Санкт-Петербургский государственный университет Кафедра моделирования электромеханических и компьютерных систем

Крылова Марина Александровна

Выпускная квалификационная работа бакалавра

Моделирование электрических и упругих свойств производных фуллерена

Направление 01.03.02

Прикладная математика, фундаментальная информатика и программирование

Научный руководитель,

доктор физ.-мат. наук,

доцент,

Бедрина М.Е.

Санкт-Петербург 2018 Saint-Petersburg State University

Department of Electromechanical and Computer Systems Modeling

Krylova Marina Alexandrovna

Graduation thesis

Modeling electrical and elastic properties of fullerene derivatives

Direction 01.03.02

Applied mathematics, fundamental informatics and programming

Science supervisor,

assistant professor,

doctor of phys.-math. sciences,

Bedrina M.E.

Saint-Petersburg 2018

Содержание

Введение
Глава 1. Общие сведения о многоэлектронных структурах
1.1 Уравнение Шрёдингера
1.2 Вариационный принцип
1.3 Метод Хартри-Фока
1.4 Экспоненциальная яма
1.5 Теория функционала плотности
1.6 Методы B3LYP и PBE1PBE
Глава 2. Строение и свойства рассматриваемых элементов и структур
2.1 Гадолиний
2.2 Фуллерен
Глава 3. Производные фуллерена С ₆₀
3.1 Эндоэдральный комплекс фуллерена С ₆₀ с гадолинием
3.2 Гидроксилированный фуллерен С ₆₀
3.3 Исследование параллельных режимов кластера ПМ-ПУ
3.3.1 Вычисления на кластере ПМ-ПУ, версия Gaussian 09
Revision D.01
3.3.2 Вычисления на кластере химического факультета СПбГУ,
версия Gaussian 16 Revision A.03
3.3.3 Вычисления на персональном компьютере, версия Gaussian
09 Revision C.01
3.3.4 Выводы
3.4 Гидроксилированный эндокомплекс фуллерена Gd@C ₆₀ (OH) ₃₀
Результаты

Выводы и заключение	
Список литературы	

Введение.

Фуллерены или бакиболы - аллотропная форма углерода, отличная от ранее известных алмаза и графита, была открыта при исследовании массспектров паров графита в 1985 году группой учёных во главе с Ричардом Смолли.

С тех пор началось интенсивное изучение фуллеренов. Данные соединения интересны исследователям во много из-за своей сферической формы, которая позволяет вместить внутрь полости различные соединения, например, для транспортировки лекарств внутри организма. Одним из вариантов применения фуллеренов в медицине могло бы стать соединение фуллерена и помещенного внутрь гадолиния.

Гадолиний — токсичный металл, который из-за своих сильных магнитных свойств применяется в контрастных препаратах при проведении магнитно-резонансной томографии. Чаще всего используют оксид гадолиния Gd_2O_3 или его соль гадодиамид. Хотя эти соединения и менее токсичны, чем чистый металл, существуют исследования, утверждающие, что данные препараты способны накапливаться в клетках и отравлять организм[1, 2]. Известно, что чистые фуллерены не токсичны[3], следовательно, их эндоэдральные комплексы с гадолинием могли бы стать более безопасными препаратами-контрастами[4]. Более того, некоторые исследования показывают, что растворимые в воде гидроксилированные эндокомплексы с гадолинием способны замедлять рост раковых клеток.[5]

Целью данной работы является квантово-механическое моделирование производных фуллерена C₆₀, в том числе, эндокомплексов с гадолинием для

4

последующего изучения их активных свойств. Предполагается рассмотреть энергетические, структурные и магнитные свойства данных соединений, а также сравнить ИХ характеристики с характеристиками отдельных фрагментов данных структур. В качестве программного пакета для вычислений была выбрана программа Gaussian 09[6], так как она содержит встроенные методы теории функционала плотности и псевдопотенциала, взаимодействие позволяющие довольно точно описать атомов В рассматриваемых моделях.

Данная работа не является единственной в рассматриваемой области. Структурные и электронные свойства $Gd@C_{60}$ были изучены в довольно подробной статье [7]. Соединение $Gd@C_{60}$ должно быть самым удобным для использования его в качестве наноконтейнера для тяжёлого металла, так как производство фуллерена C_{60} обходится дешевле производства фуллеренов с более высоким числом углеродов. С методами синтеза фуллеренов и их производных можно ознакомиться в работах[8, 9].

Целью настоящей дипломной работы является исследование электрических и упругих свойств эндоэдральных комплексов фуллерена C₆₀ с гадолинием, а также их гидроксилированных производных методами квантово-механических расчётов.

Глава 1. Общие сведения о многоэлектронных структурах.

1.1 Уравнение Шрёдингера.

Основной составляющей практически всех квантово-механических расчётов является приближенное решение стационарного уравнения Шрёдингера (1).

$$\widehat{H}\Psi=E\Psi,$$
(1)

где Ĥ — оператор Гамильтона для молекулярной системы, состоящей из М ядер и N электронов. Ĥ — это дифференциальный оператор, отображающий полную энергию:

$$\widehat{H} = -\frac{1}{2} \sum_{i=1}^{N} \nabla_{i}^{2} - \frac{1}{2} \sum_{A=1}^{M} \frac{1}{M_{A}} \nabla_{A}^{2} - \sum_{i=1}^{N} \sum_{A=1}^{M} \frac{Z_{A}}{r_{iA}} + \sum_{i=1}^{N} \sum_{j>i}^{N} \frac{1}{r_{ij}} + \sum_{A=1}^{M} \sum_{B>A}^{M} \frac{Z_{A}Z_{B}}{R_{AB}}$$
(2)

M_A— это масса ядра с индексом А в атомных единицах, Z_A — его заряд.

Индексы A и B пробегают по M ядрам, а i и j указывают на N электронов системы. Два первых слагаемых гамильтониана описывают соответственно кинетическую энергию электронов и ядер системы, где оператор Лапласа определён как сумма дифференциальных операторов в декартовых координатах:

$$\nabla_{q}^{2} = \frac{\partial^{2}}{\partial x_{q}^{2}} + \frac{\partial^{2}}{\partial y_{q}^{2}} + \frac{\partial^{2}}{\partial z_{q}^{2}}$$

Остальные три члена оператора Гамильтона (2) определяют соответственно электростатическое взаимодействие между ядрами и электронами, взаимодействие между электронами и отталкивание ядер.

Для систем, которые содержат больше одного электрона, существует только численное решение уравнения Шрёдингера.

Одним из способов упростить решение уравнения Шрёдингера (1) является приближение Борна-Оппенгеймера, позволяющее упростить нахождение волновой функции. Этот метод основан на том, что массы ядер значительно превосходят массы электронов, поэтому ядра атомов можно считать неподвижными, а электроны движущимися в электростатическом поле ядер. Тогда кинетическая энергия ядер равна нулю, а потенциальная энергия в связи с отталкиванием ядер друг от друга является константой, а гамильтониан системы принимает вид так называемого электронного гамильтониана:

$$\widehat{H}_{elec} = -\frac{1}{2} \sum_{i=1}^{N} \nabla_i^2 - \sum_{i=1}^{N} \sum_{A=1}^{M} \frac{Z_A}{r_{iA}} + \sum_{i=1}^{N} \sum_{j>i}^{N} \frac{1}{r_{ij}} = \widehat{T} + \widehat{V}_{Ne} + \widehat{V}_{ee}$$

Решения уравнения Шрёдингера (1) с \hat{H}_{elec} — это волновая функция электронов Ψ_{elec} и энергия электронов E_{elec} . Ψ_{elec} зависит от координат электронов, а координаты ядер входят в неё как параметры. Полная энергия E_{tot} — это сумма E_{elec} и энергии отталкивания ядер:

$$E_{nuc} = \sum_{A=1}^{M} \sum_{B>A}^{M} \frac{Z_A Z_B}{r_{AB}}$$

Таким образом, уравнение Шрёдингера принимает вид:

$$\widehat{H}_{elec}\Psi_{elec} = E_{elec}\Psi_{elec}, \qquad (3)$$

а полная энергия –

$$E_{tot} = E_{elec} + E_{nuc}.$$

7

1.2 Вариационный принцип.

Для того, чтобы решить уравнение Шрёдингера (3) для произвольной молекулы, необходимо вначале определить оператор Гамильтона для заданной системы, т. е. определить части оператора, специфические для этой системы. Уравнение (3) показывает, что единственное, что зависит от строения молекулы, - это количество электронов в системе и внешний потенциал V_{ext}. Остальные гамильтониана, описывающие части кинетическую энергию или взаимодействие электронов, являются независимыми от конкретной рассматриваемой молекулы.

Также мы должны найти собственные функции Ψ_i и соответствующие собственные значения E_i гамильтониана. После определения Ψ_i все интересующие нас свойства могут быть получены путем применения соответствующих операторов к волновой функции. К сожалению, этот простой метод почти не имеет практического значения, так как, помимо нескольких тривиальных случаев, не существует аналитического решения уравнения Шрёдингера.

Однако, его можно решить численно, постепенно приближаясь к волновой функции основного состояния Ψ_0 , которое соответствует наименьшей энергии E_0 . Такой принцип решения называется вариационным и имеет место во всех квантово-механических приложениях.

1.2 Метод Хартри-Фока.

Суть приближения Хартри-Фока в том, чтобы искать волновую функцию через так называемый детерминант Слэтера

8

$$\Psi_0 = \frac{1}{\sqrt{N}} \det\{\phi_1 \phi_2 \dots \phi_N\},\$$

где $\phi_i(\vec{x}_k)$ - это функции от одного электрона, называемые спинорбиталями и являющиеся произведением двух функций:

$$\varphi_i(\vec{x}_k) = \sigma_i(k)s_i(k).$$

1.4 Экспоненциальная яма.

Многоэлектронные системы с большим количеством электронов невозможно описать в терминах численно заданной волновой функции, так как её невозможно записать в память компьютера. Если для записи волновой функции на одну переменную использовать q бит памяти, то для полного числа переменных потребуется B=q^{3N} бит, что при большом числе электронов — огромный объем информации. Таким образом, квантовомеханические расчёты с помощью многоэлектронной волновой функции являются слишком затратными.

1.5 Теория функционала плотности.

В теории функционала плотности в качестве основной функции, с помощью которой можно найти основную информацию о многоэлектронной системе, используется электронная плотность:

$$\rho(\vec{r}) = N \int ... \int |\Psi(\vec{x}_1 \vec{x}_2, ..., \vec{x}_N)|^2 ds_1 d\vec{x}_2 ... d\vec{x}_N.$$
(4)

Эта функция определяет вероятность, с которой можно обнаружить любой из N электронов в элементарном объёме dr с любым спином в то время, как все другие электроны обладают произвольными координатами и спинами. Электронная плотность (4) является функцией от трёх координат, на бесконечности равна нулю

$$\rho(\mathbf{r} \rightarrow \infty) = 0.$$

Электронная плотность, в отличие от волновой функции, имеет физический смысл и может быть измерена экспериментально.

Теоретическое обоснование методов ТФП основано на двух теоремах, доказанных в 1964 П.Хоэнбергом и В.Коном:

Теорема 1. Для любой системы взаимодействующих электронов, находящихся во внешнем потенциале $V_{ext}(\vec{r})$, потенциал $V_{ext}(\vec{r})$ определяется однозначно (с точностью до несущественной константы) электронной плотностью основного состояния $\rho(\vec{r})$.

Теорема 2. Функционал Ε[ρ], представляющий собой энергию системы, достигает своего минимума тогда и только тогда, когда ρ=ρ₀, где ρ₀- истинная электронная плотность основного состояния.

Данные теоремы доказывают, что электронную плотность можно использовать для нахождения основных свойств многоэлектронной системы.

1.6 Методы B3LYP и PBE0.

10

Для расчётов в данной работе применялись гибридные потенциалы PBE0 (5) и B3LYP (6), выражающие энергию системы через сумму слагаемых.

$$E_{\rm XC}^{\rm PBE0} = E_{\rm XC}^{\rm GGA} + 0.25 (E_{\rm X}^{\rm HF} - E_{\rm X}^{\rm GGA})$$

$$\tag{5}$$

Е_X^{HF} – обменный функционал Хартри-Фока,

Е_X^{GGA} – приближение энергии обменно-корреляционных взаимодействий по методу обобщённого градиента,

$$E_{\rm XC}^{\rm B3LYP} = (l-a)E_{\rm X}^{\rm LSDA} + aE_{\rm X}^{\rm HF} + bE_{\rm X}^{\rm B88} + cE_{\rm C}^{\rm LYP} + (l-c)E_{\rm C}^{\rm LSDA}$$
(6)

E_X^{LSDA} – локальное приближение электронной плотности,
 E_X^{B88} – функционал Бекке,
 E_C^{LYP} – корреляционный LYP-функционал,

Функционал B3LYP является довольно распространённым в квантовомеханических расчётах и даёт хорошие результаты. Но для изучения магнитных и электрических свойств молекул больше подходит гибридный функционал PBE0.[10]

В качестве базисных функций для гадолиния применялся метод псевдопотенциала SDD, который за счёт внутреннего потенциала, создаваемого ядром и электронами оболочек, близких к ядру, учитывает релятивистские эффекты.

Глава 2. Строение и свойства рассматриваемых элементов и структур. 2.1 Гадолиний.

Гадолиний — элемент III группы периодической таблицы Менделеева, порядковый номер — 64. Электронная конфигурация гадолиния:

 $Is^{2}2s^{2}2p^{6}3s^{2}3p^{6}4s^{2}3d^{10}4p^{6}5s^{2}4d^{10}5p^{6}6s^{2}4f^{7}5d^{1}.$

Элемент имеет 8 неспаренных электронов на 4d- и 5f-орбиталях, общая проекция спина M_s равна 4, а мультиплетность — 9.

Рисунок 1. Направления спинов электронов на 4f- и 5d-орбиталях гадолиния.

В табл. 1 представлены некоторые физические свойства атома гадолиния, рассчитанные методом PBE1PBE/SDD с мультиплетностью 9.

Таблица 1. Некоторые физические свойства гадолиния (PBE1PBE/SDD).

Название	Полная энергия,	Спиновая	Проекция магнитного
	(a.e.)	плотность, (a.e.)	момента, (а.е.)
Gd	-765.617606	8	20.34

2.2 Фуллерен.

Фуллерен — аллотропная форма углерода, открытая в 1985 году Ричардом Смолли и его коллегами, которые в последствии в 1996 году были награждены Нобелевской премией по химии.

Фуллерен С₆₀ состоит из шестидесяти атомов углерода, собранных в шести- и пятиугольники, которые, в свою очередь, образуют сферическую поверхность с полостью внутри.

Тем же методом, что и атом гадолиния была рассчитана структура C₆₀ (рис. 2), результаты представлены в таблице 2. Мультиплетность полагалась равной 1, так как чистый фуллерен не содержит неспаренных электронов.

Рисунок 2. Структура С₆₀, оптимизированная методом PBE1PBE/SDD.

Таблица 2. Основные характеристики C₆₀, оптимизированного методом PBE1PBE/SDD.

Название	Полная энергия	Расстояние между атомами
C ₆₀	-3048.8574869	R1=1.39836
		R2=1.45692

Как видно в табл. 3, заряды по Малликену на атомах углерода по абсолютной величине не превосходят 0.0008 а.е. Спиновая плотность на всех атомах равна нулю.

Номер атома	Заряд, а.е.
1C	0.000048
2C	0.000415
3C	0.000122
4C	-0.000281
5C	0.000229
6C	0.000425
7C	-0.000519
8C	0.000530
9C	0.000520
10C	0.000146
11C	-0.000208
12C	-0.000628
13C	0.000013
14C	0.000228

Таблица 3. Заряды по Малликену в молекуле С₆₀.

15C	0.000709
16C	-0.000418
17C	-0.000074
18C	0.000446
19C	-0.000037
20C	-0.000646
21C	-0.000652
22C	0.000532
23C	0.000227
24C	-0.000196
25C	-0.000195
26C	0.000007
27C	0.000793
28C	-0.000148
29C	-0.000514
30C	-0.000414
31C	0.000010
32C	0.000421
33C	0.000102
34C	-0.000041
35C	-0.000871
36C	0.000418
37C	0.000716

38C	-0.000191
39C	-0.000656
40C	0.000222
41C	0.000050
42C	-0.000627
43C	0.000144
44C	-0.000123
45C	0.000106
46C	-0.000278
47C	0.000414
48C	-0.000875
49C	-0.000190
50C	0.000419
51C	-0.000041
52C	0.000789
53C	-0.000074
54C	-0.000150
55C	0.000010
56C	-0.000038
57C	0.000523
58C	-0.000645
59C	0.000447
60C	-0.000208

Глава 3. Производные фуллерена C₆₀.

3.1 Эндоэдральный комплекс фуллерена C₆₀ с гадолинием.

Тем же методом, что и ранее рассмотренные соединения, была рассчитана оптимальная геометрия эндокомплекса Gd@C₆₀ (рис. 3).

Рисунок 3. Структура Gd@C $_{60}$, оптимизированная методом PBE1PBE/SDD.

Рисунок 4. График сходимости оптимизации геометрии Gd@C₆₀.

В табл. 4 представлены основные свойства эндокомплекса.

Структура	Частота валентного колебания Gd, см-1	Полная энергия системы, а.е.	Длина связи Gd с полостью С ₆₀ , <i>Å</i>	Дип. момент, дебай	S ² , a.e.
Gd@C ₆₀	170.66	-3048.8574869	R1=2.41 R2=2.41 R3=2.66	1.88	20.07

Рисунок 5. Колебательный спектр $Gd@C_{60}$.

Хотя равновесная геометрия данной системы найдена успешно, в процессе вычисления частот было обнаружено мнимое колебание с отрицательной частотой (рис. 4). Эта частота соответствует слабым колебаниям гадолиния внутри фуллерена, что, видимо, характерно для седловой точки в подобных структурах. Поэтому точность вычисления полной энергии системы в таком случае понижается.

На рис. 3 видно, что Gd образует 3 связи с поверхностью фуллерена, но, согласно расчётам, его валентность равна 3.86. Это объясняется не совсем корректной визуализацией расчётов в программных пакетах.

Спиновая плотность в эндокомплексе перераспределяется (см. табл. 5), частично переходя с гадолиния на атомы углерода. Заряды по Малликену на атомах по абсолютному значению не превосходят 0.08. Из-за перераспределения электронов электронная конфигурация на внешних оболочках гадолиния меняется на $6s^{0.08}4f^{7.08}5d^{1.2}6p^{0.36}7s^{0.01}5f^{0.02}6d^{0.17}7p^{0.01}$.

Номер атома	Заряд, а.е.	Спиновая
		плотность,
		a.e.
1C	-0.007165	0.030212
2C	-0.013824	-0.014941
3C	-0.007253	0.030986
4C	-0.008697	0.001798
5C	-0.008993	0.000807
6C	-0.005611	0.000787
7C	-0.009362	0.027501
8C	-0.009273	0.027183
9C	-0.005096	0.001903
10C	-0.007784	0.001273
11C	-0.010706	-0.016042
12C	-0.013943	0.002599
13C	-0.037226	0.029920
14C	-0.008134	0.031838
15C	0.016975	-0.008063
16C	-0.008403	0.034428
17C	-0.061061	0.053227
18C	-0.060832	0.060350
19C	0.023250	-0.038437
20C	0.048013	0.018452

Таблица 5. Заряды по Малликену и спиновые плотности $Gd@C_{60}$.

20

21C	-0.024577	0.016655
22C	-0.036435	-0.004609
23C	-0.013690	0.030783
24C	0.040102	0.006734
25C	-0.025373	-0.017021
26C	-0.006060	0.032974
27C	-0.006424	-0.007587
28C	-0.007675	-0.007453
29C	-0.005871	0.034692
30C	-0.024580	-0.017546
31C	0.039924	0.006204
32C	-0.018447	-0.068886
33C	-0.044705	0.133075
34C	-0.036380	-0.100338
35C	-0.045068	0.131194
36C	-0.018315	-0.069381
37C	-0.082235	0.180370
38C	-0.082816	-0.059321
39C	0.061318	0.048609
40C	0.012119	-0.052924
41C	0.013287	0.091505
42C	0.010960	0.088622
43C	0.021942	-0.036752
44C	0.047589	0.020014
45C	0.059938	0.046653
46C	0.010579	-0.049545
47C	0.029505	0.034586
48C	0.027685	0.027091

49C	0.067020	-0.032848
50C	0.052875	0.015785
51C	0.066261	-0.036650
52C	-0.082069	0.184395
53C	-0.082905	-0.062274
54C	-0.012013	0.033827
55C	-0.037207	-0.006134
56C	-0.024437	0.018820
57C	-0.036208	0.026219
58C	-0.013397	0.002175
59C	-0.010788	-0.016613
60C	-0.008276	0.002667
61C	0.419975	7.156453

3.2 Гидроксилированные фуллерены C₆₀(OH)_n.

Сами фуллерены не растворимы в воде, но их гидроксилирование в той или иной степени приводит к растворимости. Поэтому, с точки зрения в качестве наноконтейнеров для тяжелого металла лучше физиологии, гидроксилированные использовать фуллерены. Более того, известно, $C_{60}(OH)_n$ обладают противоопухолевым комплексы сильным И иммуностимулирующим эффектом [11].

Рассмотрим процесс гидроксилирования молекулы фуллерена, моделируя структуры $C_{60}(OH)_n$, где n=1,...,12. В табл. 6 приведены частоты характеристических валентных колебаний ОН-групп. Характеристические частоты ОН в среднем ниже в молекулах с нечётным числом гидроксильных групп, возможно, из-за особенностей распределения электронной плотности.

Низкие частоты соответствуют более слабым связям, а значит именно молекулы с нечётным числом гидроксогрупп должны быть более растворимы в воде. Также следует учитывать величину дипольного момента, поскольку он определяет растворимость в модели реактивного поля Онзагера.

Число	Частоты ОН	Среднее значение	Дипольный	Полная энергия
OH-		частот	момент	системы
групп				
1	3562.64	3562.64	3.63	-2361.45348447
2	3602.24	3602.41	2.52	-2437.11404393
	3602.58			
3	3562.87	3582.15	3.33	-2512.98275544
	3587.13			
	3596.44			
4	3587.97	3601.12	2.43	-2588.61909205
	3605.41			
	3605.53			
	3605.54			
5	3583.86	3595.6	3.07	-2664.51603284
	3592.06			
	3594.19			
	3602.27			
	3605.62			

Таблица 6. Характеристические частоты C₆₀(OH)_n, дипольный момент и полная энергия молекул.

6	3589.63	3601.01	2.01	-2740.17305483
	3600.47			
	3601.54			
	3603.24			
	3605.43			
	3605.74			
7	3578.13	3589.06	2.73	-2816.03779485
	3582.29			
	3587.65			
	3589.24			
	3591.97			
	3592.14			
	3601.98			
8	3585.59	3602.19	3.39	-2891.69403812
	3599.19			
	3600.95			
	3601.53			
	3603.82			
	3604.47			
	3607.53			
	3614.42			
9	3581.94	3594.15	1.07	-2967.57461703
	3584.41			
	3587.45			
	3587.63			
	3589.69			
	3597.18			
	3601.12			
1				

	3606.93 3610.1			
10	3591.19	3601.93	1.09	-3043.23574363
	3592.28			
	3598.42			
	3598.98			
	3600.01			
	3603.36			
	3603.98			
	3604.15			
	3613.26			
	3613.69			
11	3572.73	3593.45	4.54	-3119.14798054
	3576.31			
	3586.65			
	3587.13			
	3593.4			
	3594.15			
	3598.07			
	3599.41			
	3602.22			
	3608.36			
	3609.47			
12	3568.57	3601.76	2.67	-3194.77663866
	3578.55			
	3595.84			

3596.96		
3601.21		
3603.52		
3608.73		
3609.72		
3612.2		
3613.36		
3616.14		
3616.27		
		1

3.2.2 Силовая постоянная

Чтобы оценить упругие свойства ОН-группы, были рассчитаны силовые постоянные для системы с одной (рис. 5) и с двумя (рис. 6) гидроксильными группами.

Валентное колебание атома в молекуле представляет собой колебание гармонического квантового осциллятора.

Рисунок 5. Структура С₆₀ОН, оптимизированная методом B3LYP/SDD.

Рисунок 6. Структура $C_{60}(OH)_2$, оптимизированная методом B3LYP/SDD.

На рис. 7 представлена потенциальная кривая, которая характеризует изменение полной энергии системы C_{60} OH при упругом изменении длины связи. В равновесной геометрии расстояние между O и H 0.98321 Å, а полная энергия системы равна -2361.4534845 а.е. Примем эту точку за нулевую и будем рассчитывать энергию системы, изменяя длину связи.

х — это изменение расстояния между атомами ОН относительно положения в равновесной геометрии, Е — энергия системы.

Рисунок 7. Зависимость полной энергии системы C₆₀OH от отклонения атома водорода от равновесного положения.

Таблица 7. Изменение полной энергии системы в зависимости от отклонения водорода от его равновесного положения C₆₀OH.

Расстояние ОН,	Полная энергия
x, Å	системы, Е, а.е.
-0,01	0,0000832
0	-2361,4534845
0,01	0,0000799

Составленная по данным точкам парабола имеет вид: $E = 0.8175x^2$ - 0.0165х.

Кривизну в точке 0 считаем по формуле:

$$k = \frac{|E''(x)|}{[1 + (E'(x))^2]^{3/2}}$$

Кривизна k для связи OH в С₆₀OH равна 1.635.

То же самое делаем для структуры $C_{60}(OH)_2$. Варьируем расстояние между атомами 61 и 62 (см. рис. 6) в структуре $C_{60}(OH)_2$, так же составляем параболу и считаем кривизну. Аналогично примем расстояние 0.98131 Å между атомами O и H в равновесной геометрии и минимальную энергию системы за нулевую точку и построим параболу по точкам (x, E), которые получили при упругом изменении длины связи.

Таблица 8. Изменение полной энергии системы в зависимости от отклонения водорода от его равновесного положения C₆₀(OH)₂.

Расстояние ОН, х,	Полная энергия
Å	системы, Е, а.е.
-0.01	0.0000845
0	0
0.01	0.0000821

Уравнение параболы для изменения энергии при колебании ОН в С₆₀(OH)₂:

 $E = 0.833x^2 - 0.12x$.

Кривизна к в данном случае равна 1.666.

3.3 Исследование параллельных режимов.

Квантово-механическое моделирование является крайне ресурсоёмкой задачей, поэтому в компьютерной химии остро стоит вопрос распараллеливания. В следующих пунктах приведено время выполнения программы, в зависимости от числа ядер, на которое она распределялась. Задача была везде одинаковой и состояла в оптимизации геометрии и расчёте частот колебаний в молекуле C_{60} (OH)₈ методом B3LYP/SDD.

3.3.1 Вычисления на кластере ПМ-ПУ, версия Gaussian 09 Revision D.01.

В таблице 9 представлены результаты вычислений, проведённых на кластере факультета прикладной математики — процессов управления СПбГУ в программе Gaussian 09 Revision D.01.

Таблица 9. Зависимость времени выполнения от числа ядер, на которое распределяется программа Gaussian 09 Revision D.01.

Число	Оптимизация	Расчёт частот	Общее время
ядер	геометрии		программы
1	3 часа 18 минут 26	38 часов 40 минут 52	41 час 59 минут 18
	секунд	секунды	секунд
2	1 час 48 минут 6 секунд	9 часов 44 минуты 44	11 часов 32 минуты 50
		секунды	секунд
3	1 час 9 минут 14 секунд	11 часов 48 минут 26	12 часов 57 минут 40
		секунд	секунд
4	47 минут 54 секунды	8 часов 26 минут 50 секунд	9 часов 14 минут 44
			секунды
5	39 минут 46 секунд	7 часов 36 минут 28 секунд	8 часов 16 минут 14
			секунд
6	34 минуты 21 секунда	6 часов 46 минут 54	7 часов 21 минута 15
		секунды	секунд
7	30 минут 27 секунд	6 часов 35 минут 4 секунд	7 часов 5 минут 31
			секунд
8	27 минут 31 секунда	6 часов 39 минут 14 секунд	7 часов 6 минут 45
			секунд

Рисунок 8. Зависимость времени выполнения программы от числа ядер.

3.3.2 Вычисления на кластере химического факультета СПбГУ, версия Gaussian 16 Revision A.03.

В таблице 10 представлены результаты вычислений в программном пакете Gaussian 16 Revision A.03, выполненных на кластере химического факультета СПбГУ с процессорами Intel Xeon E5-2680 v3.

Таблица 10. Зависимость времени выполнения от числа ядер, на которое распределяется программа Gaussian 16 Revision A.03.

Число	Оптимизация	Расчёт частот	Общее время работы
ядер	геометрии		программы
1	2 часа 56 минут 19	17 часов 36 минут 58	20 часов 33 минуты 28
	секунд	секунд	секунд
2	1 час 21 минута 55	9 часов 19 минут 20	10 часов 41 минута 15
	секунд	секунд	секунд
3	57 минут 49 секунд	6 часов 21 минута 49	7 часов 19 минут 38

		секунд	секунд
4	41 минута 58 секунд	4 часа 43 минуты 52	5 часов 25 минут 50
		секунды	секунд
5	32 минуты 40 секунд	3 часа 30 минут 34	4 часа 3 минуты 14
		секунды	секунд
6	27 минут 24 секунды	3 часа 1 минута 36	3 часа 29 минут
		секунд	
7	24 минуты 57 секунд	2 часа 38 минут 23	3 часа 13 минут 20
		секунд	секунд
8	21 минут 23 секунд	2 часа 25 минут 5	2 часа 46 минут 28
		секунд	секунд

Рисунок 9. Зависимость времени выполнения программы от числа ядер.

3.3.3 Вычисления на персональном компьютере, версия Gaussian 09 Revision C.01.

Вычисления на Gaussian 09 Revision C.01 (таблица 11) производились на персональном компьютере с шестиядерным процессором AMD Phenom II X6 1090T.

Таблица 11. Зависимость времени выполнения от числа ядер, на которое распределяется программа в Gaussian 09 Revision C.01.

Число	Оптимизации геометрии	Расчёт частот	Общее время работы
ядер			
1	2 часа 25 минут 15	33 часа 12 минут 9	35 часов 37 минут 24
	секунд	секунд	секунды
2	1 час 17 минут 52	17 часов 58 минут 7	19 часов 15 минут 59
	секунды	секунд	секунд
3	55 минут 6 секунд	12 часов 29 минут 43	13 часов 24 минуты 49
		секунды	секунд
4	42 минуты 58 секунд	9 часов 59 минут 6	10 часов 42 минуты 4
		секунд	секунды

Рисунок 10. Зависимость времени выполнения программы от числа ядер.

Выводы.

Из приведённых выше таблиц видно, что оптимизация геометрии выполняется намного быстрее расчёта частот колебаний, которые на кластере ПМ-ПУ занимают 85-87% от времени работы всей программы, на кластере химического факультета — 81-88.3%, на данном персональном компьютере — около 93%.

В версиях Gaussian 09 полная энергия системы E=-2891.6940381 a.e., а в версии Gaussian 16 она равна -2891.6938823 а.е. вне зависимости от числа ядер, на которые распределяется программа. Отличие в этих значениях проявляется в 8-м знаке, что является незначительной разницей для исследователей.

Также следует заметить, что при решении подобных квантовомеханических задач на кластерах не актуально занимать более 4-х ядер, так как последующее увеличении их количества не ведёт к значительному увеличению производительности. Так, на кластере ПМ-ПУ при постановке 8ми ядер время работы программы сокращается всего на 23% по сравнению со временем работы на 4-х ядрах.

3.4 Гидроксилированный эндокомплекс фуллерена Gd@C₆₀(OH)₃₀.

Несмотря на то, что гидроксилированные эндокомплексы с нечётным числом гидроксогрупп предположительно являются более растворимыми в воде, синтезировать легче молекулы с чётным числом ОН. Поэтому в данной работе рассматриваются структурные, электрические и магнитные свойства $Gd@C_{60}(OH)_{30}$.

В табл. 12 представлены основные свойства соединения $Gd@C_{60}(OH)_{30}$, рассчитанного методом PBE1PBE/SDD. Проекция магнитного момента молекулы здесь равна 21.06 а.е., что больше, чем проекция магнитного момента $Gd@C_{60}$, и больше, чем у самого гадолиния. Это значит, что гидроксилированный эндокомплекс обладает более высокими магнитными свойствами, чем чистый гадолиний, а значит хорошо подходит в качестве препарата контраста.

Таблица 12. Основные свойства молекулы Gd@C ₆₀ (OH)	30, оптимизированной методом
PBE1PBE/SDD.	

Структура	Заряд атома	Спиновая	Полная	Дип.	Проекция
	Gd по	плотность	энергия	момент,	магнитного
	Малликену,	Gd, a.e.	системы, а.е.	дебай	момента,
	a.e.				a.e.
Gd@C ₆₀ (OH) ₃₀	0.325374	6.343077	-5321.3193915	1.1001	21.06

Рисунок 11. Структура Gd@C₆₀(OH)₃₀, оптимизированная методом PBE1PBE/SDD.

Рисунок 12. График сходимости для $Gd@C_{60}(OH)_{30}$ с мультиплетностью, равной 9.

В табл. 13 представлены заряды по Малликену и спиновые плотности на атомах комплекса $Gd@C_{60}(OH)_{30}$. Заряды по абсолютному значению не превосходят 0.5, сумма спиновых плотностей равна 8.

Энергия, которая требуется для связи гадолиния с поверхностью гидроксилированного фуллерена, вычисляется по формуле

$$\Delta E = E_{\text{complex}} - (E_{C_{60}(\text{OH})_{30}} + E_{\text{Gd}})$$

Для вычисления энергии связи была рассчитана равновесная геометрия и, соответственно, полная энергия комплекса C₆₀(OH)₃₀ (PBE1PBE/SDD).

 $E_{C_{60}(OH)_{30}}$ =-4555.6722812 a.e.

 $E_{Gd} = -765.617606$ a.e.

 $E_{Gd@C_{60}(OH)_{30}} = -5321.3193915$ a.e.

В Gd@C₆₀(OH)₃₀ энергия связи гадолиния с поверхностью фуллерена $\Delta E = -0.0295043$ а.е. или -18.558 ккал/моль.

Такая большая энергия говорит о прочной связи, значит данный эндокомплекс можно синтезировать и он будет достаточно устойчивым. И, учитывая сильные магнитные свойства $Gd@C_{60}(OH)_{30}$, гидроксилированный эндокомплекс представляет собой перспективный контрастный препарат для MPT.

Номера атомов	Заряды, а.е.	Спиновые
		плотности, а.е.
1C	0.308907	0.153333
2C	0.363488	-0.146227
3C	0.357299	-0.096647
4C	0.313331	0.214236

Таблица 13. Заряды по Малликену и спиновые плотности Gd@C₆₀(OH)₃₀.

0.304389	0.225943
0.202016	0.142057
0.323216	0.143957
0.343079	0.047321
0.285668	0.221946
0.233893	0.210851
0.304585	0.019028
0.318692	-0.117086
0.367300	-0.098294
0.290449	0.212936
0.346613	0.056598
0.304162	0.007470
0.236923	0.217812
0.315575	-0.110405
0.354624	-0.091573
-0.180282	0.001181
-0.177996	0.005205
-0.190409	0.006794
-0.159084	-0.010167
-0.189230	0.002747
-0.182333	-0.002887
-0.186828	0.005202
-0.191526	0.001742
-0.158871	-0.009320
-0.186644	0.003894
-0.180480	0.005692
-0.176183	-0.002712
0.246235	0.003135
0.251812	0.002940
	0.304389 0.323216 0.343079 0.285668 0.233893 0.304585 0.304585 0.304585 0.304585 0.304585 0.304585 0.304585 0.304585 0.304585 0.304585 0.304585 0.304585 0.304585 0.304585 0.304585 0.367300 0.290449 0.346613 0.304162 0.236923 0.315575 0.354624 -0.180282 -0.177996 -0.190409 -0.189230 -0.180282 -0.180480 -0.186828 -0.191526 -0.180480 -0.180480 -0.176183 0.246235 0.251812

33C	0.300260	-0.011187
34C	0.289409	0.277941
35C	0.313321	0.021932
36C	0.284384	0.002991
37C	0.283282	0.002556
38C	0.275013	0.002596
39C	0.241437	0.276455
40C	0.264558	0.021942
41C	0.258183	-0.011863
42C	0.259723	0.003022
43C	-0.253864	0.009508
44C	-0.270063	-0.018585
45C	-0.284461	-0.008263
46C	-0.227436	0.006563
47C	-0.281106	-0.008903
48C	-0.266230	-0.019887
49C	-0.267506	-0.023875
50C	-0.293839	0.000365
51C	-0.341199	-0.007306
52C	-0.341012	-0.022520
53C	-0.351272	0.004390
54C	-0.363654	0.003878
55C	-0.348174	0.003234
56C	-0.312319	-0.023957
57C	-0.290440	-0.021022
58C	-0.290374	-0.008256
59C	-0.299073	0.004310
60C	-0.301941	0.004197

610	-0.482718	-0.000347
620	-0.463316	-0.001850
630	-0.493666	0.001266
640	-0.493427	0.004820
650	-0.509155	0.006460
660	-0.485086	0.000943
670	-0.468283	0.008695
680	-0.493318	0.000564
690	-0.495134	0.001798
700	-0.504304	-0.002392
710	-0.491095	-0.000272
720	-0.489989	-0.002130
730	-0.507720	0.001536
740	-0.485186	0.000782
750	-0.466732	0.007388
760	-0.478671	0.001886
770	-0.507530	-0.002713
780	-0.499974	0.003482
790	-0.493940	0.019004
800	-0.465059	0.009343
810	-0.483094	0.005349
820	-0.513281	0.007040
830	-0.497703	0.005281
840	-0.491507	0.003293
850	-0.464071	0.008226
860	-0.484297	0.018614
870	-0.509618	0.002202
880	-0.493208	-0.002415
L		

890	-0.491475	0.006573
900	-0.463417	-0.000568
91H	0.427432	0.000379
92H	0.441837	-0.000004
93H	0.426365	-0.000350
94H	0.423858	0.000631
95H	0.437270	-0.000229
96H	0.440189	0.000217
97H	0.426607	0.000028
98H	0.435777	-0.000244
99H	0.426630	-0.000259
100H	0.428127	-0.000081
101H	0.427094	-0.000062
102H	0.436895	-0.000097
103H	0.427912	-0.000213
104H	0.436895	-0.000221
105H	0.427340	-0.000284
106H	0.440134	-0.000207
107H	0.426599	0.000092
108H	0.427530	0.000153
109H	0.426678	-0.000250
110H	0.428189	0.000119
111H	0.435807	0.000308
112H	0.427594	0.000006
113H	0.427325	-0.000236
114H	0.427485	-0.000183
115H	0.440170	-0.000255
116H	0.426972	-0.000163

117H	0.433357	0.000753
118H	0.425954	0.000438
119H	0.441658	0.000020
120H	0.438933	0.000359
121Gd	0.325374	6.343077

Результаты.

- Составлены модели эндокомплексов C₆₀ с гадолинием, а также гидроксилированные производные C₆₀(OH)_n с n=1,...,12
- Составлены модели отдельных фрагментов рассмотренных сложных структур: Gd, C₆₀
- Изучены основные структурные, электрические, магнитные и упругие свойства данных структур
- Проанализировано время работы программ по оптимизации геометрии и расчёту частот для соединения C₆₀(OH)₈ на различных вычислительных машинах и версиях Gaussian и определён наиболее актуальный способ распараллеливания подобных программ

Выводы и заключение.

Проведенное исследование показывает, что эндокомплексы фуллерена C_{60} с гадолинием хорошо подходят для использования их в качестве контрастных препаратов для МРТ, так как обладают высокими магнитными свойствами. Особенно это касается их гидроксилированных производных, которые не только хорошо растворяются в воде, но и имеют более высокие

магнитные свойства, чем чистый гадолиний, при этом не являются токсичными, поскольку фуллереновая оболочка лишает металл возможности вступать в химические связи внутри организма.

Список литературы.

1)Thomsen HS. Gadolinium-based contrast media may be nephrotoxic even at approved doses. Eur Radiol 2004;14;1654-1656.

2) Akhun H., Gonlusen G., Cartwright J. Jr., Suki WN, Truong LD. Are gadolinium-based contrast media nephrotoxic? A renal biopsy study. Arch Pathol Lab Med 2006;21:1104-1108 [Erratum in 2006;21:1745].

3) Lalwani G., Sitharaman B. Multifunctional fullerene- and metallofullerenebased materials// Nano LIFE, 2013. Vol. 3. 1342003.

4) Cataldo F., de Ros T. Medical Chemistry and Pharmacological Potential of Fullerenes and Carbon Nanotubes.// Springer Science & Business Media, 2008. p. 157.

5) Kang S., Zhou G., Yang L., Liu Y., Sun B., Huynh T., Meng H., Zhao L., Xing G., Chen C., Zhao Y., Zhou R. Molecular mechanism of pancreatic tumor metastasis inhibition by Gd@C60(OH)82 and its implication for de novo design of nanomedicine.// PNAS, 2012. Vol.109, no.38, 15431-15436.

6)Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., Scalmani G., Barone V., Mennucci B., Petersson G.A., Nakatsuji H., Caricato M., Li X., Hratchian H.P., Izmaylov A.F., Bloino J., Zheng G., Sonnenberg J.L., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Montgomery J.A., Jr., Peralta J.E., Ogliaro F., Bearpark M., Heyd J.J., Brothers E., Kudin K.N., Staroverov V.N., Kobayashi R., Normand J., Raghavachari K., Rendell A., Burant J.C., Iyengar S.S., Tomasi J., Cossi M., Rega N., Millam J.M., Klene M., Knox J.E., Cross J.B., Bakken V., Adamo C., Jaramillo J., Gomperts R., Stratmann R.E., Yazyev O., Austin A.J., Cammi R., Pomelli C., Ochterski J.W., Martin R.L., Morokuma K., Zakrzewski V.G., Voth G.A., Salvador P., Dannenberg J.J., Dapprich S., Daniels A.D., Farkas Ö., Foresman J.B., Ortiz J.V., Cioslowski J., Fox D.J. GAUSSIAN 09, Rev. C.01, D.01. Wallingford CT: Gaussian, Inc., 2010, 2013.

7) Lu J., Mei W. N., Gao Y., Zeng X., Jing M., Li G., Sabirianov R., Gao Z., You L., Xu J., Yu D., Ye H. Structural and Electronic Properties of Gd@C60: All-Electron Relativistic Total-Energy Study// Chemical Physics Letters (July 3, 2006) 425(1-3): 82-84. DOI: 10.1016/j.cplett.2006.04.098.

8) О.А. Нерушев, Г.И.Сухинин. "Кинетика образования фуллеренов при графита". ЖТФ,1997,т испарении 67.№2.c 41электродуговом 42.;A.L.Alexandrov, V.A.Schweigert "A kinetic model of carbon growth rings fullerence formation. Physics including pelycyclie and letters", 1996, v. 263, 551-558.

9) Н.И.Алексеев, Г.А.Дюжев. "Образование фуллеренов в плазме газового разряда" ЖТФ, 1999, т.69, вып.9,с.104-109, ЖТФ 1999г., т. 69, вып.12, с.42-47.

10) Liptak, M. D., Shields G. C. Comparison of Density Functional Theory Predictions of Gas-Phase Deprotonation Data. Int. J. Quantum Chem. 2005, 105 (6), 580-587.

11) Zhu J., Ji Z., Wang J., Sun R., Zhang X., Gao Y., Sun H., Liu Y., Wang Z., Li A., Ma J., Wang T., Jia G. and Gu Y. Tumor-inhibitory effect and immunomodulatory activity of fullerol C60(OH)x, 2008, Small 4 1168-75.

44