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Abstract – In cooperative stochastic dynamic games a stringent condition - subgame consistency – is required for a dynamically stable solution. In particular, a cooperative solution is subgame consistent if an extension of the solution policy to a situation with a later starting time and any feasible state brought about by prior optimal behavior would remain optimal. The paradigm of randomly-furcating stochastic games incorporates additional stochastic elements via randomly branching payoff structures in stochastic games. This paper considers subgame consistent solutions for cooperative stochastic games with randomly furcating payoff structures. Analytically tractable payoff distribution procedures contingent upon specific random realizations of the state and payoff structure are derived. This is the first time that subgame consistent solution for randomly-furcating stochastic games is obtained. It widens the application of cooperative dynamic game theory to discrete-time problems where the evolution of the state and future environments are not known with certainty.  
Keywords – Cooperative stochastic games, subgame consistency, randomly furcating payoff structures.
AMS Subject Classifications -- Primary 91A12, Secondary 91A25.
1.  Introduction

The discipline of game theory studies decision making in an interactive environment.  One particularly complex and fruitful branch of game theory is dynamic games, which investigate interactive decision making over time. A property of decision making over time is that the future is inherently unknown and therefore (in the mathematical sense) uncertain. Yeung (2001 and 2003) introduces the class of randomly furcating stochastic differential games which allows stochastic dynamics and random changes in future payoff structures. This extension allows random elements in future payoffs which are prevalent in many practical situations like regional economic cooperation, corporate joint ventures and environmental management.

Cooperative games suggest the possibility of socially optimal and group efficient solutions to decision problems involving strategic action. In dynamic cooperative games with stochastic elements, a stringent condition – that of subgame consistency -- is required for a dynamically stable cooperative solution.  In particular, a cooperative solution is subgame-consistent if an extension of the solution policy to a situation with a later starting time and any feasible state brought about by prior optimal behavior would remain optimal.  In particular the property of subgame consistency ensures that as the game proceeds  players are guided by the same optimality principle at each instant of time, and hence do not possess incentives to deviate from the previously adopted optimal behavior throughout the game. A rigorous framework for the study of subgame-consistent solutions in cooperative stochastic differential games was established in the work of Yeung and Petrosyan (2004, 2005 and 2006). A generalized theorem was developed for the derivation of an analytically tractable “payoff distribution procedure” which would lead to subgame-consistent solutions. Petrosyan and Yeung (2007) derived subgame consistent solutions for randomly furcating continuous-time stochastic differential games.
In computer modeling and operations research study discrete-time analysis often proved to be more applicable and compatible with actual data. In stochastic dynamic games, Basar and Mintz (1972 and 1973) and Basar (1978) developed equilibrium solution of linear-quadratic stochastic dynamic games with noisy observation. Basar and Ho (1974) and Basar (1979) examined informational properties of the Nash solutions of stochastic nonzero-sum games. Some applications of stochastic dynamic games can be found in Smith and Zenou (2003) and Esteban-Bravo and Nogales (2008). Yeung and Petrosyan (2010) derived subgame consistent solutions for cooperative stochastic dynamic games. 
This paper develops the class of randomly furcating discrete-time stochastic games. The Nash equilibrium is characterized for non-cooperative outcomes and subgame-consistent cooperative solutions is derived for the cooperative paradigm. A discrete-time analytically tractable payoff distribution procedures contingent upon specific random realizations of the state and payoff structure are derived. This is the first time that subgame consistent solutions of randomly-furcating cooperative stochastic dynamic games are examined. This new approach widens the application of cooperative differential game theory to discrete-time problems where the evolution of the state and future environments are not known with certainty. The paper is organized as follows. The game formulation is given in Section 2. Group optimality and individual rationality under dynamic cooperation are discussed in section 3. Subgame consistent solutions and payment mechanism leading to the realization of these solutions are obtained in Section 4. Concluding remarks are provided in Section 5. 

2.  Game Formulation and Outcome
Consider the 
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The payoff of player 
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The objective that player 
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 seeks to maximize is
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 is the expectation operation with respect to the random variables 
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. The payoffs of the players are transferable. 

The game (2.1)-(2.2) is a randomly furcating stochastic dynamic game. In a stochastic dynamic game framework, strategy space with state-dependent property has to be considered. In particular, a pre-specified class 
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 and each of its elements is a permissible strategy.

To solve the game, we invoke the principle of optimality in Bellman’s (1957) technique of dynamic programming and begin with the subgame starting at last operating stages, that is stage 
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A set of state-dependent strategies 
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A Nash equilibrium of the subgame (2.3) can be characterized by the following lemma.

Lemma 2.1.   A set of strategies 
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Proof.  The system of equations in (2.4) satisfies the standard discrete-time stochastic dynamic programming property and the Nash property for each player 
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For the sake of exposition, we sidestep the issue of multiple equilibria and focus on playable games in which a particular noncooperative Nash equilibrium is chosen by the players in the subgame. Using Lemma 2.1, one can characterize the value functions 
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A Nash equilibrium of the subgame (2.7) can be characterized by the following lemma.

Lemma 2.2.   A set of strategies 
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Proof.  The conditions in Lemma 2.1 and the system of equations in (2.9) satisfies the standard discrete-time stochastic dynamic programming property and the Nash property for each player 
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A Nash equilibrium solution for the game (2.1)-(2.2) can be characterized as follows.

Theorem 2.1.   A set of strategies 
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Theorem 2.1 is the discrete-time analog of the Nash equilibrium in the continuous-time randomly furcating stochastic differential games in Yeung (2001 and 2003) and Petrosyan and Yeung (2007). 

3.  Dynamic Cooperation

Now consider the case when the players agree to cooperate and distribute the joint payoff among themselves according to an optimality principle. Two essential properties that a cooperative scheme has to satisfy are group optimality and individual rationality. Group optimality ensures that all potential gains from cooperation are captured. Failure to fulfill group optimality leads to the condition where the participants prefer to deviate from the agreed upon solution plan in order to extract the unexploited gains. Individual rationality is required to hold so that the payoff allocated to an economic agent under cooperation will be no less than its noncooperative payoff.  Failure to guarantee individual rationality leads to the condition where the concerned participants would reject the agreed upon solution plan and play noncooperatively. 

3.1. Group Optimality

Maximizing the players’ expected joint payoff guarantees group optimality in a game where payoffs are transferable. To maximize their expected joint payoff the players have to solve the discrete-time stochastic dynamic programming problem of maximizing  
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subject to (2.1).   


The stochastic control problem (2.1)-(3.1) can be regarded as a single-player case of the game problem (2.1)-(2.2) with 
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   (3.3)

An optimal solution to the stochastic control problem (3.2)-(3.3) can be characterized by the following lemma.

Lemma 3.1.   A set of controls 
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(3.4)

Proof.  The system of equations in (3.4) satisfies the standard discrete-time stochastic dynamic programming property. One can see the detailed proof of the results in Basar and Olsder (1999).                (
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           An optimal solution for the stochastic control problem (2.1) and (3.1) can be characterized as follows.

Theorem 3.1.   A set of controls 
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   (3.6)
Proof.    The results in (3.6) characterizing the optimal solution in stage 
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Theorem 3.1 is the discrete-time analog of the optimal cooperative scheme in randomly furcating stochastic differential games in Petrosyan and Yeung (2007). 
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3.2. Individual Rationality 

The players then have to agree to an optimality principle in distributing the total cooperative payoff among themselves. For individual rationality to be upheld the expected payoffs a player receives under cooperation have to be no less than his expected noncooperative payoff along the cooperative state trajectory 
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To satisfy group optimality, the imputation vector has to satisfy 
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4. Subgame Consistent Solutions and Payment Mechanism

To guarantee dynamical stability in a stochastic dynamic cooperation scheme, the solution has to satisfy the property of subgame consistency in addition to group optimality and individual rationality.  Under a subgame-consistent cooperative solution an extension of the solution policy to any subgame starting at a later time with any feasible state brought about by prior optimal behavior would remain optimal.  In particular, subgame consistency ensures that as the game proceeds players are guided by the same optimality principle at each stage of the game, and hence do not possess incentives to deviate from the previously adopted optimal behavior. Therefore for subgame consistency to be satisfied, the imputation  according to the original optimality principle has to be maintained at all the 
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4.1. Payoff Distribution Procedure

Following the analysis of Yeung and Petrosyan (2010), we formulate a Payoff Distribution Procedure (PDP) so that the agreed imputations (4.1) can be realized. Let 
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For notational convenience in deriving such a payment scheme, we denote the vector 
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Using (4.5), one can obtain
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Substituting the term 
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By re-arranging terms in (4.7) one can obtain:
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Theorem 4.1 can be used to derive the PDP that leads to the realization this vector. 
4.2. Transfer Payments
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However, according to the agreed upon imputation, player 
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5.  Concluding Remarks  

This paper considers subgame-consistent cooperative solutions in randomly furcating stochastic dynamic games. This new approach widens the application of cooperative stochastic differential game theory to problems where future environments are not known with certainty.  The extension of the analysis in continuous-time randomly furcating stochastic differential games to an analysis in discrete time is not just of theoretical interest but also for practical reasons in applications. In computer modeling and operations research discrete-time analysis often proved to be more applicable and compatible with actual data. In the process of obtaining the main results for subgame consistent solution, Nash equilibrium for randomly furcating stochastic dynamic games and optimal control for  randomly furcating stochastic dynamic problems are also derived.
The analysis presented can be expanded in a couple of directions. First the random event 
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 may take up more complex processes, like a branching process. 


Second, the analysis can be readily applied to derive dynamically consistent solutions in randomly-furcating dynamic games in which the random variables 
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 are not present. In particular, the objective that player 
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subject to the deterministic dynamics:
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(5.2)


Following the analysis in Sections 3 and 4 and the proof of Theorem 4.1, a theorem deriving a subgame consistent PDP for the randomly-furcating dynamic game (6.1)-(6.1) can be established as follows.

Theorem 5.1.

A payment equaling 
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for 
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given to player 
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 at stage 
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, would yield the PDP leading to a subgame consistent solution of the game (6.1)-(6.2).  

Finally, since this is the first time that subgame consistent solution is derived for randomly furcating dynamic games, further research along this line is expected.
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