c2, (par. koeff) [par. i + 2].g }, r, theta, vShift);
7
       return (minus_two - 8 * minus_one + 8 * plus_one - plus_two) / (12 * par.h);
8
  }
9 double my second derivative Psi 3 (params for derivative Psi& par, double r,
```

```
double theta, double vShift)
10 {
                         double minus one = build Psi spher(params for Psi{ par.Dist[par.i - 1], (par
11
                                     Parameters) [par. i - 1], par. A [par. i - 1], (par. koeff) [par. i - 1]. c1, (
                                     par.koeff) [par.i - 1].c2, (par.koeff) [par.i - 1].g, r, theta, vShift);
12
                         double zero = build_Psi_spher(params_for_Psi{ par.Dist[par.i], (par.
                                     Parameters) \left[ par.i \right], \ par.A \left[ par.i \right], \ \left( par.koeff \right) \left[ par.i \right].c1, \ \left( par.koeff \right) \left[ par.i \right].c1, \ context{ or } context{ o
                                     i].c2, (par.koeff)[par.i].g }, r, theta, vShift);
                         double plus_one = build_Psi_spher(params_for_Psi{ par.Dist[par.i + 1], (par.
13
                                     Parameters) [par.i + 1], par.A[par.i + 1], (par.koeff) [par.i + 1].c1, (par
                                     . koeff) [par.i + 1].c2, (par.koeff) [par.i + 1].g }, r, theta, vShift);
                         return (plus one - 2*zero + minus one) / (par.h * par.h);
14
15
          }
         double columb pot(struct for Columb pot&, double r, double theta, double vShift
16
                      = 0)
17
         {
18
                         return 1 / r;
19 \}
```