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1. Introduction

Public goods, which are non-rival and non-excludaisl consumption, are not
uncommon in today’'s economy. Examples of public dgoonclude clean
environment, national security, scientific knowledgaccessible public capital,
technical know-how and public information. The mtclusiveness and positive
externalities of public goods constitutes majortdex for market failure in their
provision. In many contexts, the provision and ofpublic goods are carried out in
an intertemporal discrete time-period framework emdncertainty. Cooperation
suggests the possibility of socially optimal sau8 in public goods provision
problem. A discrete-time game framework is devetbfwe theoretical analysis and
practical applications. Problems concerning privatevision of public goods are
studied in Bergstrom (1986). Static analysis ornvision of public goods are found
in Chamberlin (1974), McGuire (1974) and Gradstml Nitzan (1989). In many
contexts, the provision and use of public goodscargied out in an intertemporal
framework. Fershtman and Nitzan (1991) and Wirl9@)9considered differential
games of public goods provision with symmetric dgekivang and Ewald (2010)
introduced stochastic elements into these gameskrig2o et al. (2000) presented a
game model with two asymmetric agents in which keoge is a public good.
These studies on dynamic game analysis focus onaheooperative equilibria and
the collusive solution that maximizes the joint iy of all agents.
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In dynamic cooperation, the solution scheme woultkroa long-term
solution only if there is guarantee that particigamvill always be better off
throughout the entire cooperation duration andatipeed-upon optimality principle
be maintained from the beginning to the end. TdkEna cooperation scheme to be
sustainable throughout the agreement period, regsint condition is needed — that of
subgame consistency. This condition requires thatdptimality principle agreed
upon at the outset must remain effective in anygaaoie starting at a later starting
time with a realizable state brought about by poptimal behaviour. Hence the
players do not possess incentives to deviate frantooperative scheme throughout
the cooperative duration. The notion of subgamesistency in stochastic
cooperative differential games was originated irurvge and Petrosyan (2004) in
which a generalized theorem for the derivation ofaaalytically tractable “payoff
distribution procedure” (PDP) leading to subgameststent solutions has been
developed. A discrete time version of the analysisprovided in Yeung and
Petrosyan (2010). Yeung and Petrosyan (2013) peesubgame consistent
cooperative solutions for public goods provision hgymmetric agents with
transferable payoffs in a continuous-time stochkatfferential game framework.

In this paper, an analytical framework entailing #ssential features of public goods
provision in a discrete-time stochastic dynamic agdagm is set up. The
noncooperative game outcome is characterized anuandig cooperation is
considered. Group optimal strategies are derivetl smbgame consistent solutions
are characterized. A “payoff distribution procedueading to subgame-consistent
solutions is derived. lllustrative examples arespreed to demonstrate the derivation
of subgame consistent solution for public goodwigion game. 3



2. Analytical Framewor k and Non-cooper ative Outcome

Consider the case of the provision of a public goodvhich a group ofn agents
carry out a project by making continuous contrionsé of some inputs or
investments to build up a productive stock of aligugood. The game horizon

consists of T stages. We us&, denote the level of the productive stock and

denote the contribution to the public capital ovestment by agent at stage
t{12---,T}. The stock accumulation dynamics is then

Kia =D 1) =K, +8 , K=K®, fort0{12---,T}, (2.1)
j=1

where &, is a sequence of statistically independent rangtarables andd is the
depreciation rate.



The payoff of agent at staget is
R(K,)-C'(l)), i0{12,---,nt =N, (2.2)
where R'(K,) is the revenue/payoff to agent C'(l}) is the cost of investing
lOX'.

The objective of agent] N is to maximize its expected net revenue over the
planning horizon, that is

E,sl,zsz,-.-,,sT{ i [R(K)=C'INL+r) P +q (Kp)@+1)™ } (2.3)

subject to the stock accumulation dynamics (2.1),
where r is the discount rate, and (K;,,)=0 is an amount conditional on the

productive stock that agentwould received at stagke.



Acting for individual interests, the agents aresoived in a stochastic
dynamic game. In such a framework, a feedback Mgsilibrium has to be sought.

Let {¢(K)OI., for iON and sO{12---,T}} denote a set of feedback strategies

that brings about a feedback Nash equilibrium efghme (2.1) and (2.3). Invoking
the standard techniques for solving stochastic aiymagames, a feedback solution
to the problem (2.1) and (2.3) can characterizethbyfollowing set of discrete-time

Hamilton-Jacobi-Bellman equations (see Basar anddédl 1995; Yeung and

Petrosyan 2012):

V/(t.K) =max E,gt{ [R(K)=C'(1)](2+r)

+v[ t+li¢(K)+lf—éK +3 } } fort0{12,---,T}, (2.4)
VI(T+LK)=q (K;,,)@+r)T, foriON. (2.5)

A Nash equilibrium non-cooperative outcome of julgloods provision by
the n agents is characterized by the solution of theegy®f equations (2.4)-(2.5).



3 Subgame Consistent Cooper ative Scheme

It is well-known problem that noncooperative proammsof goods with externalities,
in general, would lead to dynamic inefficiency. @emmtive games suggest the
possibility of socially optimal and group efficiesbplutions to decision problems
iInvolving strategic action. Now consider the caseewthe agents agree to cooperate
and extract gains from cooperation. In particulaey act cooperatively and agree to
distribute the joint payoff among themselves acecwydo an optimality principle. If
any agent disagrees and deviates from the cooperstheme, all agents will revert
to the noncooperative framework to counteract tfee-fider problem in public
goods provision. In particular, free-riding woutsht to a lower future payoff due to
the loss of cooperative gains. Thus a credibleathiein place. In particular, group
optimality, individual rationality and subgame cmtsncy are three crucial
properties that sustainable cooperative schemolsisfy.



3.1 Pareto Optimal Provision and Individual Rationality

To fulfill group optimality the agents would seek maximize their expected joint
payoff. To maximize their expected joint payoff tlagents have to solve the
stochastic dynamic programming problem

n T
RI(K.)-C'(1)]@+r) ™
{lél;ga}é(N,} E’91”92""”9T{ Z Z [R'(K)=C(I)](d+r)

j=1 s=1

> d (Ke )@+ } 3.1)

subject to the stock dynamics (2.1).

Invoking the standard stochastic dynamic programgn@chnique an optimal
solution to the stochastic control problem (2.10 #8.1) can characterized by the
following set of equations (see Basar and Olsd88%)] and Yeung and petrosyan
(2012)):

W= max B, D RG-S

{1{ for jON,}
+W{ t+]1zn“|tj -K +5, } } fort0{12,---,T}, (3.2)
j=1
W(T+LK) =D q' (K, )@+r)™. (3.3)
j=1



Let ¢_(K) ={ ¢. (K),2 (K),-- @ (K)}, for sO{12,--, T} denote a set

of strategies that brings about an optimal cooperasolution. A group optimal
solution of public goods provision by threagents is characterized by the solution of
the equation (3.2)-(3.3).

The optimal cooperative path can be derived as:

Kia = 2007 (K) -, +8,, K=K®, fort0{12--, T}, (3.4)
j=1

We useX_ to denote the set of realizable valueskqf generated by (3.4) at
stages and useK_ (I X_ to denote an element in the optimal set.

Let & (LI} denote the agreed-upon imputation vector guidiegdistribution
of the total cooperative payoff under the agreednrugptimality principle along the
cooperative trajector){ K. };1. At stages and if the productive stock i&_, the
imputation vector according t§([,[) is

(s Ky) =[5, KL, E2(s.KY), € (s KD, for sO{12-+,T}.  (3.5)
A variety of examples of imputation(s,K_) can be found in Yeung and

Petrosyan (2006 and 2012). For individual ratiagaid be maintained throughout
all stages, it is required that:

E'(s,K)) =2V'(s,K), foriON andsO{12,---,T}.
To satisfy group optimality, the imputation vechas to satisfy

W(s,K;) = Z &'(s,K)), forsd{12---,T}.



3.2 Subgame Consistent Solutions and Payoff Distribution Procedure

Under a subgame consistent situation, an extensfothhe solution policy to a
subgame starting at a later stage with a stateghtoabout by previous optimal
behaviour would remain optimal. For subgame coest to be satisfied, the
imputation &([,[) according to the original agreed-upon optimalitynwg@ple in (3.5)

has to be maintained along the cooperative trajyec{tbi; };1.

Following the analysis of Yeung and Petrosyan (RGnhd 2012), we
formulate a Payoff Distribution Procedure so tle agreed-upon imputations (3.5)
can be realized.

Let B, (K,) denote the payment that agenwill received at stagé& under
the cooperative agreementl{f; IS realized at stagk1{12,---,T}.
The payment scheme involvirg (K,) constitutes a PDP in the sense that if

K, is realized at stagkthe imputation to agerit over the stages frork to T can
be expressed as:

£(k,K;) =BL(K)) (ﬁj

T

J-1
+E{ ZlB‘z(K})(l%rj o (Kyo)@L+1) T } (3.6)

{=k+

fori0N andkUO«xk. 10



Using (3.6) one can obtain

fi (k + 1' KI,<<+1) = Bli<+1(Kli+l) (ij

1+r

LN A I i
+Eek+2,ek+3,...,eg{ Z B((Kz)(—j +q (K, )@+r)" }
7=k+2 1+r
Upon substituting (3.7) into (3.6) yields
PR A T
'(k,K,) =B (K,) | —
£k =B 1 |

+E9k[ ETk+L > ) (K - Ky +8,] j
j=1
for iON andkO«x.

(3.7)

(3.8)
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Theorem 3.1.
Given that the public capital stock §, in stagek a payment equalling

BL(K;) =(1+r)“{ E(K, %)

e, flken Sure-a+a) | 39

for iON,
be paid to agent at stagek1{12---T} would lead to the realization of the

imputation {&(k,K,), for kO{1,2,---T}}.
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Proof. From (3.8), one can readily obtain (3.9). Theoreth can also be verified
alternatively by showing that from (3.6)

. | 1\t
£00K;) =B (1)
o 1\
+E9k+1,5k+2,'"19({ Z B}(KZ)(—j +qI(KT+1)(1+r)_T }
J=k+1 1+r

| fkK) B[ ElkeL Sl k) -a ] | |

# Y Eun | €CKD B[ CenTu ) -a ] | |

7=k+1
=&'(k,Ky);
given thaté' (T +1,K;,,) = q' (K., )@+r)". n
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Note that the payoff distribution procedure in Trezo 3.1 would give rise to
the agreed-upon imputation in (3.5) and therefaol®ame consistency is satisfied.

When all agents are using the cooperative stragetie payoff that agerit
will directly receive at stage is

R (K2 -CIgt (K1
However, according to the agreed upon imputatigenti is supposed to receive
B.(K.) . Therefore a transfer payment (which could betp@sor negative)

@ (s,K;) = BY(K) - {R(KJ) —C'lyp. (KT} (3.10)
will be allotted to agenti[JN at stages to yield the cooperative imputation

£ (k,K;).
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4 An Illustration

In this section, we provide an illustration with application in the build-up of
public capital by multiple asymmetric agents whi€la discrete time counter-part of
example in Yeung and Petrosyan (2013). Considee@momic region withn
asymmetric agents. These agents receive benedits &m existing public capital
stock K(s). The accumulation dynamics of the public capitatk is governed by

Ko =D I =&, +8, K=K°, fortO{12--,T}, (4.1)
j=1
where J is the depreciation rate of the public capital,is the investment made by

the ith agent in the public capital in stage and 4 is an independent random
variable with non-negative range',9’,---,9“} and corresponding probabilities

2 _
{A, A, A%} . Moreover > A9 =4, >0.

h=1
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Each agent gains from the existing level of pubhpital and tha th agent
seeks to maximize its expected stream of mone&nsg

Ey, 5, { i [a'K, = (1)°1(2+ 1) +(qKy + 0p)A+1) 7 } (4.2)

s=1

subject to (4.1);
wherea', ¢', g, anddg, are positive constants.

In particular,a' gives the gain that agentderives from the public capital,
c'(1.(s))? is the cost of investing. in the public capital, andgK-,, +q,) is the

terminal valuation of the public capital at stafje-1. The noncooperative market
outcome of the industry will be explored in the nexbsection.
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4.1. Noncooperative Market Outcome

Invoking the analysis in (2.1)-(2.5) in section 2 wbtain the corresponding
Hamilton-Jacobi-Bellman equations

V'(t,K) =max Eﬂt{ [@'K —c (1)2)(L+r)

V[ t+],zn:¢gj(K)+|ti—éK +3 } } fortd{12---,T}, (4.3)
j#i
V(T +1LK)= (K., + ) @+r)™", foriON. (4.4)
Performing the maximization operator in (4.3) ygeld
d(K)= Z/\“ . v};tl[ t+lZ¢g’(K) K+I9" | @+r)*? foriON.
j=1

(4.5)
To solve the game (4.1)-(4.2) we first obtain th&ue functions as follows.
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Proposition 4.1.
The value function of agemtcan be obtained as:

V! (t,K) = (AK +C)(L+r) Y, (4.6)
for t0{L12,---,T +1} andiON;
where
A, =q andCr,, =q;,

A\i =(ai _A\i+15) and(:ti :_('ji_—;li)z-l_'a\iﬂ( i A+Jl +Z§th ]+Cti+11

J
o1 2C

for t0{12---,T}.

Using Proposition 4.1 and (4.5) the game equiifristrategies can be
obtained to characterize the market equilibriume Hsymmetry of agents brings
about different payoffs and investment levels iblpucapital investments.
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4.2 Cooperative Provision of Public Capital

Now we consider the case when the agents agreettocoaperatively and se
higher gains. They agree to maximize their expe@bat gain and distribute the
cooperative gain proportional to their non-coopeeaéxpected gains. To maximize
their expected joint gains the agents maximize

Eﬂl,ﬂz,---,ﬂT{ Zn: i [a’st—Cj(Isj)Z](1+ r)y

j=1 s=1

DICTETEA @)

subject to dynamics (4.1).
Following the analysis in (3.2)-(3.3) in Section tBe corresponding stochastic
dynamic programming equation can be obtained as:

W(t,K)= max Et{ Zn: [O’jK—Cj(Itj)z](1+ r)—(t—l)

{1 for jON,} =
+W{ t+],znzlf—dl<+z9t } } fortd{12,---,T}, (4.8)
=1
W(T+1K)= > (¢fKp,+a)) @+r)7. (4.9)

j=1
Performing the maximization operator in (4.8) ygld

W (K) = Z/\“ - W, [t+th//t(K) K+I" | @+r)* foriON. (4.10)

j=1

19



Proposition 4.2.
The value functiofW (t, K) can be obtained as

W(t,K) =(AK+C)I+r)™7,

for tO{12,---,T +1};
where

An=) o andCr =3 q,
=1 =1
=Y a’'-A,0andC, = Z ('2*1]) +A. 3" +C.,,
c

j=1 j=1

for t0{12---,T}.

(4.11)
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Proof. Follow the proof of Proposition 4.1. u
Using (4.10) and Proposition 4.2 the optimal inmemit strategy of public
capital stock can be obtained as:

W (K) = A“, foridON andtO{12,---,T}. (4.12)

Using (4.1) and (4.12) the optimal trajectory obfpel capital stock can be
expressed as:

Kt { g‘cf t }wt , K=K°, fortd{12---,T}, (4.13)

We useX_ to denote the set of realizable valueskqf generated by (4.13)
at stages. The termK_ [ X_ is used to denote and element{q.
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4.3 Subgame Consistent Payoff Distribution

Next, we will derive the payoff distribution proageé that leads to a subgal
consistent solution. With the agents agreeing $tridute their gains proportional to
their non-cooperative gains, the imputation vebecomes

e V(sKy)
¢ (s,Kq)=—

> VI(sK))
AK; +C,
> (AK;+C))

for iON andsO{12---, T} if the public capital stock i&_ [0 X_.

To guarantee dynamical stability in a dynamic @apon scheme, the
solution has to satisfy the property of subgamesisbency which requires the
satisfaction of (4.14) at all stage$]{12,---,T}. Invoking Theorem 3.1 we can

obtain:

W(s,K)

(AKS+C)L+r) 7, (4.14)
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Proposition 4.3. A PDP which would lead to the realization of thepurtation
&(s,K;) in (4.14) includes a terminal paymefuf K., +q,) to agentiON at stage
T +1 and an payment at stagél {1,2,---,T}:

Bl(K)) = ARG (A +C))
S (AK; +C)

" h
_ZAh A‘s+le+l(7'9 ) Cs+1 [A5+1K;+1(29sh) +Cs+l] (1+ I’)_l, for iON, (415)
h=1 Z['Aﬁtl s+1(19h) + C +1]

where K, (") :{ Z A5+1 X } +9". m

Finally, when all agents are using the cooperadivategies, the payoff that
agenti will directly receive at stage is

a] K; _ (AS+1)2 )
4c’

However, according to the agreed upon imputatigenti is to receiveB.(K_ )in

Proposition 4.3. Therefore a transfer payment (wluan be positive or negative)
equalling

4c’
will be imputed to agentdN at stagesd {12,---,T}. 23

@ (s,K.) = BI(K) —[a"K; —M} (4.16)



5. Concluding Remarks

This paper presented subgame consistent cooperabtigions for stochastic
discrete-time dynamic games in public goods prowisiThe solution scheme
guarantees that the agreed-upon optimality priacighn be maintained in any
subgame and provides the basis for sustainableecatpn. A “payoff distribution
procedure” (PDP) leading to subgame-consistentisols is developed. lllustrative
examples are presented to demonstrate the denwvaitisubgame consistent solution
for public goods provision game. This is the fitshe that subgame consistent
cooperative provision of public goods is analysedliscrete time. Various further
research and applications, especially in the féldperations research, are expected.
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