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1. Introduction 

Public goods, which are non-rival and non-excludable in consumption, are not 
uncommon in today’s economy. Examples of public goods include clean 
environment, national security, scientific knowledge, accessible public capital, 
technical know-how and public information. The non-exclusiveness and positive 
externalities of public goods constitutes major factors for market failure in their 
provision. In many contexts, the provision and use of public goods are carried out in 
an intertemporal discrete time-period framework under uncertainty. Cooperation 
suggests the possibility of socially optimal solutions in public goods provision 
problem. A discrete-time game framework is developed for theoretical analysis and 
practical applications. Problems concerning private provision of public goods are 
studied in Bergstrom (1986). Static analysis on provision of public goods are found 
in Chamberlin (1974), McGuire (1974) and Gradstein and Nitzan (1989). In many 
contexts, the provision and use of public goods are carried out in an intertemporal 
framework. Fershtman and Nitzan (1991) and Wirl (1996) considered differential 
games of public goods provision with symmetric agents. Wang and Ewald (2010) 
introduced stochastic elements into these games. Dockner et al. (2000) presented a 
game model with two asymmetric agents in which knowledge is a public good. 
These studies on dynamic game analysis focus on the noncooperative equilibria and 
the collusive solution that maximizes the joint payoffs of all agents.  



3

In dynamic cooperation, the solution scheme would offer a long-term 
solution only if there is guarantee that participants will always be better off 
throughout the entire cooperation duration and the agreed-upon optimality principle 
be maintained from the beginning to the end. To enable a cooperation scheme to be 
sustainable throughout the agreement period, a stringent condition is needed – that of 
subgame consistency. This condition requires that the optimality principle agreed 
upon at the outset must remain effective in any subgame starting at a later starting 
time with a realizable state brought about by prior optimal behaviour. Hence the 
players do not possess incentives to deviate from the cooperative scheme throughout 
the cooperative duration. The notion of subgame consistency in stochastic 
cooperative differential games was originated in Yeung and Petrosyan (2004) in 
which a generalized theorem for the derivation of an analytically tractable “payoff 
distribution procedure” (PDP) leading to subgame-consistent solutions has been 
developed. A discrete time version of the analysis is provided in Yeung and 
Petrosyan (2010). Yeung and Petrosyan (2013) presented subgame consistent 
cooperative solutions for public goods provision by asymmetric agents with 
transferable payoffs in a continuous-time stochastic differential game framework.  
In this paper, an analytical framework entailing the essential features of public goods 
provision in a discrete-time stochastic dynamic paradigm is set up. The 
noncooperative game outcome is characterized and dynamic cooperation is 
considered. Group optimal strategies are derived and subgame consistent solutions 
are characterized. A “payoff distribution procedure” leading to subgame-consistent 
solutions is derived. Illustrative examples are presented to demonstrate the derivation 
of subgame consistent solution for public goods provision game.  
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2. Analytical Framework and Non-cooperative Outcome 

Consider the case of the provision of a public good in which a group of n  agents 
carry out a project by making continuous contributions of some inputs or 
investments to build up a productive stock of a public good. The game horizon 
consists of T  stages. We use tK  denote the level of the productive stock and i

tI  

denote the contribution to the public capital or investment by agent i  at stage 
},,2,1{ Tt L∈ . The stock accumulation dynamics is then 

    ∑
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+ −=
n

j
t

j
tt KIK

1
1 δ tϑ+ , 0

1 KK = ,  for },,2,1{ Tt L∈ ,           (2.1) 

where tϑ  is a sequence of statistically independent random variables and δ  is the 

depreciation rate.  
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The payoff of agent i  at stage t  is  
)()( i

t
i

t
i ICKR − ,  },,2,1{ ni L∈  N= ,            (2.2) 

where )( t
i KR  is the revenue/payoff to agent i , )( i

t
i IC  is the cost of investing 

ii
t XI ∈ . 

 The objective of agent Ni ∈  is to maximize its expected net revenue over the 
planning horizon, that is 
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subject to the stock accumulation dynamics (2.1),  
where r  is the discount rate, and 0)( 1 ≥+T

i Kq  is an amount conditional on the 

productive stock that agent i  would received at stage T .  
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 Acting for individual interests, the agents are involved in a stochastic 
dynamic game. In such a framework, a feedback Nash equilibrium has to be sought. 
Let )({ Ki

sφ i
sI∈ , for Ni ∈  and }},,2,1{ Ts L∈  denote a set of feedback strategies 

that brings about a feedback Nash equilibrium of the game (2.1) and (2.3). Invoking 
the standard techniques for solving stochastic dynamic  games, a feedback solution 
to the problem (2.1) and (2.3) can characterized by the following set of discrete-time 
Hamilton-Jacobi-Bellman equations (see Basar and Olsder 1995; Yeung and 
Petrosyan 2012): 
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=+ ),1( KTV i T
T

i rKq −
+ + )1)(( 1 ,  for Ni ∈ .                         (2.5) 

 A Nash equilibrium non-cooperative outcome of public goods provision by 
the n  agents is characterized by the solution of the system of equations (2.4)-(2.5).  
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3 Subgame Consistent Cooperative Scheme 

It is well-known problem that noncooperative provision of goods with externalities, 
in general, would lead to dynamic inefficiency. Cooperative games suggest the 
possibility of socially optimal and group efficient solutions to decision problems 
involving strategic action. Now consider the case when the agents agree to cooperate 
and extract gains from cooperation. In particular, they act cooperatively and agree to 
distribute the joint payoff among themselves according to an optimality principle. If 
any agent disagrees and deviates from the cooperation scheme, all agents will revert 
to the noncooperative framework to counteract the free-rider problem in public 
goods provision. In particular, free-riding would lead to a lower future payoff due to 
the loss of cooperative gains. Thus a credible threat is in place. In particular, group 
optimality, individual rationality and subgame consistency are three crucial 
properties that sustainable cooperative scheme has to satisfy.  
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3.1 Pareto Optimal Provision and Individual Rationality 

To fulfill group optimality the agents would seek to maximize their expected joint 
payoff. To maximize their expected joint payoff the agents have to solve the 
stochastic dynamic programming problem               

},{
max

NjforI j
s ∈ 
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subject to the stock dynamics (2.1). 
Invoking the standard stochastic dynamic programming technique an optimal 

solution to the stochastic control problem (2.1) and (3.1) can characterized by the 
following set of equations (see Basar and Olsder (1995) and Yeung and petrosyan 
(2012)):  
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 Let =)(* Ksψ { )(*1 Ksψ , L),(*2 Ksψ  )}(, * Kn
sψ , for },,2,1{ Ts L∈  denote a set 

of strategies that brings about an optimal cooperative solution. A group optimal 
solution of public goods provision by the n  agents is characterized by the solution of 
the equation (3.2)-(3.3).  

The optimal cooperative path can be derived as: 

t

n
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tt

j
tt KKK ϑδψ +−=∑
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1

*
1 )( , 0

1 KK = ,  for },,2,1{ Tt L∈ ,        (3.4) 

We use *
sX  to denote the set of realizable values of sK  generated by (3.4) at 

stage s  and use **
ss XK ∈  to denote an element in the optimal set.  

 Let ),( ⋅⋅ξ  denote the agreed-upon imputation vector guiding the distribution 

of the total cooperative payoff under the agreed-upon optimality principle along the 

cooperative trajectory { }T

ssK 1
*

= . At stage s  and if the productive stock is *
sK , the 

imputation vector according to ),( ⋅⋅ξ  is  

  ),( *
sKsξ )],(,),,(),,([ **2*1

s
n

ss KsKsKs ξξξ L= , for  },,2,1{ Ts L∈ .   (3.5) 

 A variety of examples of imputations ),( *
sKsξ  can be found in Yeung and 

Petrosyan (2006 and 2012). For individual rationality to be maintained throughout 
all stages, it is required that: 

),( *
s

i Ksξ ),( *
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i KsV≥ , for Ni ∈  and },,2,1{ Ts L∈ . 

To satisfy group optimality, the imputation vector has to satisfy  
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3.2 Subgame Consistent Solutions and Payoff Distribution Procedure 

Under a subgame consistent situation, an extension of the solution policy to a 
subgame starting at a later stage with a state brought about by previous optimal 
behaviour would remain optimal. For subgame consistency to be satisfied, the 
imputation ),( ⋅⋅ξ  according to the original agreed-upon optimality principle in (3.5) 

has to be maintained along the cooperative trajectory { }T

ssK 1
*

= .   

 Following the analysis of Yeung and Petrosyan (2010 and 2012), we 
formulate a Payoff Distribution Procedure so that the agreed-upon imputations (3.5) 
can be realized.  

Let )( *
k

i
k KB  denote the payment that agent i  will received at stage k  under 

the cooperative agreement if *kK  is realized at stage },,2,1{ Tk L∈ .  

 The payment scheme involving )( *
k

i
k KB  constitutes a PDP in the sense that if 

*
kK  is realized at stage k the imputation to agent i  over the stages from k  to T  can 

be expressed as: 
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Using (3.6) one can obtain 
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Upon substituting (3.7) into (3.6) yields 
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Theorem 3.1. 
Given that the public capital stock is *kK  in stage k  a payment equalling  
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for Ni ∈ ,    
be paid to agent i  at stage }.,2,1{ Tk L∈  would lead to the realization of the 

imputation { ),( *
kKkξ , for }.,2,1{ Tk L∈ }.  
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Proof.  From (3.8), one can readily obtain (3.9). Theorem 4.1 can also be verified 
alternatively by showing that from (3.6) 
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Note that the payoff distribution procedure in Theorem 3.1 would give rise to 
the agreed-upon imputation in (3.5) and therefore subgame consistency is satisfied. 

When all agents are using the cooperative strategies, the payoff that agent i  
will directly receive at stage s  is   
   )]([)( ***

s
i
s

i
s

i KCKR ψ− . 

However, according to the agreed upon imputation, agent i  is supposed to receive 
)( *

s
i
s KB . Therefore a transfer payment (which could be positive or negative)  
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will be allotted to agent Ni ∈  at stage s  to yield the cooperative imputation 
),( *

k
i Kkξ . 
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4 An Illustration   

In this section, we provide an illustration with an application in the build-up of 
public capital by multiple asymmetric agents which is a discrete time counter-part of 
example in Yeung and Petrosyan (2013). Consider an economic region with n  
asymmetric agents. These agents receive benefits from an existing public capital 
stock )(sK . The accumulation dynamics of the public capital stock is governed by 

    ∑
=

+ −=
n

j
t

j
tt KIK

1
1 δ tϑ+ , 0

1 KK = ,  for },,2,1{ Tt L∈ ,       (4.1)     

where δ  is the depreciation rate of the public capital, i
tI  is the investment made by 

the i th agent in the public capital in stage t , and tϑ is an independent random 

variable with non-negative range },,,{ 21 t
ttt
ωϑϑϑ L  and corresponding probabilities 

},,,{ 21 t
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Each agent gains from the existing level of public capital and the i th agent 
seeks to maximize its expected stream of monetary gains: 
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subject to (4.1); 
where iα , ic , iq1  and iq2  are positive constants. 

 In particular, iα  gives the gain that agent i  derives from the public capital, 
2))(( sIc i

s
i  is the cost of investing isI  in the public capital, and )( 211

i
T

i qKq ++  is the 

terminal valuation of the public capital at stage 1+T . The noncooperative market 
outcome of the industry will be explored in the next subsection. 
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4.1.  Noncooperative Market Outcome 

Invoking the analysis in (2.1)-(2.5) in section 2 we obtain the corresponding 
Hamilton-Jacobi-Bellman equations 
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Performing the maximization operator in (4.3) yields: 
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(4.5) 
To solve the game (4.1)-(4.2) we first obtain the value functions as follows. 
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Proposition 4.1. 
The value function of agent i  can be obtained as: 
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 Using Proposition 4.1 and (4.5) the game equilibrium strategies can be 
obtained to characterize the market equilibrium. The asymmetry of agents brings 
about different payoffs and investment levels in public capital investments.  
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4.2 Cooperative Provision of Public Capital 

Now we consider the case when the agents agree to act cooperatively and seek 
higher gains. They agree to maximize their expected joint gain and distribute the 
cooperative gain proportional to their non-cooperative expected gains. To maximize 
their expected joint gains the agents maximize 
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subject to dynamics (4.1). 
Following the analysis in (3.2)-(3.3) in Section 3, the corresponding stochastic 
dynamic programming equation can be obtained as:  
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Proposition 4.2. 
The value function ),( KtW  can be obtained as 
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Proof.  Follow the proof of Proposition 4.1.                ■ 
Using (4.10) and Proposition 4.2 the optimal investment strategy of public 

capital stock can be obtained as:  
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Using (4.1) and (4.12) the optimal trajectory of public capital stock can be 
expressed as:  
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 We use *
sX  to denote the set of realizable values of sK  generated by (4.13) 

at stage s . The term **
ss XK ∈  is used to denote and element in *

sX . 
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4.3 Subgame Consistent Payoff Distribution 

Next, we will derive the payoff distribution procedure that leads to a subgame 
consistent solution. With the agents agreeing to distribute their gains proportional to 
their non-cooperative gains, the imputation vector becomes 
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for Ni ∈  and },,2,1{ Ts L∈  if the public capital stock is **
ss XK ∈ .                                                    

 To guarantee dynamical stability in a dynamic cooperation scheme, the 
solution has to satisfy the property of subgame consistency which requires the 
satisfaction of (4.14) at all stages },,2,1{ Ts L∈ . Invoking Theorem 3.1 we can 
obtain:  
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Proposition 4.3.  A PDP which would lead to the realization of the imputation 
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Finally, when all agents are using the cooperative strategies, the payoff that 
agent i  will directly receive at stage s  is   
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will be imputed to agent Ni ∈  at stage },,2,1{ Ts L∈ .  
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5. Concluding Remarks 

This paper presented subgame consistent cooperative solutions for stochastic 
discrete-time dynamic games in public goods provision. The solution scheme 
guarantees that the agreed-upon optimality principle can be maintained in any 
subgame and provides the basis for sustainable cooperation. A “payoff distribution 
procedure” (PDP) leading to subgame-consistent solutions is developed. Illustrative 
examples are presented to demonstrate the derivation of subgame consistent solution 
for public goods provision game. This is the first time that subgame consistent 
cooperative provision of public goods is analysed in discrete time. Various further 
research and applications, especially in the field of operations research, are expected.  
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