June, 1568
(Hlar Algol &4

STACK ANALYSIS
by

Boris Mertynenka

Aclmowledgments

This paper 15 a result of the suthor’s work &t A/S Regnecentralen during
Saptember, 1967 - June, 1968 in accordance with the sgreement om exchange of
trainees between the Ministries of Higher education of the Kingdom of Denmark

snd the USSR,

The subject was suggested by Peter Naur, the scientific adviser of the
work,

All the machine code pleces in the program were improvised by J#m Jensen,
He snd Sgren Lauessn were the mein suppliers of the working informaticm.

Jergen Zacharisssen essentially facilitated the debugging of the program,

The menuscript was corrected by Donald Wagner,

Their help and the support of meny others, who mede the work pleasant,
are gsreatfully aclnowledged,

Of course, the entire project would have been impossible without the kind
reception of the director of the firm, Mr, Niels Ivar Bech,

June, 1968
Gler Algol b

PROGRAM FOR STACK ANALYSING

Introduction

Program ANALYSIS is designed for using after BEn emergency situstion
has happemed during running & program treaslated with the help of the
GIER Algol b compiler, (The cases of the execution termination with alarm
messages are listed im A MANUAL of GIER ALGOL L, Appemdix 2,pp. 78-79).

It prints out (by-value is equal to 17) the contents of the program
stack st the moment of the emergency. This is in = form, suitable fer
the user snd includes maximm peesible informstion for his edvantage

to identify the stack items with the objects of the program,

The only thing ANALYSIS needs is the core store image dumped om the drom,

Tt can be applied in two modes depending on the stete of the KE-reglster
manually controlled:

1. Tha values of the array elements are printed,
1f the KB-register is om,

2, The so called array pictures are printed,
if the KB-register is off,

The array plictures supply some squeezed informaticm about the values
of their sl=sments,

iny number of shifts between the two modes are eliowsd at Aany moments
during running ANALYSIS,

June, 1968
Gler Algol &

PROZRAM FPOR STACK ANALYSIS

Instructions to the oparator

The binary paper tape BINARY ANALYSIS looks like the followlng:
move, imege, free<
res; stack=
binin, free<
[BINARY ANALYSIS]
res, analyslis<
run, anelysis<
clear, analysis<
clear, stack<
<

Thus the normal order for using it is as follows:

1. Upon receiving an alarm messsge during the run of a translated
program - dump the core store lmage unless it hes been dome by
tha syatem,

2. If the permonent compiler has been used, the command

clear, galb<
should be typed,

3. load papsr tape MOVE,

L, Losd BINARY ANALYSIS by inserting the paper tape into the
reader and typing: r<

Execution of the program terminates with the message; ’analysis’ and
the ususl interruption message with the typewriter selected as Help’s
current input medium (see A MANUAL OF HELP 3, p.13).

After this it is possible to repeat the run of ANALYSIS without its
relonding by typing the command:

run, analysis<
or to remove 1t, together with the area ‘stack’, which contains a copy of
the core store image, from the drum by typlng the commend:

<

June, 1968
HHer Algol 4

Structure of the stack pleture
The contents of the steck as represented by program ANALYSIS consist of:

1. in emergancy stack reference fndication:
SmAETEENCY Br = < 8r >,
= sr > being the current stack reference at the moment Oof the emergency.

2, Hepding: s tmc k
followed by the contents of the stack (3-10),

5, Hmading: own
followed by the values of s8ll the owm vwarisbles of the program, If such
are declared, Within eech block the own varisbles appear in the order in
vhich they are declared, Like other simple variables they may appesr in 2 to &
alternative formats (see 7. Heading: varisbles),

The blocks are given in reverse order,

L, Heading: < sr >: block in < srd >
or < gr > inactive block in < srl >

indicates the begin of a block or & procedure body with < sr > as its
stack reference,
< ard > 18 the stack refers=nce of the surrounding block, In the case of
the procedure body, this is the block vhere the procedure 1s declared,

For the outermost block < erQ >= 1,
The ssacond form of the heading corresponds to & block which 1s reserved
in the stack but whose steck reference 1s not in the displey.

For exemple, =n sctual pareameter may be & function designateor with
the identifier declared in the seme block as the procedure called; or
a procedure call mey include ss one of its actusls emother function
designator with the same identifier (even 1if it corresponds to a parameter
called by valus - no recursion); or the block may be that of a procedure,
The emsrgency has happensd during the svaluetion of the actusl
parameters or during one of the seversl incarpations of the procedure
bady.

Particularities:

k1, Ira program is not & block but & compound stetemsnt, it 18 considared
to be the outermost block,

L.,2, A procedure body is always considered to be & block, even if it i=m
formelly not such,

L,%, Some SLOW steandard procedures such as

where, cancel and reserve

create & block (of the first level) imn the stack, The treatment of the
contents of 1t is described in GIER ALGUL 4 LIBRARY PROCEDURES, 1967.

The heeding mentioned sbove is followed by the items which sre actually
in the block, They are (5=8):
5. The value of the function, 1f the block is a procedure-function body:
5.1, function walue
followed by the value of the funciion im 2 to b alternative formats
(in the seme line), if some value has been mssigned to the procedure
identifier;, or
5.2, mno valus asslgned
otharvise,

Fosmible misinferpretation
5.3, The assigned function valus merges with the local veriebles, if
there is ne program point in the block (see 6, Program points and
7. Hemding: verisbles), Im such a case, the value becomes erronecusly
the first varisble of the block,

The conception of a program point will be useful further:
< program point >2i= <treck momber> <track relative address> <stack reference> <r>

<static program point description> is & <program point> with <stack reference>
equal to a BLANK.,
<track mumbers> 15 the relative treck nusber of the program point, the
lest one being egual to 1023,
<track reletive address> is the tréack relative sddress of the program
point, renging from O to 39,
< stack reference > indicstes to A& dmamical lsvel of the program point,
< atack refersnce > of the progrem point is alweys sgual to the stack reference
of the block, where it 18 locatad,
< >1is character r, if the program point refers to the right half word
instruction, otharviss < r > is 2 BLANK,

6, Program points (in the order of their declarations in the block):
6.,1. no type procedure < static program point description >

f,2, intemger proc no par =-
6,3, real proc no par "
6,4, Boolsan proc no par -
6.5. integer precedure -
6,6, real procedure -
£.7. Boolean procedure -
6,8, switch i
6,9, lsbel -

The stack refsrence, constituting the complete description of the program
point together with the track number emd the track relative address, is not
printed as it 1s equal to the stack referemce of the block in question,

Points 6,2, 6.3, 6,4 are related to the declared fumctions without
perameter=, Points 6,5, 6,0, 6,7 are related to those with parameters,
Point 6.1 is related to the declared procedure (not fumction) vith or
without paramsters as well,

The notations 6,8 and 6.9 speak for themselves,

The program points sre followed by simple varisbles and arrsys in sccordance
with the order of their declarsations im the block:

T. Hemding: vwerisblss

1s followed by the values of the varisbles represented in 2 to b alternative

formata, applied in the following order:

4-d.daddddd -ddd} for suspected reals (not used for nom-normslized velues),

{-4ada dddad dddd} for suspected integers (compulsory),

k vytas for suspected bit patterms (not used, if the sbsolute
value of the variable, cosidersd as an integer, is not
greater than 1023),

true or false for suspected boolean values (compulsory).

Each varisble occuples ome line,

Poolean varisbles commected with core code pieces are of the special form:

7.1. core code <first instruction addr> of <number of imstructioms> words
with the apparent meaning.
Particularities
Working locations of the block are considered as the variahles, They are the
first variables of the block, The number of workimg locations ls unknowm,

Poasibles misinterpretations
T2, Bam 5.3,
T.53. Be= 8,1,

8, Heading: <type> mrray <first element addr> <subscript ranges>
iz rmlated €0 8n Array Segment,
<type> is Boolean, integer or a ELANK - for real arrays,
<first elsment addr> is the shsolute address of the first slement of the
array (in the core or in the buffer). It is used for the reference to the
array as sn ectual paremeter of a procedure statemsnt (see 9.7).
<subseript renges> indicates to the number of values taken by esch of the
indexes, These munbers are separated by charscter x and emclosed inlo
brackets [1.
<typa> and <subscript renges> sre not printed for subsequent arrays of the
segment,

The heading mentioned sbove is followed by the values of the array

elemants or by the srray pleture depending om the mode of applying program
ANALYSTS (see Table 1).

Fosslble misinterpretation
8.1. The structure will include to0 meny subscripts, if in the block head
the array declaratiom is followed immedistly by integar-valusd variables,
which are sxmct divisors of the number of values takem by the first
subseript, the last divisor becoming the first subscripht range,
the previous divisors becoming the latest subacript ranges.

June, 1968
Gler Algol b

Formats for arrsy elempsnts

The wvaluea of array slements ere represented with the formats described
in Table 1,

Each =lemsnt of & Booleen &rray ccouples A singls place in the array
ploture,

That of en integer or real array 18 represented by two characters, the
first being & sign (& BLANK for a non-negative value, - (minus) for negetive
one), the second indicating to the ramge of its absolute value in eccordance
with the subtables below,

Table 1,
J type | valos ploture
| Boolemn | fxuss 1023 1023 1023 1023 t
| I or snother b bytes,
| the first being grester
| then 511,
| mlpg: ©¢ ©o o o T

or enother b bytes,
the first being less

than 512, 5 groups of 10 alemenis each

I
I
I
I
|
I
I
I
I
|
per lins |
I
I
I
I
I
|
I
|

| =
2 groups of 10 slsmeniz =ach
per line,

I

|

I

|
| I
| |
| |
I	% slements per lime
	i
I	I element,
I	- ool P ks
integer	Layout:
	f-dddd ddda dddad
I ie used,	w25 <3
I I sh<lx <5	<stg>a
I	
I	I w6zl <eT
J i	wis
	I il <9
I	wI<lx
J o115	<sko755813887
!	

|
|
3 slements par line, |
|

| value I piocture |
| == | }
| Layout: | Abselute value of an |penctation |
| {-d,ddddddd,~dad} | element, |x| I |
I 18 used, | - e
| | a-15lx[< 1 | <sign>a |
| | =25 b |<a=1 | @ign>v |
I | =35 |x |<u-2 | <sign>c |
I | gl x| <p=3 | <sign>a |
I | p-55 Ix | <=8 | <sign>e |
	=05	x	<=5	<atgm> e
	=15)%	<=6	<sign>g	
	w55	x	<p=7	sigm>n
I	=95 %	<=8	<sign>1	
	w=102	x	<=5	<sign>g
I	p=100<	x	<p-10	wtgn>k
	7.458g-1555 x	<p-100	<stg>m	
NHen-normalized values	non-normalized	5		
are represented by the	0 (nt1)	o		
string:	'I£	x	*‘:.1	<sign> o]
I *{mﬂm* I l‘ﬁlxi{lE J <slgn> p]				
	w2	<a?	<sign>q	
I	wig e [t	<siga>r		
I	shlx	<u5	<sigm>s	
	55	e	<sign>t	
	w65 [x	<uT	<sign>u	
I wT<lx <8	sign>v			
	wB<	[<9	<stgn>w	
I w95	x f<u10	<sign>x		
I w102	x <100	<stgn>y		
I ML Dtﬁ}:: I“'-'~'I 34191 5k i <sign> z I				
I				
3 slements per line I 2 groups of 10 elsmemts sach				
	per line,			
	i			

5, Hemding: procedure call < program peint >
18 the description of the returm point from the precedure, It is folloved
by the actual parsmeters, 1f there are amy.

The sctusl parameters celled by value after evaluatiom lose all thelr
fepturss, All thet is known about them 1s their values, Thus, those
that ware already evaluated before the emergency are printed out in the
following form:

9.1, wmlue
followed by the value of the actual paremeter im 2 to 4 altemative formats

in the same line (see T).

The actusl parametars called by neme end those called by value, which wers
not evaluated befors the smergsncy happened, maintain their characteristics
end are printed out in the following form:

9,2, Constants mre represented by values in formets appropriate o thelr

types:
5.2.1. integer constant is printed with layout f-dddd addd addd}
9.2.2. real constant 1s printed with layout f-d.dddddddy-addd
9,2.%, Boolsan comstant is represented by booleem value: true or false
9.2.4, string constant is represented: by:

its velus = for short emnd

<track number> <track relative eddress> - for long ones,

which indicatse the first string character on the drum,

Simpls varisbles are given im the form, as follows:
9,2,5. integer ¢-dddd 4ddd dddd} - for imteger varisbles
9,2.6. real t~d.dddddddg-ddd} - for real varisbles with normalized

values, or
renl H = for thoss not normalized,
9.,2.7. Boolean true - for the true boplesn variables
Boolesn false = for the false boolBesn varisbles

9,2.8, string <track mumber> <track relative sdiress> = for string
variebles indspendant oa the short
or long kind,

labels are printed in the form:
9,2,9, lsbel <program poimtc
glving the complete descriptiom of the program point corresponding
%0 the labal,

Subscripted varisbles are represented in accordamce with thelr iypes

as follows:

9,2,10, intager sub <progrem polnt>

0.2.11, reel sub =

9.2,12, Boolsen sub -

which indicate to sntry points for the thunks eveluating them,

(Tue thunk 1s the coding implementing the evalustion of sm actual parameter
which is a compound expression, It is considered 1o be of the seame lavel
as A procedure call).

Other expressions ere of the following forme :
9,2,13, integer expr <program polnt>

§9,2,14, real expr =
942-15‘. Bmlﬂu exXpr -
9,2,16, string expr -

02,17, design expr -
corresponding to the thunk emtries for evalustiom of integar,
real, boolsen, string and designetional expressions respectively.

An array identifier as am actual has one of the follewing forms:
5,2,18, integer arrey <first element sddress> <number of subscripts>
9,.2,19, real array - -

3.2,.20, Boolsan array - -
in accordance with the type of the sctual array,

Procadure identifiers are represented by their entry point descriptions
of the following forms:
9,2.21, integer proc <program peint=
9.2.,22, real proc —
9.2,23, Boolean proc =
G.,2 .24, no type proc -

A mwiteh identifier 18 of the form:

9,2.,25, switech <program poimt>
Tt is considered Bs a procedurs of the fourth type - label.

Heferences to thunks svalusting sctusl paremster expressions are exscwted s

a) Upon the very entry to the procedure body (before reservations of core
code pleces im the stack and arrey elements in the core or buffer store) -
for all parsmeters called by wvalue,

b) At every point in the procedure body, where a formal czlled Ly name occures,
provided that the corresponding petusl 18 m compound sxpressiom,

Return poimts from the thiunks are stored in the stack and printed out in
the following form:
10, thunk returm <progrem polnt>
indicating the point in the procedure bedy immediately following the cell of
the thunk.

Conclusion

As it wans suggested by P.Naur, the stack amalysis should be & set of
the help 3 programs, To sase debugging the algorithm it was setiled to
write 1t in Oler Algol b amd use the compiler in experimenting. But the
ready program appearsd to be effective enough to be utilized ms & separate
service progiam,

The following remarks sbout the program are worth mentioming:

1. The program chenges nothing in the core store imege (more precisely
in area stack on the drum). Thus, it is quite possible to apply some
other debugging programs which work with the stack after program ANALYSIS,

2, The informetion comtained im the transiated progrem on the drum
has not been utilizad st wll, For example, the line mumbers of program
segments in the originel algol text and strings might be useful,
The reascon for this 11es in the impossibility of fetching this information
in scme "natural® wey without deatroying the contents of the core
store lmage,

In future compiler designs 1t would be desirable to meintsin information
about the types of varisbles end inforsstion comnecting the stack items
with identifiers in the algol teaxt of the program,

Program ANALYSIS is not sbsolutely relisble, though its reliability is
rather high. A perfect program for the stack amalysis has to have poms
chain of addresses allowving idemtification of the stack items without amy
heuristic recognition, as takes place in the present program,

