ОПТИЧЕСКИЕ ИССЛЕДОВАНИЯ СТРУКТУР НА ОСНОВЕ ГРАФЕНА И НИТРИДОВ МЕТАЛЛОВ III-ГРУППЫ

Магистерская диссертация студента

Елисеева Ильи Александровича

Научные руководители:

d. ф.-м. н., проф. Селькин А.В.
d. ф.-м. н., внс. Давыдов В. Ю.

Рецензент:

к. ф.-м. н., с.н.с. Сахаров А. В.

Санкт-Петербург
2018
Содержание

Используемые сокращения и обозначения ... 4
Введение .. 5

Глава I. Обзор литературы ... 8
 I-1. Основные особенности спектра КРС графена .. 8
 I-2. Модель двойного резонанса ... 11
 I-3. Влияние деформаций на спектры КРС графена 14
 I-4. Электрон-фононное взаимодействие в графене: затухание Ландау, аномалия Кона .. 19
 Заключение .. 26

Глава II. Методика эксперимента ... 27
 II-1. Образцы и методы исследования ... 27
 II-2. Программное обеспечение для обработки спектральных массивов 28
 Заключение ... 30

Глава III. Вклад буферного слоя в спектры КРС графена, выращенного на SiC 31
 Введение ... 31
 III-1. Обзор литературных данных ... 31
 III-2. Экспериментальные результаты .. 35
 Заключение .. 38

Глава IV. Оценка толщины графена, выращенного на 4H- и 6H-SiC 39
 Введение ... 39
 IV-1. Обзор способов определения толщины графена из данных КРС 39
 IV-2. Экспериментальные результаты ... 43
 Заключение ... 50

Глава V. Влияние дефектов на спектры КРС графена 52
 Введение ... 52
 V-1. Обзор литературных данных .. 52
 V-2. Экспериментальные результаты .. 56
 Заключение .. 61

Глава VI. Разделение вкладов деформации и легирования в спектрах КРС графена на SiC ... 63
 Введение ... 63
 VI-1. Поведение линий G и 2D с изменением концентрации носителей 63
 VI-2. Метод разделения вкладов деформации и легирования 65
 VI-3. Экспериментальные данные. Разделение вкладов деформации и легирования при исследовании графена, выращенного на подложках карбида кремния 66
 Заключение ... 73

Глава VII. Исследование структур «Сапфир-графен-GaN». 75
 VII-1. Осаждение углеродных слоев на сапфире при пиролизе пропана 75
ВII-2. Рост III-N слоев и гетероструктур на слоях графена на сапфире в едиином технологическом процессе .. 77
Заключение .. 79
Заключение .. 80
Список литературы... 82
Список публикаций автора по теме диссертации... 88
Используемые сокращения и обозначения

КРС – комбинационное рассеяние света

АСМ – атомно-силовая микроскопия

КЗМ – Кельвин-зондовая микроскопия

РФЭС – рентгеновская фотоэлектронная спектроскопия

ФЭСУР – фотоэлектронная спектроскопия с угловым разрешением

МОКВД – металлоорганическая газофазная эпитаксия

ПШПВ (FWHM) – полная ширина на половине высоты спектральной линии

Их – пиковая интенсивность спектральной линии, где X – ее буквенное обозначение

Ах – интегральная интенсивность спектральной линии, где X – ее буквенное обозначение
Введение

Актуальность темы. Графен (один монослоя графита), структура которого представляет собой гексагональную двумерную кристаллическую решётку, в настоящее время является предметом обширных исследований. Значительный интерес к исследованию графена обусловлен уникальными электронными, оптическими и механическими свойствами, что определяет его огромный потенциал для создания устройств нового поколения. В перспективе графен рассматривается как возможная основа будущей наноэлектроники. Его использование позволит преодолеть ограничения, свойственные традиционной кремниевой электронике, которые связаны со степенью миниатюризации и энергопотребления устройств. Как двумерный материал, графен обеспечивает абсолютный предел миниатюризации в одном измерении и является удобной основой, из которой литографическими методами могут быть изготовлены различные наноэлектронные, нанооптические и наномеханические устройства [1].

Для того чтобы быть экономически выгодными для многочисленных приложений, требуются большеразмерные пластины высококачественного однородного графена. Наиболее распространенным подходом, используемым для получения графена большой площади, является химическое осаждение из паровой фазы на тонкую металлическую подложку с последующим его переносом на диэлектрическую подложку. Однако ориентация доменов в таком графене является случайной, что снижает его транспортные характеристики. Одной из самых перспективных технологий синтеза графена, которая позволяет получать высококачественный материал и в тоже время может быть интегрирована в промышленное производство, является термодеструкция поверхности полуизолирующих подложек карбида кремния (SiC) [2,3]. Такая технология позволяет выращивать высококачественный эпитаксиальный графен с регулярной ориентацией доменов. Большим преимуществом данной технологии является отсутствие необходимости переносить выращенную пленку на подложку диэлектрика, как это имеет место, например, при синтезе графена на металлах. Кроме того, такая технология роста дает возможность выращивать графен на поверхности коммерческих подложек SiC диаметром до 6 дюймов, промышленный выпуск которых освоен в настоящее время. Подобные структуры могут быть
использованы в стандартной технологической линейке для изготовления полупроводниковых приборов.

Спектроскопия комбинационного рассеяния света (КРС) является признанным высокоинформативным аналитическим инструментом исследования графеновых структур. Этот метод позволяет получать детальную информацию о кристаллической и электронной структуре, определять количество слоев графена, обнаруживать наличие и оценивать концентрацию дефектов, а также исследовать влияние деформации и зарядового состояния на свойства кристаллической решетки графена [4,5]. Однако количество публикаций, содержащих результаты исследования методом КРС графеновых слоев полученных термодеструкцией поверхности SiC, немногочисленно. Кроме того, до настоящего времени существует значительные трудности в согласовании данных, полученных методом КРС и данных, полученных другими методами на графеновых пленках, выращенных на SiC.

Цель работы. В рамках настоящей работы решались две основные задачи. Первая задача была направлена на установления однозначной корреляции между результатами, полученными методом КРС и другими методиками на исследуемых графеновых слоях. Вторая задача была тесно связана с первой и заключалась в использовании результатов КРС для оптимизации технологических параметров с целью создания воспроизводимой технологии роста высококачественного монослояного графена.

Объекты исследования. Графеновые пленки, полученные методом термодеструкции в газовой среде (Ar) Si-граней полуизолирующих подложек 6H-SiC и 4H-SiC и структуры графен/(III-N)-полупроводник на подложках сапфира.

Методы исследования. Спектроскопия комбинационного рассеяния света (КРС) являлась основным методом исследования. Для устранения существующих противоречий данные КРС сопоставлялись с результатами полученными методами атомно-силовой микроскопии (АСМ), рентгеновской фотоэлектронной спектроскопии (РФЭС) и фотоэлектронной спектроскопии с угловым разрешением (ФЭСУР) при исследовании одних и тех же площадей тестовых графеновых структур.
Практическая значимость работы. Результаты исследований были использованы для оптимизации технологических параметров роста эпитаксиального монослойного графена большой площади методом сублимации в аргоне Si-грани SiC. Структурные, электронные и транспортные свойства выращенного графена имеют параметры, сравнимые с параметрами лучших мировых образцов, изготовленных сублимацией, что открывает возможность его использования для создания электронных приборов нового поколения.

Публикации. Основные результаты по теме диссертации опубликованы в 6 работах и одна работа находится в печати.

Структура диссертации. Диссертация состоит из введения, 7 глав, заключения, содержащего основные результаты, списка цитируемой литературы и списка работ автора по теме диссертации.
Глава I. Обзор литературы

I-1. Основные особенности спектра КРС графена

Для того, чтобы понять природу основных линий спектра КРС графена, необходимо рассмотреть основные моды колебаний графена и свойства их симметрии. Графен имеет два атома в элементарной ячейке (рис. I-1-1), и, соответственно, шесть нормальных мод колебаний (фононных ветвей). Эти ветви представлены на рис. S2. В Г-точке зоны Бриллюэна они принадлежат неприводимым представлениям A_{2u}, B_{2g}, E_{1u} и E_{2g}. Две из этих мод: E_{2g} и B_{2g} являются дважды вырожденными в Г-точке, причем мода симметрии E_{2g} активна в спектрах КРС, а мода B_{2g} не проявляется ни в спектрах КРС, ни в ИК-спектрах [4].

Рис. I-1-1. Кристаллическая решетка графена и его элементарная ячейка.

Спектр КРС графена состоит из нескольких отдельных линий. Вид спектра КРС структурно-совершенного графена представлен на рис. I-1-2. В нем присутствуют линии G, $2D$ и $2D'$. Линия G (~1580 см$^{-1}$) соответствует высокочастотной моде колебаний E_{2g} в точке Г (рис. I-1-3, b) и процесс ее возникновения является типичным процессом КРС первого порядка, для которого выполняются основное правило отбора: условие совпадения волновых векторов фотона и фонона. Забегая вперед, стоит отметить, что линия G является единственной линией спектра КРС графена, для которой данное правило выполняется.

Рис. I-1-2. Спектр КРС структурно-совершенного графена (a) и графена с дефектами (b) [5]
Рис. I-1-3. [6] Дисперсионные кривые фононов в графене. Фононные моды подписаны. Ветви, соответствующие колебаниям вне плоскости образца, обозначены как o (out-of-plane), в плоскости – как i (in-plane). Продольные и поперечные моды обозначены буквами L (longitudinal) и T (transverse) соответственно. Акустические и оптические ветви обозначены буквами А и О. (b) – вид колебаний, соответствующий iTO и iLO – фононам в точке Г (линия G). [5] (c) – вид колебаний, соответствующий iTO-фонону в точке К (линия 2D) [5].

Помимо колебательных свойств, стоит обратить внимание и на электронную структуру графена вблизи уровня Ферми. Как видно на рис. I-1-4 (a,b), первая зона Бриллюэна для электронов представляет собой шестиугольник, в углах которого (точки К и К') расположены так называемые дираковские конусы электронных состояний [7], отличающиеся линейной зависимостью энергии от волнового вектора.

Рис. I-1-4. (a) – электронные зоны Бриллюэна графена (черные шестиугранники), первая фононная зона (красный ромб) и схематическое изображение электронной дисперсии (конусы Дирака). Красным указан волновой вектор фонона, соединяющий две незквивалентные точки зоны Бриллюэна. (b) – электронные состояния первой зоны Бриллюэна [7].
В отличие от линии G, которая является нерезонансным процессом, в спектр КРС графена дают вклад и так называемые резонансные процессы второго порядка. Примеры таких процессов представлены на рис. I-1-5. Их фундаментальное отличие от обычных процессов КРС первого порядка (рис. I-1-5, а) заключается в том, что переход электрона в верхнее состояние проводимости происходит между двумя реальными, а не виртуальными электронными состояниями. Процессами второго порядка они называются по той причине, что для выполнения закона сохранения импульса существует необходимость двух актов рассеяния, при этом один из актов рассеяния может происходить с участием дефектов. Вид спектра графена с дефектами представлен на рис. I-1-2(б). В отличие от спектра структурно-совершенного графена, в нем, помимо вышеупомянутых линий присутствуют так называемые “дефектные” линии: D, D', $D+D'$.

Рис. I-1-5. Основные процессы КРС в графене [4]. Черные сплошные линии иллюстрируют дисперсию электронных состояний, синие и красные стрелки соответствуют поглощению и испусканию фотона соответственно, черные штриховые пунктирные стрелки соответствуют рассеянию с участием фонона, черные точечные пунктирные линии – рассеянию на дефектах. Процессы, выделенные оранжевым, являются наименее вероятными по сравнению с остальными процессами.
Линия \(2D\) (~2670 см\(^{-1}\)) возникает из-за полносимметричных колебаний в плоскости углеродных колец (рис. I-1-3 (c)), отвечающих фононной ветви \(i\)ТО вблизи точки K зоны Бриллюэна. В процессе ее формирования участвуют два фонона с противоположно направленными волновыми векторами. При таком процессе, как видно на рис. I-1-5 (i, j, k), происходит рассеяние между двумя дираковскими конусами. Процессы такого типа называются междолинными процессами второго порядка. В процессе формирования линии \(D\) (~1340 см\(^{-1}\)) участвует тот же фонон, что и в случае линии \(2D\) (которая является ее овертоном), однако соответствующий ей процесс рассеяния существенно отличается: он состоит из акта упругого рассеяния на фононе и неупругого рассеяния на дефекте. Таким образом, для возникновения линии \(D\) требуется наличие дефектов в кристаллической решетке графена. Подробнее влияние дефектов будет рассмотрено в соответствующем разделе данной главы.

Кроме междолинных процессов КРС второго порядка существуют также внутридолинные процессы. Они отличаются тем, что рассеяние происходит в пределах одного дираковского конуса. Как и в случае междолинных процессов, возможны два варианта событий: упругое рассеяние на двух фононах с противоположно направленными волновыми векторами (линия \(2D', \sim3240\) см\(^{-1}\), рис. I-1-5 (h)) и рассеяние с участием одного фонона и дефекта (линия \(D', \sim1620\) см\(^{-1}\), рис. I-1-5,(b, c, g)).

Оставшаяся спектральная линия \(D+D''\) (~2450 см\(^{-1}\)), согласно современной интерпретации [8] соответствует рассеянию с участием фонона линии \(D\) и фонона, соответствующего продольной оптической (LA) ветви. Процесс рассеяния указан на рис. I-1-5 (i, j, k).

I-2. Модель двойного резонанса

Спектр КРС графита был впервые продемонстрирован в 1970 году в работе Туинстры и Конига [9]. Помимо линии \(G\), соответствующей высокочастотному фонону симметрии \(E_{2g}\) из \(\Gamma\)-точки зоны Бриллюэна, разрешенному фундаментальным правилом отбора для рамановских спектров (равенство волнового вектора фотона и фонона), в спектре наблюдались и другие линии,
которым нельзя было бы поставить в соответствие фононы из Г-точки. К таким линиям относилась линия на 1350 см\(^{-1}\) (позднее названная D).

В работе [10] нанокристаллы графита рассматривали как большие ароматические молекулы, и установили, что в таком случае в спектрах КРС будут наблюдаться линии, соответствующие фононам симметрии A\(_{1g}\). При этом единственными достаточно высокосимметричными точками зоны Бриллюэна для полносимметричной моды A\(_{1g}\) были точки K и K’'. Однако, как уже упоминалось, фундаментальное правило отбора рамановских спектров запрещает фононы с большим волновым вектором.

В случае поликристаллического графита нарушение правила отбора можно было бы объяснить с помощью принципа неопределенности, а именно: \(\Delta q \Delta x \approx h\), таким образом, чем меньше размер кристалла \(\Delta x\), тем больше \(\Delta q\). Однако, в случае фононов с границы зоны Бриллюэна (K и K’ - точки), соотношение неопределенностей позволяет наблюдать их в рамановском спектре при \(\Delta x\) порядка постоянной решетки [4].

Первыми, кто попытался объяснить нарушение правил отбора после Туинстры и Конига, были Почсик и соавторы [11], предложившие новое-правило отбора, согласно которому в спектрах КРС будут наблюдаться фононы, чей волновой вектор равен волновому вектору K, соответствующему электронным состояниям, задействованным в процессе поглощения фотона. Однако оно не имело под собой физического смысла и не описывало поведение рамановских линий в полной мере.

Полное объяснение возникновения в рамановском спектре линий, соответствующих фононам К-точки, дали в 2000 году Томсен и Райх [12]. Они приписали возникновение D и 2D-линий графена процессам двойного резонанса.

Обычно в спектроскопии КРС наблюдают одиночные резонансы, происходящие, когда энергия разрешенного электронного перехода совпадает с энергией падающего фотона. Отличие двойного резонанса состоит в том, что возбужденная электрон-дырочная пара движется в реальном пространстве [12]. Линии, соответствующие таким процессам, имеют очень большую интенсивность.

Для двухфононных процессов основное правило отбора может выполняться любой парой фононов с противоположными волновыми векторами, q и -q. Матричный элемент имеет четыре вклада, соответствующие процессам, когда:
1. Оба фонона испускаются или поглощаются электроном (ee);
2. Оба фонона испускаются или поглощаются дыркой (hh);
3. Первый фонон испускается или поглощается электроном, второй – дыркой (eh);
4. Первый фонон испускается или поглощается дыркой, а второй – электроном (he).

Легче всего рассматривать процессы двойного резонанса в реальном пространстве. Из рассмотрения картины рассеяния в реальном пространстве (рис. 1-2-1) видно, что те q, которые соответствуют электронам и дыркам, рассеянным назад, вносят наибольший вклад в двухфононные процессы. Условие обратного рассеяния, подразумевающее разворот направления групповой скорости, исключает вклад двух фононов с q ≈ 0, что соответствовало бы, например, обертону G-линии. Это объясняет, почему линия 2G не наблюдается в рамановском спектре. Кроме того, процессы электрон-электронного (ee) и дырочно-дырочного (hh) рассеяния, когда один из носителей должен двигаться дольше другого, также исключаются, поскольку для встречи электрона и дырки перед рекомбинацией необходимо, чтобы они двигались в течение одинакового времени после момента возбуждения (скорости электрона и дырки в графене почти совпадают).

Рис. 1-2-1. [4] Иллюстрация процессов рассеяния электронов и дырок на фононах (зеленые стрелки) и дефектах (черные точки) в реальном пространстве. Стрелками показаны траектории движения электронов и дырок в реальном пространстве. Фотон, возбуждающий электрон-дырочную пару, показан молнией, испускаемый фотон – вспышкой.

Падающий фотон возбуждает электрон с импульсом \(\mathbf{p} = \hbar \mathbf{k} \) из основного \((\pi)\) в возбужденное \((\pi^*)\) состояние, тем самым создавая дырку в валентной-зоне с импульсом \(-\mathbf{p}\) и энергией \(-\varepsilon_k\). Предполагается, что электрон и дырка в этот момент
находятся в одной и той же точке реального пространства. Групповые скорости электрона и дырки равны соответственно \(v_{ke} = \partial \varepsilon_k^\pi / \partial (\hbar k) \) и \(v_{kh} = \partial \varepsilon_k^{\pi^*} / \partial (\hbar k) \), их направление показано на рис.1-2-1 черными стрелками. В какой-то момент они испускают фононы или рассеиваются на дефектах или гранях. Чтобы рекомбинировать с испусканием фотона (показано вспышкой), электрон и дырка должны столкнуться, имея противоположные импульсы \(k' \) и \(-k' \) в одной и той же точке пространства, пройдя перед этим за один и тот же промежуток времени то же расстояние. На рис.1-2-1 изображены различные траектории для двухфононных процессов:

(i) Траектория, для которой закон сохранения импульса выполнен, но излучательная рекомбинация невозможна, так как электрон с дыркой рассеиваются в разные стороны и не могут встретиться в одной точке для рекомбинации.

(ii) Траектория, несовместимая с требованием того, чтобы электрон и дырка двигались в течение одного и того же промежутка времени.

(iii) Траектория, для которой выполняются оба условия, и соответствующая линиям 2D и 2D'. При излучении фононов электрон с дыркой должны быть рассеяны в обратном направлении.

(iv) Траектория, соответствующая \(D + D' \).

I-3. **Влияние деформаций на спектры КРС графена.**

Одним из важнейших параметров, которые можно получить из спектров КРС графена, является информация о наличии и характере деформаций в образцах графена. Наличие деформаций является одним из основных факторов, влияющих на энергию фононов и соответственно, на положение линий спектра КРС графена [4].

Линия \(G \), как уже говорилось ранее, соответствует дважды вырожденной моде колебаний. И, как известно из квантовой механики [13], любое нарушение симметрии кристалла должно снимать это вырождение. Причиной нарушения симметрии может являться наличие одноосной деформации – в таком случае связи между соседними атомами будут изменяться по-разному в зависимости от их направления относительно оси деформации. \(G \)-линия в результате такого нарушения симметрии расщепляется на две компоненты: \(G^- \) и \(G^+ \) (Рис. I-3-1). В работе [14]
даются следующие значения деформационных сдвигов компонент G и $G^+: \frac{\delta \omega_{G^+}}{\delta \varepsilon} \approx -10.8 \, \text{cm}^{-1} / \%$, $\frac{\delta \omega_G}{\delta \varepsilon} \approx -31.7 \, \text{cm}^{-1} / \%$.

Рис. I-3-1. [14] Спектры КРС графена в зависимости от величины одноосной деформации растяжения (величина деформации в процентах указана для каждого спектра).

В случае двуосной деформации постоянные межатомной связи меняются одинаково во всех направлениях, таким образом, снятия вырождения не происходит, и G-линия не расщепляется.

Параметры Грюнайзена описывают чувствительность частот фононов к деформации. Как обсуждалось ранее, линии D и $2D$ возникают благодаря фононам с границы зоны Бриллюэна, так что движение дираковских конусов с деформацией изменяет величину волнового вектора. Таким образом, наиболее корректным было бы изучение параметров Грюнайзена D-линии под воздействием двуосной деформации. Такие исследования проводились группой Динга и др. [15]. Параметр Грюнайзена определяется следующим образом:

$$\gamma = -\frac{1}{2\omega_0} \frac{\partial \omega}{\partial \varepsilon_{||}} \quad \text{(I-1)}$$

где $\varepsilon_{||}$- величина двуосной деформации в графене, ω и ω_0 – положения линий КРС при конечной деформации и при ее отсутствии. Для получения величины деформации $\varepsilon_{||}$ в работе [15] использовалось значение параметра Грюнайзена для G-линии $\gamma_G=1.8$, полученное из первых принципов в работе [14]. После этого посредством использования специальной пьезоэлектрической подложки, меняя напряжение, изменялась степень деформации образца. Диапазон изменения
деформации составлял от 0.1 до -0.15% (знак “-“ или “+”перед числом означает деформацию сжатия или растяжения).

На рис. I-3-2 представлены зависимости положения линий графена от величины деформации. Результаты подгонки всех данных дают следующие значения \(\partial \omega / \partial \varepsilon \) и параметров Грюнайзена: \(\partial \omega_G / \partial \varepsilon = -57.3 \), \(\partial \omega_D / \partial \varepsilon = -61.3 \), \(\partial \omega_{2D} / \partial \varepsilon = -160.3 \), \(\partial \omega_{2D'} / \partial \varepsilon = -112.4 \) \(\text{см}^{-1} \); \(\gamma_G = 1.8 \), \(\gamma_D = 2.3 \), \(\gamma_{2D} = 2.98 \), \(\gamma_{2D'} = 1.73 \).

Здесь стоит отметить разницу в параметрах Грюнайзена между линией \(D \) и ее овертоном \(2D \). На рис. I-3-3, а представлено сравнение зависимостей сдвига линий КРС от деформации для \(D \) и \(2D \) (частота \(2D \) для удобства сравнения разделена на 2). Видно, что частота линии \(D \) при деформациях сжатия меньше, чем половина частоты \(2D \), а при деформациях растяжения, наоборот, больше. При значении деформации сжатия 0.025% выполняется равенство \(\omega_G = \omega_{2D}/2 \).

Такая разница в поведении линий \(D \) и \(2D \) становится объяснимой, если обратить внимание на два процесса КРС, возможные при формировании линии \(D \). Они показаны на рис. I-3-3 (b).
Рис. I-3-3. [15] (a) – зависимость сдвига линий КРС от деформации. Точками показаны экспериментальные данные, прямыми – результаты аппроксимации. Зеленым отмечена точка пересечения двух зависимостей. (b) – два возможных процесса КРС для линии D.

В случае первого процесса (рис. I-3-3 (b), верхняя часть) сначала происходит неупругое рассеяние электрона на фононе, а затем упругое рассеяние на дефекте. Во втором случае все происходит в обратном порядке. Хорошо видно, что волновой вектор фонона в первом и втором случае (q1 и q2) различаются, а следовательно, различаются и их частоты. В случае же линии 2D дефекты не участвуют в рассеянии, из-за чего возможен только процесс рассеяния с участием фононов с волновым вектором q1.

Таким образом, линия D состоит из двух компонент (рис. I-3-4), удвоенная частота одной из которых при наличии деформации ведет себя аналогично частоте линии 2D, а вторая оказывается менее чувствительной к деформации.

Рис. I-3-4. [15]. Спектры КРС графена в области 2D (сверху) и D-линий при различных значениях деформации. Точками указаны экспериментальные данные, сплошными линиями – результаты аппроксимации, пунктирными красными линиями – отдельные компоненты линии D.
Положение линии 2D также зависит от деформации, но здесь, помимо изменения постоянных межатомной связи из-за деформаций, важно также и появление искажений зоны Бриллюэна, так как фононы, отвечающие за возникновение 2D-линии, имеют волновой вектор вблизи точки K. Как уже упоминалось, процесс рассеяния состоит из нескольких этапов. Рассеяние с испусканием или поглощением фонона может произойти из одного дираковского конуса в любой из трех его ближайших соседей [16].

Подробно измененные в результате изменения зоны Бриллюэна процессы рассеяния показаны на рис.I-3-5. В графене с различной ориентацией оси деформации относительно образца ("zigzag" или "armchair", рис.I-3-5 (c)) наблюдается различный характер изменения зоны Бриллюэна с деформацией. В случае "zigzag"-ориентации (рис.I-3-5 (d)) путь под номером 1 из-за деформации укорачивается (красная стрелка), отодвигая волновой вектор участвующего в таком процессе фонона от точки K и увеличивая таким образом его энергию (см. фононную дисперсию графена), при этом пути 2 и 3 удлиняются (синие стрелки), волновой вектор соответствующего фонона приближается к точке K, а энергия фонона понижается. Таким образом, путь номер 1 ставится в соответствие 2D⁺- компоненте, а пути 2 и 3 – 2D⁻ компоненте. В случае "armchair"-ориентации оси деформации (рис. I-3-5 (c)) наблюдается обратная ситуация: путь 1 удлиняется, вызывая появление 2D⁻-компоненты, пути 2 и 3 укорачиваются и рассеяние по этим путям порождает 2D⁺-компоненту.

Рис. I-3-5. (a) – схематическое изображение процесса КРС, соответствующего 2D-линии [16]; (b,c,d) – Изображение решетки графена в обратном пространстве и три возможных пути рассеяния между дираковскими конусами (обозначены 1, 2, 3) [16]. (b) – недеформированная решетка, (c) – решетка, деформированная вдоль направления "zigzag"; (d) – решетка, деформированная вдоль направления "armchair".
На рис. I-3-6 изображены спектры КРС образцов с “armchair” (a) и “zigzag” (b) – ориентацией, снятые при различных значениях деформации. Внизу показаны зависимости положения компонент 2D− и 2D+ от деформации для “armchair” и “zigzag”-ориентации.

Рис. I-3-6. [16] Эволюция 2D-линии в случае (a) – деформации в направлении “armchair”, (b) – деформации в направлении “zigzag” в зависимости от величины одноосной деформации. Спектры в (a) сняты при θin=θout=0, в (b) – при θin=0 θout=50. Положения компонент 2D-линии в случаях деформации в направлении “armchair” (a) и “zigzag” (b) в зависимости от величины деформации. Углы θin, θout и φs указаны на вставке.

I-4. Электрон-фононное взаимодействие в графене: затухание Ландау, аномалия Кона

Длинноволновый оптический фоон E2g, обуславливающий появление G-линии в графене, имеет сильную зависимость от концентрации заряда. Зависимость ширины и положения G-линии от концентрации заряда демонстрирует нам, что в электрон-фононом взаимодействии в графене проявляется уникальная физика безмассовых дираковских фермионов. [17]

Спектроскопия КРС зарекомендовала себя как мощный метод исследования электрон-фононного взаимодействия в графене. Для рассмотрения этого эффекта нам придется снова обратиться к структуре электронных зон графена (рис. I-4-1). Зона проводимости (π∗) и валентная зона (π) соприкасаются в двух краевых точках зоны Брилюэна (K и K’), эквивалентных друг другу. Вблизи точек
соприкосновения, называемых точками Дирака, наблюдаются дираковские конусы электронных состояний.

Рис. I-4-1. [17] Электронная зонная структура графена. (a) – π и π*-зоны графена. Бирюзовым цветом показаны заполненные состояния. Справа показана зонная структура в K и K' - точках зоны Бриллюэна в случае нейтрального графена. (b, c) –вид дираковского конуса графена вблизи уровня Ферми в случае n и p-типа легирования соответственно.

Затухание Ландау

Взаимодействие фонона G-линии с электрон-дырочными парами с малыми волновыми векторами существенно зависит от энергии εс, указанной на рис. I-4-1. Эта энергия является минимальной энергией вертикального (с сохранением импульса) электронного перехода, удовлетворяющего принципу Паули. Из-за требований принципа Паули (переходы возможны только в область незанятых состояний) величина εс непосредственно связана с положением поверхности Ферми как εс=2|E_F|, где |E_F| - абсолютное значение энергии Ферми относительно точки Дирака. Таким образом, отклик фонона G-линии на изменение концентрации носителей заряда связан с изменением энергии Ферми в результате легирования или действия электрического поля [17].

Рассмотрим теперь подробнее причины изменения положения и ширины G-линии с изменением концентрации электронов. Снижение полуширины G-линии при легировании может быть связано с явлением, называемым затуханием Ландау. Суть его заключается в поглощении энергии волны (в нашем случае в качестве волны выступает колебания решетки, связанные с фононом E_{2g}) электронами со скоростями, близкими к фазовой скорости волны. Частицы, чья скорость больше
фазовой скорости волны, отдают излишек энергии волне, а частицы с меньшей скоростью – забирают энергию волны. Из-за формы распределения электронов по скоростям (рис. I-4-2) в рассматриваемой области вторых частиц оказывается больше, в результате происходит затухание волны.

Рис. I-4-2. Распределение электронов по скоростям. \(v_{ph} \) – фазовая скорость волны. Заштрихованные области иллюстрируют электроны, взаимодействующие с волной.

Примеры процессов затухания Ландау показаны на рис. I-4-3 (a) и (b). Фонон \(G \)-линии передает свою энергию электрону из зоны проводимости, который, поглотив ее, совершает вертикальный переход в валентную зону. При наличии избыточного заряда уровень Ферми зависит от его концентрации \(n \) как
\[E_F(n) = -\text{sign}(n)\hbar v_F\sqrt{\left(\pi|n|\right)} \]
(1-2)

Здесь \text{sign}(n) – знак \(n \), \(v_F = 10^6 \) м/с – скорость Ферми в графене (наклон дираковского конуса) [18]. Из-за принципа Паули затухание Ландау возможно только тогда, когда \(|E_F| < \hbar \omega_G/2 \). Такое положение энергии Ферми соответствует довольно низкой (\(\sim 5 \times 10^{12} \) см\(^{-2} \)) концентрации избыточных зарядов.

Изменение полуширины \(G \)-линии из-за затухания Ландау обозначается как \(\Delta \Gamma_G \) и имеет физический смысл вероятности появления энергетически-разрешенных электрон-дырочных пар с помощью электрон-фононного взаимодействия за единицу времени. Таким образом, сила электрон-фононного взаимодействия может быть оценена с помощью золотого правила Ферми [19] по изменению полной ширины на половине высоты \((FWHM) \) \(G \)-линии: \(\Delta FWHM_G = \frac{A_{uc}}{8Mv_F^2} D^2 \), где \(A_{uc} \) – площадь элементарной ячейки графена, \(M \) – атомная масса углерода, \(D \) – сила электрон-фононного взаимодействия, \(v_F \) – скорость Ферми (величина наклона дираковского конуса). При этом \(\Gamma_G \) имеет физический смысл вероятности создания энергетически разрешенных электрон-дырочных пар в единицу времени.

Количественное выражение для ширины \(G \)-линии было получено в работе [20] исходя из золотого правила Ферми:

\[\gamma = \frac{\pi}{2} \frac{\omega_0^0}{2\pi c} \alpha' \left[f_T\left(-\frac{\hbar \omega_0^0}{2} - \epsilon_F\right) - f_T\left(\frac{\hbar \omega_0^0}{2} - \epsilon_F\right)\right], \]
(I-3)

где \(\gamma \) – величина полной ширины на половине высоты \((FWHM_G) \) в обратных сантиметрах, \(f_T \)-распределение Ферми при температуре \(T \), \(\omega_0^0 \)-частота оптического фона. При нулевой энергии Ферми значение \(FWHM_G \) составляет 11 см\(^{-1} \) [20]. Зависимость \(FWHM_G \) от концентрации электронов представлена на Рис. I-4-4.
Рис. I-4-4. [19] Зависимость полной ширины на половине высоты \((FWHM_G)\) \(G\)-линии от концентрации электронов, вычисленная для случая \(T=0\) К (пунктирная линия), \(T=70\) К (сплошная оранжевая линия) и \(T=300\) К (сплошная черная линия).

\(FWHM_G\), как видно на рисунке, резко спадает при достижении энергией Ферми значения по модулю порядка 0.1 эВ, что соответствует половине энергии оптического фонона \(E_{2g}\). При этом с ростом температуры происходит сглаживание зависимости из-за наличия размывания в распределении Ферми.

Аномалия Кона и приближение Борна-Оппенгеймера

На рис. I-4-5 изображена фононная дисперсия графена в области высоких частот. Видно, что в некоторых точках зоны Бриллюэна фононная дисперсия ветвей \(iLO\) и \(iTO\) имеют ярко выраженные провалы, называемые аномалией Кона [21]. Она возникает в фононной дисперсии графена и графита из-за того, что колебания решетки, обычно частично экранируемые электронами зоны проводимости, в определенный момент перестают экранироваться ими. В результате происходит понижение энергии фона. Аномалия Кона должна проявляться тогда, когда волновой вектор фонона \(q\) совпадает с волновым вектором, соединяющим два электронных состояния, находящихся на поверхности Ферми [21]. В графене (а также графите) это справедливо, когда \(q=0\) или \(K\) (вектор, соединяющий две точки Дирака в графене).
Рис. I-4-5. [22] Дисперсия верхних фононных ветвей графена (сплошные линии) и графита (пунктирные линии). Аномалии Кона в фононной дисперсии обозначены красным цветом.

Присутствие аномалии Кона теоретически описывается с помощью так называемого неадиабатического приближения. Стандартным инструментом описания взаимодействия между электронами и ядрами является так называемое адиабатическое приближение Борна-Оппенгеймера [23]. Оно предполагает, что более легкие электроны адиабатически подстраиваются к движению более тяжелых ядер, оставаясь в своем мгновенном основном состоянии в любой момент времени. Оно хорошо применимо тогда, когда разница энергий между основным и возбужденным электронными состояниями больше, чем энергетический масштаб атомных колебаний. Графен является одним из замечательных примеров неприменимости адиабатического приближения.

На рис. I-4-6 показано изменение электронной структуры графена с колебаниями решетки при использовании адиабатического и неадиабатического приближения. Известно [24], что смещение атомов в реальном пространстве (рис. I-4-6 (d)) на вектор у приводит к смещению точки Дирака в обратном пространстве, причем величина смещения точки Дирака связана со смещениями атомов линейно через константу деформационного потенциала соответствующего фонона и скорость Ферми [24].

На рис. I-4-6 (b) и (c) изображены изменения в заполнении электронных зон графена при смещении точки Дирака: в случае использования адиабатического приближения (b) электроны успевают подстраиваться под движение ядер и заполнение в каждый момент времени остается тем же самым. В не-адиабатическом случае (c) у электронов не хватает времени для релаксации по импульсу (через взаимодействие с примесями, электрон-электронными и электрон-фононными взаимодействиями), чтобы следовать за мгновенными основными состояниями. В отсутствии рассеяния, импульс электрона сохраняется, и состояние с волновым вектором k занято, если состояние с тем же вектором k было бы занято в невозмущенном состоянии. Как следствие, поверхность Ферми остается такой же, как и в невозмущенном состоянии и не следует за смещением конуса Дирака. Полная энергия электронов, таким образом, возрастает с квадратом атомного смещения s, результатом чего является увеличение энергии Е2g-фонона. Это увеличение проявляется в снятии аномаллии Кона и рост частоты G-линии с ростом концентрации электронов становится легко объясним – чем больше электронов находится в π*-зоне, тем сильнее вклад энергии электронов в энергию фонона Е2g.

Количественное выражение для изменения энергии G-линии при изменении концентрации носителей было получено в работе [17] и имеет следующий вид:

\[
\hbar \omega_G - \hbar \omega_G^0 = \lambda \left\{ \frac{|E_F|}{2 \hbar \omega_G} \ln \left(\frac{2|E_F|}{2|E_F| + \hbar \omega_G} \right) \right\},
\]

где \(\lambda = A_{im}D^2/2\pi\hbar\omega_GMv_F^2 \). В пределе высокой плотности носителей достаточно использовать только линейный член. Графически зависимость частотного сдвига от энергии Ферми представлена на рис.1-4-7.
Заключение

Мы рассмотрели фундаментальные причины возникновения в графене основных линий спектров КРС, особо отметив уникальные для графена и графита процессы двойного резонанса. Также были подробно рассмотрены влияние двусных деформаций на спектры КРС графена и расщепление спектральных линий из-за снятия вырождения при наличии выделенного направления в деформации. Проанализированы особенности электрон-фононного взаимодействия в графене. Отдельное внимание было уделено механизмам сдвига и уширения линии G при изменении концентрации носителей заряда.
Глава II. Методика эксперимента

II-1. Образцы и методы исследования

Исследовались тестовые графеновые структуры, полученные методом термодеструкции в газовой среде (Ar) Si-граней полузолирующих подложек 4H-SiC и 6H-SiC, а также структуры графен/(III-N)-полупроводник на подложках сапфира. Структуры были изготовлены в лаб. А.А. Лебедева и В.М. Устинова в ФТИ им. А.Ф. Иоффе.

Измерения методом КРС проводились при комнатной температуре в геометрии “обратного рассеяния” на многофункциональном оптическом комплексе Horiba Jobin-Yvon T64000 в ФТИ им. А.Ф. Иоффе (лаб. С.П. Феофилова). Этот оптический комплекс укомплектован конфокальным микроскопом, что позволяет получать информацию из области графеновой пленки диаметром ~1 мкм. Наряду с локальной диагностикой, анализировались большие площади образцов размерами от 10×10 до 30×30 мкм с последующим построением КРС-карт параметров спектральных линий. Такая методика позволила реализовать одну из основных задач настоящей работы, которая заключалась в оценке степени однородности структурных характеристик по площади тестовых образцов.

Рис. II-1-1. (a) – общий вид многофункционального оптического комплекса Horiba Jobin-Yvon T64000. (b) – гелиевый криостат, (c) – вакуумная камера с кюветой и клапаном, позволяющая производить измерения в вакууме, среде различных газов и паров жидкостей.
Позиционирование образцов осуществлялось автоматически. Карта
анализируемой области 10×10 мкм составляла массив из 100 точек, а карта области
30×30 мкм – 900 точек. С использованием дифракционной решетки 600 штр/мм с
максимумом блеска в зеленой области спектра и объектива × 100 с числовкой
апертурой NA = 0,7 была существенно увеличена чувствительность канала
регистрации оптического сигнала. Это позволило работать в режиме получения карт
КРС, с накоплением сигнала в каждой точке образца в течение 10 сек. При
измерениях использовалась длина волны возбуждающего излучения 532 нм;
мощность лазерного излучения на образце составляла ~2.0 мВт в пятне диаметром
~ 1 мкм.

Одной из задач данной работы было установление однозначной корреляции
между результатами, полученными методом КРС и другими методиками на
исследуемых графеновых слоях. С этой целью методами КРС и атомно-силовой
микроскопии (АСМ) исследовались один и те же площади тестовых графеновых
структур. Измерения методом АСМ проводились с помощью сканирующего
зондового микроскопа NtegraAURA (NT-MDT) в атмосферных условиях (группа
к.ф.-м.н. М.С.Дунаевского, ФТИ). Далее проводился сравнительный анализ карт
распределения параметров характеристических линий в спектрах КРС, которые
несут ответственность за структурные характеристики графеновых слоев и карт двух
tипов, полученных методом АСМ на тех же площадях. При этом один тип АСМ-
карт воспроизводил распределение топографических особенностей поверхности, а
другой тип АСМ-карт отображал измеренное методом зонда Кельвина
распределение поверхностного потенциала между зондом и образцом.

Часть тестовых образцов была исследована также методами рентгеновской
фотоэлектронной спектроскопии (РФЭС) и фотоэлектронной спектроскопии с
угловым разрешением (ФЭСУР). Спектры РФЭС при различных энергиях фотонов,
a также спектры ФЭСУР были измерены на оборудовании Российско-Германского
канала вывода синхротронного излучения накопительного кольца BESSY II (г.
Берлин) группой из СПбГУ, руководимой д.ф.-м.н. Д.Ю. Усачевым.

II-2. Программное обеспечение для обработки спектральных массивов

Анализ больших площадей графена, как уже говорилось, позволяет получать
карту спектров КРС образца, привязанную к конкретной его области. Для
определения параметров спектральных линий графена требуется обработка полученного массива спектров.

В нашей работе большая часть исследуемых образцов была изготовлена по технологии термодеструкции подложек 4H-SiC и 6H-SiC, из-за чего в измеряемых спектрах КРС образцов проявляется спектр подложки, на которой они были выращены. Спектр SiC полностью перекрывает G-линию графена и частично перекрывает D-линию, из-за чего трудно получить реальные данные об интенсивности, полной ширине на половине высоты (FWHM) и положении этих линий. Для исключения вклада карбида кремния из спектров КРС необходима процедура автоматизированного вычитания спектра подложки для всех спектров карты, однако она, а также возможность анализа распределения параметров спектров КРС графена отсутствует в стандартном программном обеспечении установки.

Была разработана специализированная программа в среде MATLAB. Программа работает через интерфейс командной строки и позволяет вычитать спектр подложки, нормируя его на интенсивность каждого спектра в заданной области, анализировать выбранные спектральные линии и приводить результаты анализа в виде карт и гистограмм (графиков статистического распределения элементов карт), а также графиков корреляции между различными параметрами спектральных линий. Линии аппроксимируются встроенными функциями Лоренца (1) и псевдо-Фойгта (2), с использованием метода наименьших квадратов.

\[y = y_0 + \frac{2A}{\pi} \frac{w}{4(x-x_c)^2+w^2} \] (II-1)

\[y = y_0 + A \left[m_u \frac{2}{\pi} \frac{w}{4(x-x_c)^2+w^2} + (1 - m_u) \frac{\sqrt{4 \ln 2}}{\sqrt{\pi w}} e^{-\frac{4 \ln 2}{w^2}(x-x_c)^2} \right] \] (II-2)

Все параметры аппроксимации можно задавать вручную, что позволяет не только достичь большей точности аппроксимации, но и использовать программу для исследования спектров люминесценции и КРС самых разных образцов.

Помимо упомянутых функций, в программе также реализована возможность проверки аппроксимации спектральных линий и для любого из спектров массива. После нажатия на выбранную точку карты автоматически выводится очищенный от вклада подложки спектр КРС из данной точки, а также результаты его аппроксимации в графическом виде и виде параметров линий.
Еще одной полезной функцией программы является возможность автоматического исключения из рассмотрения точек, в которых нужные спектральные линии не проявляются.

Заключение

В результате модернизации оптического комплекса была существенно увеличена чувствительность канала регистрации оптического сигнала. Это позволило работать в режиме получения карт КРС, с накоплением сигнала в каждой точке образца в течение 10 сек.

Создано и успешно апробировано программное обеспечение, позволяющее оперативно обрабатывать большие массивы спектров КРС графена выращиваемого на карбиде кремния, с учетом вклада буферного слоя и подложки, а также представлять данные, полученные при сканировании больших площадей графена, в виде карт и их гистограмм и строить зависимости между различными параметрами спектральных линий. С использование созданного программного обеспечения изучены локальные и интегральные структурные характеристики исследуемых графеновых слоев.
Глава III. Вклад буферного слоя в спектры КРС графена, выращенного на SiC.

Введение

Спектроскопия КРС широко применяется для исследования графена, однако этот метод не является поверхностно-чувствительным и глубина проникновения даже хорошо сфокусированного лазерного луча существенно больше толщины монослоя или нескольких слоев графена. Поэтому в спектрах КРС помимо особенностей, характерных для графена, наблюдаются также спектральные линии и полосы, относящиеся к подложке, на которой выращен слой графена.

При изучении методом спектроскопии КРС системы графен/карбид кремния (Gr/SiC) в области D и G-линий спектра графена наблюдается также сильный вклад спектра второго порядка подложки 4H или 6H-SiC, что сильно затрудняет определение основных параметров линий графена. Как правило, в большинстве случаев спектр SiC вычитается из измеренного экспериментального спектра, при этом предполагается, что так называемый буферный слой (переходная структура между карбидом кремния и графеном) не вносит вклада в наблюдаемый спектр. Вклад буферного слоя в спектры графена, выращенного на карбиде кремния, до сих пор остается слабо изученным. В немногочисленных существующих работах этот вклад изучается с теоретической и практической [25, 26] точек зрения.

III-1. Обзор литературных данных

![Diagram](image)

Рис. III-1-1. Спектр первого и второго порядка 6H-SiC [25]. Красной линией обозначен спектр второго порядка, умноженный на 50.
Буферный слой между графеном и 6H-SiC представляет собой графеноподобную гексагональную решетку, состоящую из атомов углерода в конфигурации \((6\sqrt{3} \times 6\sqrt{3})R30\), которая расположена поверх нереконструированной поверхности SiC (рис. III-1-2 (a)). В работе [25] исследовались образцы, представляющие собой буферный слой без графена, буферный слой с монослоем и бислоем графена (рис. III-1-2 (b,c)), а также квазисвободный графен без буферного слоя, полученный травлением в водороде (рис. III-1-2 (d)).

Рис. III-1-2 Схематическое изображение различных образцов, исследуемых в работе [25]. (a) – буферный слой без графена; (b) – монослоевой графен на SiC; (c) – двуслойный графен на SiC; (d) – квазисвободный графен на SiC.

Спектры КРС этих образцов представлены на рис. III-1-3. Видно, что в спектре квазисвободного графена отсутствуют особенности в области 1200-1650 см\(^{-1}\), которые присутствуют в спектрах графена с буферным слоем и в спектре самого буферного слоя. Таким образом, можно сделать вывод о том, что данные особенности являются спектром самого буферного слоя.

В спектре буферного слоя отсутствуют четкие спектральные линии, он скорее похож на плотность колебательных состояний. В пользу такого предположения говорит то, что элементарная ячейка структуры \((6\sqrt{3} \times 6\sqrt{3})R30\) имеет достаточно большой размер, а соответствующая ячейка обратной решетки – мала. Как следствие, в результате трансформации зоны Бриллиуэна значительная часть фононных дисперсионных кривых из-за их сложения становится активной в спектрах КРС.

Рис. III-1-4. [25]. Изображение структуры \((\sqrt{3} \times \sqrt{3})\), лежащей на SiC.

Расчет плотности колебательных состояний из первых принципов для структуры \((6\sqrt{3} \times 6\sqrt{3})R30\) представляет значительные трудности. Поэтому в работе [25] расчет проводился для более простой структуры \((\sqrt{3} \times \sqrt{3})R30\), элементарная ячейка которой представляет собой удвоенную элементарную ячейку графена (рис. III-1-4). Электронные состояния такой поверхности характеризуются отсутствием дираковского конуса и наличием запрещенной зоны шириной порядка 2 эВ [27]. Из-за этого в фононных дисперсионных кривых (рис. III-1-5) нет коновских аномалий в точках Г и К, и это же объясняет отсутствие 2D-линии в спектрах КРС буферного слоя. Результаты расчета (плотность колебательных состояний и наложенный на нее экспериментальный спектр подложки приведены на рис. III-1-5 слева. Хотя измеренный спектр не повторяет в точности вида плотности состояний, основные провалы и максимумы плотности состояний совпадают с провалами и подъемами в спектре КРС буферного слоя. Таким образом, в работе [25] делается вывод о том,
что спектр КРС буферного слоя действительно отражает плотность его колебательных состояний.

Рис. III-1-5. Справа – фононная дисперсия графена (пунктирные линии) и буферного слоя (сплошные линии). Слева: плотность колебательных состояний графена (пунктирные линии) и буферного слоя (сплошные линии) в сравнении с экспериментально измеренным спектром КРС буферного слоя.

В работе [26] был исследован специально выращенный образец Gr/SiC, на части поверхности которого присутствовал чистый карбид кремния, на другой части – буферный слой Gr/SiC, остальная площадь была покрыта небольшими чешуйками монослоистого графена.

В спектре КРС буферного слоя, представленного в работе [26], наблюдаются D-подобная линия (1337 см⁻¹), G-подобная линия (1584 см⁻¹), а также широкая полоса, соответствующая линиям 2D и D+G (2400-3000 см⁻¹). Следует отметить, что в предыдущей работе [25] линии 2D в спектре буферного слоя не наблюдалось. Между D-подобной и G-подобной линией присутствует небольшой подъем, который можно объяснить наличием в этой области спектральной линии транс-полиакетилена (t-PA, 1515 см⁻¹), который обычно формируется на границе нанокристаллов алмаза [28].

Спектр КРС буферного слоя, представленный в [26] (рис. III-1-6), очень похож на спектр графена с концентрацией дефектов порядка 10^{14} 1/см² и большим количеством sp³-связей. Это согласуется с представлением о формировании графена на SiC, согласно которому буферный слой представляет собой атомы углерода, связанные с подложкой SiC sp³-связями [29]. Дополнительным свидетельством наличия sp³-связей являются данные измерения коэффициента оптического поглощения п для длины волны 514.5 нм. Типичное значение п для буферного слоя составило 0.88%, что составляет порядка 2/3 от значения п монослоистого графена на
SiC [30]. Исходя из этого делается вывод о том, что 2/3 атомов буферного слоя связаны sp^2-связями, а оставшаяся треть связана sp^3-связями и не дает своего вклада в показатель поглощения в данном диапазоне.

Рис. III-1-6. Спектр КРС буферного слоя с отмеченными основными спектральными линиями [26]. На вставке изображены непосредственно измеренные спектры из областей чистого SiC (черный спектр), SiC, покрытого буферным слоем (синий спектр) и SiC, покрытого буферным слоем и монослоем графена (красный спектр).

III-2. Экспериментальные результаты

Для изучения возможности разделения вклада буферного слоя в спектры графена, выращенного на подложках $6H$-и $4H$-SiC, в наших исследованиях были сделаны попытки получить чистый буферный слой, остановив графитизацию верхнего слоя подложки SiC на этапе его формирования. Результаты исследования получившихся образцов представлены ниже.

На рис. III-2-1 показаны результаты сравнения спектра образца #EG-57, выращенного на Si-грани подложки $4H$-SiC и спектра буферного слоя из работы [26]. Оба спектра получены после вычитания соответствующего спектра подложки SiC. Несмотря на внешнее сходство двух спектров, между ними есть несколько отличий.

Во-первых, в спектре образца #EG-57 выделяется слабая линия 2D с положением 2733 см$^{-1}$, которая свидетельствует о наличии небольших чешуек графена в исследуемой области.
Во-вторых, D-подобная линия и 2D-подобная полоса образца #EG-57 оказались сдвинуты в сторону низких частот относительно спектра из работы [26]. Это, скорее всего, объясняется дисперсией спектральных линий “двойного резонанса” в графене, поскольку в нашем эксперименте для возбуждения спектров КРС использовалась меньшая длина волны лазерного излучения – 532 нм против 514 нм в работе [26].

В третьих, G-подобный пик в спектре образца #EG-57, исходя из предположения о наличии G-линии в районе ~1603 см⁻¹, находится чуть ниже по частоте, чем аналогичный пик в спектре из работы [26]. При этом у G-подобного пика в спектре образца #EG-57 наблюдается то же самое “крыло”, которое в работе [26] приписывали транс-полиацетилену, но его интенсивность в несколько раз больше. Из этого можно было бы сделать вывод о большей, чем в случае подложки 6H-SiC, концентрации транс-полиацетилена в графене, однако другая спектральная линия, соответствующая транс-полиацетилену в графене (1151 см⁻¹) [28], отсутствует в спектре. Таким образом, большая интенсивность этого крыла, скорее всего, вызвано сдвигом самого G-подобного пика или ошибками при вычитании спектра подложки.

Теперь, получив сведения о спектре буферного слоя между графеном и 4H-SiC, мы можем попытаться последовательно вычесть из измеряемых спектров КРС графена на 4H-SiC сначала спектр второго порядка карбида кремния, а затем спектр буферного слоя. Результаты такой процедуры представлены на рис. III-2-2.

Видно, что после вычитания спектра образца #EG-57 в качестве буферного слоя мы можем наблюдать в спектрах D-линию, которая до вычитания перекрывалась со спектрами буферного слоя. Она видна достаточно хорошо и пригодна для оценки количества дефектов. При этом же мы наблюдаем особенность в области 1500-1550 см⁻¹, присутствие которой можно объяснить вкладом транс-полиакетилена (t-PA). В случае же вычитания экспериментального спектра буферного слоя, приводимого в работе [25], D-линия и низкочастотное крыло G-линии не меняют свою форму. Это говорит о некорректности использования данного спектра для вычитания.

Стоит отметить, что при наличии в измеряемых спектрах сильных шумов (например, при картировании, когда спектры снимаются с небольшим временем накопления) часто вычитание спектра подложки и буферного слоя приводит к еще большему усилению шумов, из-за чего определение параметров D- и G-линий остается затрудненным. В таком случае можно воспользоваться моделированием спектра буферного слоя с помощью известных нам из экспериментальных данных параметров его основных линий. На рис. III-2-3 представлено моделирование, представленное в работе [26] (a) и моделирование с использованием разработанного программного обеспечения, описанного в главе II (b). Из-за того, что 2D-подобная полоса буферного слоя обычно гораздо слабее по интенсивности, чем D и G-подобные полосы, ее вкладом можно пренебречь. Видно, что такое моделирование
позволяет отделять спектральные линии графена от спектральных полос, соответствующих буферному слою и получать истинные параметры линий графена.

Рис. III-2-3. (a) – спектр монослоистого графена и буферного слоя с моделированием вклада буферного слоя при помощи четырех спектральных линий (D-подобная, G-подобная и 2D-подобная полосы и линия транс-полиацилена) [26]. Черным обозначены экспериментальные данные, зеленым и синим – результаты моделирования спектра буферного слоя и графена соответственно, красным – сумма смоделированных спектров буферного слоя и графена. (b) – пример автоматического моделирования спектра монослоистого графена и буферного слоя, применяемого при картировании. Синим показаны экспериментальные данные, красным – результат моделирования.

Заключение

Рассмотрены основные приводимые в литературе модели, описывающие вклад буферного слоя в спектры КРС графена на SiC. С целью создания методики, позволяющей исключать вклад буферного слоя в спектры КРС графена на SiC, был выращен и исследован образец, представляющий собой буферный слой на поверхности 4H-SiC без графена. Разработаны процедуры моделирования спектра буферного и его вычитания из экспериментальных спектров КРС. Эти процедуры добавлены в программное обеспечение, описанное в главе II. Также добавлена функция учета вклада буферного слоя в подложку и возможность анализа распределения интенсивности спектральных линий, отвечающих буферному слою.
Глава IV. Оценка толщины графена, выращенного на 4H- и 6H-SiC

Введение

Определение толщины графеновых пленок является одной из важнейших задач в их диагностике, так как свойства графена существенно зависят от количества его слоев. За время прошедшее с момента открытия графена было предложено множество способов определения толщины графена различными методами. К ним относятся: просвечивающая электронная микроскопия (ПЭМ), Кельвин-зондовая микроскопия (КЗМ) [31], Оже-спектроскопия [32], фотоэлектронная спектроскопия с угловым разрешением (ФЭСУР) [33], рентгеновская фотоэлектронная спектроскопия (РФЭС) и дифракция медленных электронов (ДМЭ) [29], спектроскопия отражения и пропускания [34] и, наконец, спектроскопия КРС. В отличие от остальных перечисленных методов, спектроскопия КРС является универсальным, быстрым, неразрушающим и относительно недорогим методом исследования толщины графена. Кроме того, вследствие того, что количество слоев графена влияет на многие параметры разных спектральных линий графена, существует несколько способов определения толщины графена по его спектрам КРС. Мы рассмотрим наиболее распространенные из этих способов, сравним данные, полученные с их помощью с данными других методов, и сделаем выводы о применимости каждого из способов.

IV-1. Обзор способов определения толщины графена из данных КРС

В первых работах для определения толщины графена было предложено использовать отношение интегральных интенсивностей спектральных линий G и 2D (АG/А2D) [35, 36]. На рис. IV-1-1 (a) представлены спектры графена, полученного методом микромеханического отслаивания в зависимости от числа слоев. Видно, что с увеличением числа слоев интенсивность линии G растет, при этом линия 2D уширяется и меняет свою форму. Как видно на зависимости отношения АG/А2D от числа слоев, это отношение должно меняться от 0.25 для монослоиного графена до 0.8 для графита.
Однако использование данного соотношения, как выяснилось позднее, не совсем корректно. Во-первых, согласно данным работы [37], отношение интенсивностей линий G и $2D$ зависит от положения уровня Ферми, который определяется степенью легирования графена (рис. IV-1-1 (c)). Помимо этого, на интенсивность $2D$-линии влияет и степень дефектности образца [38].

Однофононная линия G в спектре графена возникает вследствие нерезонансного процесса рассеяния света с участием оптического фонона симметрии E_{2g} из Г-точки зоны Бриллюэна. Следовательно, интенсивность этой спектральной линии должна быть пропорциональна толщине графена. Карта распределения интенсивности линии G по площади образца позволяет выявлять области, имеющие различное количество слоев; при этом областям с большим числом монослоев соответствует большая интенсивность сигнала. Однако информацию о точном количестве монослоев невозможно получить из анализа такой карты.

Анализ формы линии $2D$ в спектре КРС графена наряду с анализом интенсивности G-линии широко применяется для оценки его толщины [47, 48, 49]. В случае однослойного графена линия $2D$ представляет собой лоренцевский контур; с ростом числа слоев линия $2D$ уширяется и ее контур описывается несколькими лоренцевскими компонентами [47, 48].

Объяснение изменения формы 2D-линии в зависимости от числа слоев графена лежит в его зонной структуре [47]. Как упоминалось в обзоре литературы, 2D-линия является процессом двойного резонанса, включающая в себя четыре виртуальных перехода (рис. IV-1-2): возбуждение электрон-дырочной пары (a-b), рассеяние на фононе (b-c), рассеяние на втором фононе (c-b) и рекомбинация (b-a).
В двухслойном графене взаимодействие слоев между собой приводит к расщеплению π и π*-зон на 4 зоны, с различной величиной расщепления для электронов и дырок. Согласно расчетам, выполненным с помощью теории функционала плотности [47], среди четырех возможных оптических переходов наиболее вероятными являются два перехода, показанные на рис. IV-1-2. Процессы двойного резонанса в таком случае задействуют фононы с волновыми векторами \(q_{1B} \), \(q_{1A} \), \(q_{2A} \) и \(q_{2B} \). Соответствующие фононам с этими волновыми векторами процессы и обуславливают возникновение четырех компонент в линии 2D вместо одного.

На рис. IV-1-3 изображены спектры КРС графена, полученного методом микромеханического отслаивания, и графита в области линии 2D из работы [47]. Хорошо видно изменение формы 2D-линии в зависимости от количества слоев графена.
Рис. IV-1-3. (a) – изменение формы 2D-линии с ростом числа слоев. (b) – вид четырех компонент 2D-линии в двухслойном графене при различных энергиях возбуждения [47].

В двухслойном графене наблюдается существенное уширение и высокочастотный сдвиг 2D-линии. При этом ее форма сильно отличается от формы 2D-линии графита: у двухслойного графена она состоит из четырех компонент, называемых 2D\(_{1B}\), 2D\(_{1A}\), 2D\(_{2A}\) и 2D\(_{2B}\) [47]. Наиболее интенсивными из них, как видно на рис. IV-1-3, являются 2D\(_{1A}\) и 2D\(_{2A}\).

Для ускорения вычислений при обработке спектральных массивов вместо разложения 2D-линии на компоненты в качестве грубой оценки толщины пленки графена может использоваться ширина на половине высоты (FWHM) 2D-линии [49]. В местах с большей толщиной графеновой пленки ширина линии 2D должна быть больше. Следует отметить, что на ширину 2D-линии влияет также и количество дефектов в образце. Этот фактор будет рассмотрен более подробно в следующем разделе.

В литературе встречается еще один метод оценки толщины графена – с помощью отношения интенсивности чистого спектра второго порядка подложки SiC к интенсивности вклада SiC в спектр KPC системы Gr/SiC [50]. Этот коэффициент, в предположении, что коэффициент поглощения графена линейно зависит от числа слоев, задается формулой:

\[S = e^{-2\alpha t}, \quad (IV-1) \]

где \(t \) - количество слоев графена, \(\alpha \) – коэффициент поглощения одного слоя. График зависимости логарифма коэффициента S от толщины слоя графена (полученной из
данных РФЭС и просвечивающей электронной микроскопии (ПЭМ) представлен на рис. IV-1-4.

Рис. IV-1-4. (а) – иллюстрация модели поглощения графеном сигнала от SiC [50]. (б) – зависимость логарифма относительной интенсивности спектра второго порядка SiC от толщины графена, известной из данных РФЭС [50]. Образцы, исследовавшиеся методом ПЭМ, обозначены как Т1 и Т2.

Из параметров зависимости $\ln(S)(t)$ было получено значение коэффициента поглощения монослоя графена $\alpha=0.020\pm0.002$, или 2%. Такое значение близко к значению α, приводимому в литературе (2.3%) [51]. Погрешность такой модели составляет, согласно данным, приводимым авторами, от 25% до 60% для $t>10$ и $t\approx2-3$ соответственно. Однако нас интересуют в основном именно 1-2-слойные образцы, поэтому использовать данную модель для образцов нецелесообразно.

IV-2. Экспериментальные результаты

На рис. IV-2-1, а представлен массив спектров КРС образца #EG-21, измеренных в диапазоне 1300–2800 см$^{-1}$ на площади образца 12.5×12.5 мкм с шагом в 1 мкм. В спектрах доминируют широкие полосы, обусловленные процессами второго порядка при рассеянии света от подложки 6H-SiC. На рис. С1, б показан вид того же массива спектров, полученный после вычитания мешающего вклада спектра подложки. В спектрах наблюдаются особенности, возникающие при рассеянии света от графеновой пленки: линии G, 2D и слабая линия D [7].
Рис. IV-2-1. Массив спектров КРС образца, выращенного на Si-грани 6H-SiC (а) и 4H-SiC (с). Вид тех же массивов спектров, полученных после вычитания спектра подложки (b, d).

На рис. IV-2-2 (a,d) представлены карты распределения интенсивности G-линии (I_G) по площади образцов, полученные из обработки массивов спектров, представленных на рис. С1 для образцов, выращенных на 4H-SiC (с) и 6H-SiC (а). Как уже говорилось выше, такие карты позволяют выявлять области, имеющие различную толщину; при этом областям с большим числом монослоев соответствует большая интенсивность сигнала. Анализ карт и гистограмм (графиков статистического распределения элементов карт), представленных на рис. С2 (a,d) и С3 (а,d) соответственно, выявил достаточно равномерное распределение интенсивности линии G по площади обоих образцов. Это свидетельствует в пользу хорошей однородности толщины графеновой пленки в анализируемых областях.
Рис. IV-2-2. Карта интенсивности G-линии (a), полуширины 2D-линии (b) и отношения \(\frac{A_G}{A_{2D}} \) (c) для образца графена, выращенного на 4H-SiC. (d, e, f) – то же самое для образца, выращенного на 6H-SiC. (g) – спектры, снятые в точках p.1 и p.2, отмеченных на карте (b) (спектр подложки 4H-SiC вычитен); (h, i) – разложение 2D-линии спектров, снятых в точках p.1 и p.2: точки – экспериментальные данные, сплошные линии – результаты аппроксимации.

Карты значений полной ширины на половине высоты (FWHM) линии 2D для обоих образцов представлены на рис. IV-2-2 (b,e) Как следует из гистограмм, которые представлены на рис. IV-2-3 (b,e), значения FWHM линии 2D распределены в узком диапазоне величин с максимумом вблизи 33 см\(^{-1}\) для образца на 4H-SiC и вблизи 38 см\(^{-1}\) для образца на 6H-SiC. Было установлено, что форма линии 2D в большинстве спектров имеет симметричный вид и хорошо аппроксимируется одиночным контуром Лоренца, что является признаком однослоиного графена. Форма линии 2D, которая может быть аппроксимирована огибающей четырех контуров Лоренца, наблюдается не более чем в 10% от общего числа спектров в массивах измеренных на обоих образцах.
Отдельные спектры, снятые на основной площади образца (p.1) и в области многослойного графена (p.2) приведены на рис. IV-2-2 (g, h, i). На основной площади образца (точка p.1), как можно видеть на рис. IV-2-2 (f), линия 2D в спектрах КРС хорошо описывается одним контуром Лоренца. В области 2D-линии спектра графена, измеренного в точке p. 2 наблюдается линия, описываемая четырьмя контурами Лоренца.

Рис. IV-2-3. Гистограммы интенсивности G-линии (a), полуширины 2D-линии (b) и отношения A_G/A_2D (c) для образца графена, выращенного на 4H-SiC. (d, e, f) – то же самое для образца, выращенного на 6H-SiC.

Из этих данных следует, что анализируемые образцы представляют собой преимущественно однослоиный графен с небольшим количеством двухслойных включений. Для подтверждения сделанного нами вывода те же самые области исследуемых образцов были изучены методами сканирующей зондовой микроскопии: атомно-силовой микроскопии (ACM) (рис. IV-2-4 (a)), и Кельвин-зондовой микроскопии (K3M) (рис. IV-2-4 (b)).

На рис. IV-2-4 (a, b) представлены карты топографии поверхности и распределения поверхностного потенциала области сканирования 10×10 мкм, а также их профили вдоль линий, отмеченных пунктиром.
Рис. IV-2-4. Топография поверхности (a) и ее профиль (d), полученный вдоль линии отмеченной пунктиром. Распределение поверхностного потенциала (b) и соответствующий профиль (e). Карта КРС интенсивности линии G (c) и соответствующий профиль (f). Карта КРС ширины линии 2D (g) и соответствующий профиль (i). Карта КРС отношения I_G/I_{2D} (h) и соответствующий профиль (j).

На изображении топографии поверхности различима серия вытянутых террас шириной ~0.5 мкм. Средняя высота террас (рис. IV-2-4 (d)) составляет ~1 нм (величина среднеквадратичного отклонения $\text{rms}=0.6$ нм), что говорит об относительной гладкости исследуемой поверхности. На изображении распределения поверхностного потенциала (рис. IV-2-4 (b)) присутствуют светлые области в виде вытянутых полос, направление которых совпадает с направлением террас на изображении топографии. Площадь светлых областей не превышает 10% от
площади изображения. Разность потенциалов между светлыми и темными областями составляет ~140 мВ. Такое значение соответствует разности поверхностных потенциалов между одно- и двухслойным графеном [31]. При этом светлые области на рис.6, b следует отнести к двухслойному графену. Хорошо видно, что светлые области на картах поверхностного потенциала, I_G и $FWHM_{2D}$ находятся в одних и тех же местах. Соответствующие профили трех карт (Рис. IV-2-4, (f,i,j)) также совпадают друг с другом с хорошей точностью (стоит отметить, что шаг карты поверхностного потенциала на два порядка меньше, чем шаг карт КРС). Таким образом, данные КРС хорошо согласуются с данными КЗМ о распределении однослойного и двуслойного графена по образцу.

Детальный анализ формы спектров РФЭС в области линии C\textsubscript{1}s дает возможность оценить среднюю толщину графена. Такую оценку нетрудно провести, если пренебречь упругим рассеянием фотоэлектронов, эффектами фотоэлектронной дифракции, а также процессами shake-up при фотоэмиссии из уровня 1\textsubscript{s}. При этих допущениях интенсивность фотоэмиссии из выбранного атомного слоя пропорциональна концентрации атомов в слое и коэффициенту ослабления интенсивности в результате неупругого рассеяния в вышележащем слое вещества. Этот коэффициент при эмиссии по нормали к поверхности равен $\exp(-d/\lambda(E_k))$, где d – толщина вышележащего слоя, а $\lambda(E_k)$ – длина свободного пробега электрона по отношению к неупругому рассеянию в этом слое при кинетической энергии электрона E_k.

Форму спектра C\textsubscript{1}s можно описать четырьмя компонентами, показанными на рис.IV-2-5 (a). Известно, что правая компонента соответствует углероду в SiC и имеет энергию связи около 283.7 эВ [52]. Буферный слой углерода, имеющий графеноподобную структуру, характеризуется двумя компонентами $S1$ и $S2$ при энергиях связи 285.0 эВ и 285.6 эВ, соответственно. Различная энергия этих компонент связана с тем, что примерно треть атомов углерода образует сильную ковалентную связь с кремнием. Поскольку пик $S1$ не различим на фоне графенового пика G, имеющего энергию около 284.7 эВ, то при разложении спектра на компоненты необходимо учитывать, что соотношение интенсивностей $S1:S2$ составляет примерно 1:2. Следует также отметить, что компоненты $S1$, $S2$ и SiC достаточно хорошо аппроксимируются симметричными пиками с формой близкой к
гауссовой, тогда как пик графена \(G \) имеет ярко выраженную асимметрию и может быть аппроксимирован, например, асимметричным произведением контуров Гаусса и Лоренца [52].

Для надежного определения толщины графена проводился анализ спектров РФЭС, полученных при четырех энергиях фотонов, обеспечивающих различную глубину анализа в диапазоне 5–23 Å. Толщину слоев определяли путем подбора значений толщины графена и буферного слоя, обеспечивающих наилучшее совпадение рассчитанных и измеренных интенсивностей отдельных компонент спектров C1s. Результаты приведены на рис.IV-2-5 (c) где показаны относительные интенсивности для оптимальных значений толщины: 3.3 Å для буферного слоя и 5.5 Å для графена. Это соответствует количеству \(sp^2 \)-слоев углерода 1.0 и 1.6 для буферного слоя и графена, соответственно.

Рис. IV-2-5. Спектры РФЭС, измеренные в области C1s при различных энергиях фотонов (a,b). Результаты моделирования интенсивности отдельных спектральных компонент (c).

Известно, что в зависимости от числа слоев графена изменяется электронная структура валентной зоны. Для однослойного графена характерен дираковский конус электронных состояний в точке \(K \) зоны Брилюэна, тогда как формирование второго слоя приводит к энергетическому расщеплению конуса и удвоению числа состояний [52]. Данные ФЭСУР по электронной структуре валентной зоны системы
графен/4H- и 6H-SiC(0001) показаны на рис. IV-2-6. В точке K у обоих образцов виден нерасщепленный дираковский конус. Это свидетельствует о том, что на их поверхности доминирует однослойное графеновое покрытие. Такое заключение согласуется с результатами КРС, АСМ и РФЭС о характере роста образца, как преимущественно однослойного графена с небольшим количеством (~10%) включений двухслойных островков с субмикронными размерами.

Рис. IV-2-6. Структура электронной валентной зоны в окрестности точки K зоны Бриллюэна для образца на 6H-SiC (a) и 4H-SiC (b). Данные ФЭСУР получены с использованием излучения Не II (40.8 эВ).

Заключение.

Мы рассмотрели различные способы определения толщины графена по данным спектроскопии КРС, придя к выводу, что наиболее достоверным способом для графена с дефектами является исследование формы линии 2D, поскольку ее ассиметричная форма является уникальной характеристикой многослойного графена. Этот вывод подтверждается сравнительным анализом данных четырех аналитических методик (КРС, АСМ, РФЭС и ФЭСУР) полученных на одних и тех же образцах. Распространенные методы, основанный на исследовании распределения интенсивности линии G и отношения A_{2D}/A_G в нашем случае дали похожие результаты, но, как будет показано в следующих главах, они не могут
применяться в случае неоднородности распределения степени легирования или степени дефектности образца по площади.
Глава V. Влияние дефектов на спектры КРС графена

Введение

Дефектом в графене называется любое нарушение симметрии его бесконечной решетки. На свойства графена, а также на его спектры КРС, влияет как количество, так и природа дефектов. Как упоминалось в главе I, в спектрах графена, в котором присутствуют дефекты, могут наблюдаться дополнительные спектральные линии, такие как \(D \) и \(D' \), а также их комбинации с другими спектральными линиями. Механизм возникновения этих линий основан на нарушении правила отбора по импульсу, когда в процессах КРС начинают участвовать фононы с ненулевыми волновыми векторами, а не на возникновении некой локализованной на дефектах моды колебаний. Интенсивность, положение и ширина этих спектральных линий могут существенно меняться в зависимости от количества и типа дефектов [5, 39, 40].

V-1. Обзор литературных данных.

Основным параметром, получаемым из спектров КРС дефектного графена и позволяющим оценить количество дефектов, является отношение интенсивностей линий \(D \) и \(G \). Обычно для оценки берется отношение интегральных интенсивностей \(\left(\frac{A_D}{A_G} \right) \), однако в случае наличия большого количества дефектов, когда спектральные линии начинают перекрываться, используется отношение пиковых интенсивностей \(\left(\frac{I_D}{I_G} \right) \).

Спектроскопия КРС графена позволяет нам получать данные о типах и концентрации дефектов в различных образцах графена. Одним из самых изученных видов дефектов в графене являются точечные дефекты. Например, чисто точечные дефекты возникают при бомбардировке графена ионами. Влияние количества таких дефектов на спектры КРС графена изучалось с помощью бомбардировки графена различными дозами ионов аргона [38]. На рис. V-1-1 (а) представлены спектры КРС графена, подвергавшегося бомбардировке ионами аргона, в зависимости от дозы ионов.

По результатам исследования графена, подвергавшегося бомбардировке, авторами работы [38] была получена формула, описывающая зависимость параметра \(\frac{I_D}{I_G} \) от среднего расстояния между дефектами:
\[I_D/I_G = C_A \frac{r_A^2 - r_S^2}{r_A^2 - 2r_S^2} \left[\exp\left(-\pi r_S^2 / L_D^2 \right) - \exp\left(-\pi (r_A^2 - r_S^2) / L_D^2 \right) \right] + C_S \left[1 - \exp\left(-\pi r_S^2 / L_D^2 \right) \right] \] (V-1)

здесь \(C_A = 4.2 \) – максимально возможное значение \(I_D/I_G \) в графене (в предположении, что процесс возникновения D-линии в графене возможен во всей решетке), \(C_S = 0.87 \) – значение \(I_D/I_G \) при полной аморфизации графена, \(r_A = 3.1 \) нм, \(r_s = 1 \) нм.

Рис. V-1-1. Спектры КРС графена в зависимости от дозы бомбардировки ионами (а). Дозы в 1/см² указаны для каждого спектра [38]. Зависимость отношения пиковых интенсивностей \(I_D/I_G \) от среднего расстояния между дефектами (б). Точки – экспериментальные данные, сплошная линия – теоретическая зависимость, описываемая формулой (V-1) [38].

Отношение интенсивностей линий D и G зависит от длины волны возбуждающего света. Формула (1) с вышеуказанными коэффициентами справедлива для длины волны возбуждающего лазера в 514 нм (2.41 эВ), а для произвольной энергии возбуждения используется выражение для коэффициента \(C_A \) равное: \(C_A = 160 \ E_L^{-4} \) [41], где \(E_L \) – энергия кванта возбуждающего света.

Как видно, ход зависимости (1) можно разделить на две части. В первой части при относительно малом количестве дефектов интенсивность D-линии растет, а затем во второй части по мере аморфизации графена интенсивность D-линии падает. Для относительно небольших концентрации дефектов (\(n_D < 10^{14} \) 1/см²) вместо (1) может использоваться упрощенная формула:
\[n_D (nm^2) = \frac{4.3 \times 10^{13}}{e_L} (\frac{I_D}{I_G})^{-1} \quad (V-2) \]

Помимо точечных дефектов, другим важным типом дефектов, особенно важным в случае исследований поликристаллического графена, являются границы, или линейные дефекты (рис. V-1-2 (b)). В отличие от точечных дефектов, характеризующихся средним расстоянием между ближайшими дефектами (L_D) или концентрацией дефектов (\(\sigma = 1/L_D^2 \)), графен с линейными дефектами характеризует другая величина — средний размер кристаллитов (L_a) или средняя площадь кристаллитов (L_a^2). Большинство образцов графена обладают обоими типами дефектов, так что при исследовании дефектного графена в общем случае необходима характеристика каждого из них в отдельности и определение доли одного или другого типа дефектов.

Рис. V-1-2. Схематическое изображение графена с точечными (a) и линейными (b) дефектами. (c), (d) — зависимости параметра A_D/A_G от параметров L_D (для графена с точечными дефектами, (c)) и L_a (для графена с линейными дефектами, (d)) для различных длин волн возбуждения. (e) — схематическое изображение графена с обоими типами дефектов [39].

Модель, описывающая поведение параметра A_D/A_G в зависимости от количества дефектов обоих типов, была введена в работе [39]. Точечные дефекты, как и ранее
[38] характеризуются двумя величинами: \(r_A \) и \(r_S \), первая из которых является расстоянием, на котором структура графена сохраняется, но близость дефекта допускает нарушение правила отбора по волновому вектору и возникновение линии \(D \), а вторая – радиусом области нарушенной структуры, то есть радиусом самого дефекта. Аналогичные параметры вводятся и для линейных дефектов. Зависимость \(A_D/A_G \) от концентрации дефектов, таким образом, определяется изменением с увеличением концентрации дефектов долей областей с разрешенной правилами отбора D-линией (A-областей) и областей нарушенной структуры (S-областей). Как уже говорилось, механизм возникновения D-линии основан на нарушении правила отбора по импульсу, а не на возникновении некой локализованной на дефектах моды колебаний. Поэтому зависимость должна иметь следующий вид: рост при относительно малых концентрациях дефектов с увеличением доли A-областей и последующее падение, когда начинают доминировать S-области. Зависимости \(A_D/A_G \) от \(L_D \) и \(L_a \) имеют следующий вид [39]:

\[
\frac{A(D)}{A(G)} E_4^a(L_a) = \frac{1}{L_a} \left[467.46 L_a - 1384.6 - 224.96(L_a - 4) \exp \left(\frac{4 - L_a}{4.1} \right) \right], \quad (V-3)
\]

\[
\frac{A(D)}{A(G)} E_4^a(L_D) = 51 - \frac{51}{\exp(15.2/L_D)} + \frac{4298.6}{L_D^2 \exp(15.2/L_D^2)}. \quad (V-4)
\]

Графически данные этой зависимости представлены на рис. V-1-3 (c).

В случае наличия в графене обоих типов дефектов важно не только соотношение интенсивностей линий, но и их ширина. Зависимость ширины G-линии от концентрации дефектов определяется отношением радиуса локализации фона \(\xi \) к длине его когерентности \(l_{ph} \) и носит экспоненциальный характер [42]:

\[
\Gamma_G(L_a, L_D) = 15 + 87 \exp(-\xi/l_{ph}). \quad (V-5)
\]

В графене с линейными дефектами фононы локализуются в кристаллите, поэтому \(\xi = L_a \). Точечные дефекты менее эффективно локализуют фононы, поэтому для графена с чисто точечными дефектами \(\xi = 10*L_D \) [39]. Таким образом, поведение ширины линии зависит от доминирующего типа дефектов, поэтому рассмотрение ширины линии G совместно с отношением \(A_D/A_G \) будет давать нам информацию не только о концентрации дефектов, но и об их типе (рис. V-1-3 (a)).
Рис. V-1-3. (a) – комбинация зависимостей \((A_D/A_G)E_4^L\) и \(\Gamma_G\) от \(L_A\) и \(L_D\). (b) – зависимость ширины \(G\)-линии от \(L_A\) и \(L_D\). (c) – зависимость \((A_D/A_G)E_4^L\) от \(L_A\) и \(L_D\). Сплошные линии соответствуют линейным дефектам, прерывистые линии – точечным. Закрашенные и незакрашенные фигуры иллюстрируют экспериментальные данные для точечных и линейных дефектов соответственно [39].

Метод, описанный в работе [39], позволяет определять концентрацию и тип дефектов, используя параметры \((A_D/A_G)E_4^L\) и \(\Gamma_G\), с помощью зависимостей, представленных на рис. V-1-3 (a). Можно выделить правило, позволяющее, взглянув на спектр дефектного графена, сразу предположить, какой тип дефектов является доминирующим: если линии широкие, а интенсивность \(D\) небольшая (не превышает интенсивность линии \(G\)), то, скорее всего, мы имеем дело с линейными дефектами, а если мы наблюдаем линию \(D\), превосходящую по интенсивности линию \(G\) при слабом уширении линий, то в графене доминируют точечные дефекты.

V-2. Экспериментальные результаты

На рис. V-2-1 представлены спектры КРС наиболее дефектных образцов, выращенных на подложке карбида кремния. Основываясь на данных, полученных при исследовании спектров КРС образцов Gr/SiC с четко выраженной D-линией, можно попытаться определить доминирующий тип дефектов. Видно, что при
достаточно большой ширине всех спектральных линий, интенсивность линии D не превышает половины интенсивности линии G.

Рис. V-2-1. Спектры КРС образцов графена, выращенных на подложке 4H-SiC после интеркаляции атомами Fe.

Теперь, когда мы знаем, что в графене, выращенном на карбиде кремния, преобладают линейные дефекты, мы можем оценить размер кристаллитов в нем по формуле [44]:

\[
L_D^2 (nm^2) = (2.4 \times 10^{-10}) \lambda_L^4 \left(\frac{I_D}{I_G} \right)^{-1} \quad (V-6)
\]

Оценка размера кристаллитов в графене составит в нашем случае от 40.9 до 124 нм.
Рис. V-2-2. Корреляция между \((\text{AD} / \text{AG})_E\) и \(\Gamma_\text{G}\). Сплошная линия – теоретическая зависимость для случая линейных дефектов, прерывистая линия – для случая точечных дефектов. Теоретические зависимости взяты из работы [39]. Справа обозначены значения \(\text{AD} / \text{AG}\) для \(E_L = 2.33\) eV. Синим цветом показаны данные дефектного графена, выращенного на карбиде кремния.

На рис. V-2-3 изображены спектры, снятые до и после интеркаляции графена, выращенного на 4H-SiC, атомами железа. Помимо сдвига линий, связанного со снятием напряжений, наблюдается также их уширение и многократное увеличение интенсивности линии D.

Пользуясь уже известным нам методом из работы [39], попробуем определить тип созданных дефектов и их концентрацию. Согласно формуле (V-2), концентрация дефектов в данных образцах составляет от \(2 \times 10^{13}\) до \(8 \times 10^{13}\) 1/cm².

Помимо графена на карбиде кремния, мы исследовали на предмет наличия дефектов также и другие образцы, например, выращенные на металлической
подложке методом MOCVD и затем перенесенные на кварц. Их типичные спектры представлены на рис. V-2-5.

Рис. V-2-4. Корреляция между $\frac{A_D}{A_G}E_L^4$ и Γ_G. Сплошная линия – теоретическая зависимость для случая линейных дефектов, прерывистая линия – для случая точечных дефектов. Теоретические зависимости взяты из работы [39]. Справа обозначены значения $\frac{A_D}{A_G}$ для $E_L = 2.33$ eV. Синим цветом показаны данные дефектного графена, выращенного на карбида кремния, красным – данные графена, выращенного на SiC и интеркалированного атомами Fe.

Рис. V-2-5. Спектры КРС образцов графена, выращенных методом МОСВД.
Пользуясь, как и в случае с графеном на карбиде кремния, зависимостью из работы [39], мы можем определить тип дефектов в данных образцах. Согласно работе [45], где графен исследовался методом СТМ, в MOCVD-графене основным типом дефектов являются границы доменов, то есть линейные дефекты. На рис. V-2-6 видно, что данные, полученные при обработке спектров КРС MOCVD-графена на кварце, лучше всего совпадают с кривой, соответствующей линейным дефектам. Таким образом, мы можем говорить о преобладании в таком графене линейных дефектов и о размере кристаллитов (оцененном по формуле (V-6)) от 68.6 до 950 нм.

![Рис. V-2-6. Корреляция между (AD/AG)E и Г. Сплошная линия – теоретическая зависимость для случая линейных дефектов, прерывистая линия – для случая точечных дефектов. Теоретические зависимости взяты из работы [39]. Синим цветом показаны данные дефектного графена, выращенного на карбиде кремния, красным – данные графена, выращенного на SiC и интеркалированного атомами Fe, фиолетовым – данные графена, выращенного методом MOCVD.](image)

В некоторых спектрах КРС графена, помимо D-линии наблюдается еще одна линия, свидетельствующая о наличии дефектов – линия D’ (~1620 см⁻¹). Согласно данным работы [46], отношение интенсивности линии D к интенсивности линии D’ (ID/ID’) может указывать на конкретный тип дефектов. На рис. V-2-7 представлена корреляция между отношениями интегральных интенсивностей ID/IG и ID/ID’ для образцов, подвергавшихся различной обработке для внесения определенных типов дефектов. Линейная аппроксимация этих данных при относительно небольшой концентрации дефектов представлена на вставке рис. V-2-7. Из этих данных видно, что отношение ID/ID’ существенно различается для графена с различными типами дефектов: так, для графена с так называемыми sp³ – дефектами оно составляет...
порядка 13, для графена с преобладанием вакансий (точечных дефектов) – порядка 7, а для графена, где основной вклад в интенсивность линий D и D’ вносят границы, I_D/I_D’ составляет приблизительно 3.5.

Для образцов, выращенных методом MOCVD, значение I_D/I_D’ колеблется от 2.5 до 4.1. Такое значение должно соответствовать линейным дефектам (границам). На то же самое указывали и результаты анализа методом, описанном в работе [39].

Следует отметить, что выделению линии D’ в спектрах КРС дефектного графена, выращенного на SiC, мешает тот факт, что линия G в его спектрах из-за деформации оказывается гораздо выше по частоте (~1600-1610 см^-1), чем в спектрах графена, выращенного другими методами, и перекрывает с линией D’ (1620 см^-1). Из-за этого анализ отношения I_D/I_D’ для графена, выращенного на карбиде кремния, существенно затруднен и не приводится в данном разделе.

Заключение

Рассмотрены основные модели, описывающие влияние дефектов на спектры КРС графена. С использованием комбинации различных моделей сделаны выводы о концентрации и типе дефектов в различных образцах графена.
Установлено, что в графене, выращиваемом методами термодеструкции карбида кремния и химического осаждения из газовой фазы, основным типом дефектов являются границы доменов. Размеры доменов находятся в диапазонах от 40 до 140 и от 60 до 900 нм для случая графена на карбиде кремния и МОСВД-графена соответственно.

Показано, что интеркаляция графена железом приводит к появлению в нем дефектов и сильному ухудшению его качества. Основным типом дефектов при этом являются точечные дефекты типа вакансий, концентрация которых изменяется в диапазоне от 2×10^{13} до 8×10^{13} 1/см2.
Глава VI. Разделение вкладов деформации и легирования в спектрах КРС графена на SiC.

Введение

Важнейшими характеристиками графена, используемого в электронике, являются концентрация носителей заряда и тип его проводимости. Наиболее распространенными на сегодняшний день методами определения типа проводимости и концентрации свободных носителей заряда являются методы, основанные на эффекте Холла. Главный недостаток таких методов – необходимость напыления металлических контактов и вытравливания дорожек на листе графена. В то же время, изменение концентрации носителей, влияя на уровень Ферми, также влияет на положение и ширину линий G и $2D$ в спектрах КРС [17, 19]. Таким образом, спектроскопия КРС должна быть потенциально пригодной для оценки концентрации носителей заряда. Большим ее преимуществом является также то, что как бесконтактный оптический метод, она лишена недостатков, свойственных методам, основанным на эффекте Холла.

Однако, кроме изменения концентрации носителей заряда на положение линий спектра КРС графена влияет и деформация. При этом появление деформации сжатия приводит к сдвигу G-линии в ту же сторону, что и в случае увеличения количества носителей заряда обоих знаков. Метод разделения вкладов деформации и легирования был впервые предложен Ли и соавторами [53]. Он заключается в одновременном анализе положений линий G и $2D$ в спектре КРС графена. Положение на графике корреляции между частотами линий G и $2D$ точки, соответствующей положению этих линий в спектре некоторого образца, отражает величину двуосной деформации и концентрации носителей заряда в данном образце. Подробное влияние уровня Ферми и концентрации носителей на спектры КРС графена будут рассмотрены далее.

VI-1. Поведение линий G и $2D$ с изменением концентрации носителей.

Известно [17, 37], что концентрация носителей (электронов или дырок) в графене может изменяться при приложении к нему электрического поля. На рис. VI-1-1 представлены спектры КРС графена, полученные в работе [37], в зависимости от величины приложенного к нему напряжения. Видно, что независимо от знака,
увеличение концентрации свободных носителей заряда всегда приводит к дополнительному высокочастотному сдвигу линии G. Как уже упоминалось в разделе I-4 главы I, сильная электрон-фононная связь в графене приводит к появлению аномалий Кона в фоонных дисперсионных кривых, следствием чего является уменьшение частоты фононов. Увеличение частоты G фона вследствие легирования является результатом неadiабатического удаления аномалии Кона из точки Г. Одновременно этот процесс приводит к уменьшению FWHM линии G вследствие блокировки канала распада фононов в электронно-дырочных пары из-за принципа Паули, когда электронно-дырочная щель становится выше энергии фонона. Линия 2D соответствует так называемому процессу двойного резонанса с участием фононов с большим волновым вектором, таким образом, ее природа, а значит, и поведение в зависимости от положения энергии Ферми существенно отличается от поведения линии G. В отличие от линии G, где сдвиг объясняется снятием аномалии Кона в фоонной дисперсии графена, фононы, участвующие в формировании линии 2D, имеют волновые вектора, значения которых далеки от провала (аномалии Кона) в точке K зоны Бриллюэна. Поэтому положение 2D-линии не зависит от наличия или отсутствия данного провала, а зависит только от изменения постоянной решетки графена с легированием.

Известно [37], что с увеличением концентрации электронов кристаллическая решетка графена растягивается, что приводит к уменьшению энергии фонона. Результаты расчетов представлены на рис. VI-1-1 (c) сплошной линией. Как можно видеть, экспериментальные результаты из той же работы [37] лишь частично согласуются с теоретическими расчетами, что объясняется авторами отсутствием учета электростатических взаимодействий между квазичастицами. Тем не менее, теоретическая зависимость отражает тенденцию к снижению положения 2D-линии с увеличением концентрации электронов, наблюдаемую на практике.

Итак, линии G и 2D ведут себя по-разному при изменении концентрации зарядов. Это и послужило основой для упомянутого во введении метода разделения вкладов деформации и легирования. Рассмотрим его подробнее.

VI-2. Метод разделения вкладов деформации и легирования

На рис. VI-2-1 представлен пример совместного анализа положения линий 2D и G для разделения вкладов деформации и дырочного легирования [53]. Исследовались чешуйки отшелушенного графена, помещенные на подложку SiO₂/Si, до и после травления в вакууме при температуре 400 С. В качестве точки отсчета используется положение линий 2D и G в нейтральном свободно лежащем графене (2676.9 и 1581.6 см⁻¹ соответственно), а значение наклона прямой, проходящей через эту точку и отражающей сдвиг обоих линий для случая нейтрального графена (обозначена черным пунктиром) при наличии одноосной деформации, составляет 2.2, причем это значение получено путем аппроксимации экспериментальных данных для нейтрального графена. Для случая дырочного легирования используется вторая прямая (розовый пунктир) с наклоном 0.75, проведенная через эту же точку. Наклон данной прямой определен экспериментально из данных работы [37]. Стоит особо отметить, что согласно данным этой работы, ни при дырочном, ни при электронном легировании точки не должны попадать в область выше черной пунктирной прямой (область I).

Определение величины деформации и концентрации носителей основано на построении вектора из точки “нейтрального недеформированного графена” (1581.6;2676.9) в точку, полученную при анализе спектра КРС исследуемого образца, и разложении данного вектора на две компоненты: ет и ен (вставка на рис.
VI-1. Компонента e_T параллельна черной пунктирной прямой (путь деформации), компонента e_H — розовой пунктирной прямой (путь дырочного легирования). В случае электронного легирования величиной до 2.8×10^{13} 1/cm2 можно пользоваться прямой с наклоном 0.17.

Рис. VI-2-1. [53] Корреляция между положениями линий G и $2D$ для трех образцов (показаны синим, красным и черным цветами) до и после травления при температуре 400 С. Зеленая точка — положение линий G и $2D$ для нейтрального свободно лежащего графена. Вставка: пример разложения вектора OP на два вектора (OH и OT) в случае электронного легирования.

Таким образом, данный метод позволяет оценивать изменение зарядового состояния графена и величины деформации по данным спектров КРС.

VI-3. Экспериментальные данные. Разделение вкладов деформации и легирования при исследовании графена, выращенного на подложках карбида кремния.

Описанный в [53] метод был апробирован для графена, имеющего слабую связь с подложкой, а именно, для графена перенесенного на подложку SiO$_2$/Si.

В то же время слой графена на карбиде кремния сильно связан с подложкой, поэтому возможность применения данного метода для его анализа требует дополнительных исследований. Нами было исследовано более 250 образцов, выращенных на подложках карбида кремния. Данные для некоторых из них
представлены на рис. VI-3-1 совместно с данными о корреляции между положениями линий G и $2D$, заимствованными из работы [53].

Рис. VI-3-1. Корреляционная зависимость между положениями линий G и $2D$. Красные и черные точки - данные для двух образцов, выращенных на подложках карбида кремния, полученные сканированием области 12х12 мкм, сплошная линия – аппроксимация данных. Черная пунктирная линия – корреляционная зависимость положения линий $2D$ и G от деформации для нейтрального графена [53], розовая и синяя линии – корреляции между положениями линий G и $2D$ для ненапряженного графена при наличии дырочного и электронного легирования соответственно [53].

Как можно видеть, данные, полученные на образцах графена на карбиде кремния, попадают в область запрещенных значений, которая находится слева от зависимости, установленной в работе [53] для нейтрального графена. В то же время хорошо видно, что представленные здесь экспериментальные данные не носят хаотический характер, а могут быть аппроксимированы следующей линейной зависимостью:

$$\omega_{2D} = [2684 + 2.8(\omega_G - 1581)] \text{см}^{-1} \quad (VI-1)$$

Видно, что основные параметры этой зависимости существенно отличаются от зависимости, приводимой в работе [53], которая имеет следующий вид:

$$\omega_{2D} = [2671 + 2.2(\omega_G - 1581)] \text{см}^{-1} \quad (VI-2)$$

При этом данная зависимость не была получена в результате исследований влияния напряжений на графен, а является обобщением экспериментальных данных,
полученных для большого числа образцов из упомянутой работы. В то же время в литературе [15] приводится другая зависимость положений линий G и $2D$ от деформации для нейтрального графена, которая была получена для образцов, подвергнутых двуосной деформации. Ее формула имеет следующий вид:

$$
\omega_{2D} = [2671 + 2.8(\omega_G - 1581)]\text{см}^{-1} \quad (VI-3)
$$

Вид этой зависимости приведен на рис. VI-3-2 темно-зеленым пунктиром.

Рис. VI-3-2. Корреляционная зависимость между положениями линий G и $2D$. Красные и черные точки – данные, полученные сканированием области 12х12 микрон для двух образцов, выращенных на подложках карбида кремния, сплошная линия – аппроксимация данных. Темно-зеленым пунктиром показана корреляционная зависимость от деформации для нейтрального графена в случае двуосной деформации [15] черным пунктиром – корреляционная зависимость от деформации для нейтрального графена, построенная в работе [53], розовая и синяя линии – корреляционная зависимость для ненапряженного графена при наличии дырочного и электронного легирования соответственно [53].

Коэффициент $k=(\Delta \omega_{2D}/\Delta \omega_G)$, полученный для линейной аппроксимации наших экспериментальных данных (зависимость VI-1), очень хорошо совпадает с аналогичным коэффициентом, полученным для двуосно-деформированного графена (зависимость VI-3). В обоих случаях он равен $k=2.8$. Однако по-прежнему данные, полученные нами на образцах, выращенных на карбиде кремния, попадают в область запрещенных значений (область I).

На рис. VI-3-3 представлена корреляция между положениями линий G и $2D$ еще для одного из образцов графена на карбиде кремния. Видно, что в этих данных существует область значений, которая хорошо укладывается на линейную
зависимость с коэффициентом $k=2.8$. В то же время данные имеют значительный разброс, величина которого существенно больше для частот G-линии, чем для частот $2D$-линии. На рис. VI-3-4 представлены карта распределения значений сдвига G-линии и карта значений ее FWHM.

Рис. VI-3-3. Корреляция между положениями линий G и $2D$. Синими точками показаны данные для образца #EG-40, пунктирной линией – аппроксимация правой части этих данных, сплошной линией – зависимость (VI-1).

Рис. VI-3-4. Карты образца #EG-40: (a) – распределения сдвига G-линии относительно ее положения в недеформированном образце (1581 см$^{-1}$), (b) – распределение FWHM G-линии. Зависимость положения G-линии (c) и ее FWHM (d) от концентрации электронов [37].
Хорошо видна корреляция между двумя картами, а именно: чем больше величина сдвига G-линии, тем меньше величина значений ее $FWHM$. Точки, соответствующие областям наибольшей ширины G-линии, находятся в левой части (отмечены зеленым овалом), а точки, соответствующие областям наименьшей ширины G-линии – в правой части (отмечены красным овалом). Таким образом, можно предположить, что сильный сдвиг положений G-линии при слабом изменении положений $2D$ линии следует связать с локальной неоднородностью зарядового состояния (а именно, концентрации электронов) в анализируемом образце графена.

Как видно на рис. VI-3-4 (b), максимальная разница в ширине G-линии составляет около 12 обратных сантиметров, что, согласно зависимости ширины G-линии от концентрации носителей (рис. VI-3-4 (d)), должно соответствовать разнице в концентрации электронов порядка 8×10^{12} см$^{-2}$ между двумя параллельными линиями, отмеченными на рисунке VI-3-3.

Рис. VI-3-5. (a) - Корреляционная зависимость между положениями линий G и $2D$ для образца, подвергавшегося обработке парами изопропилового спирта. Синими точками показаны данные образца до обработки, фиолетовыми – после обработки. Сплошная прямая – зависимость (VI-1), пунктирные прямые – результаты аппроксимации экспериментальных данных. (b, c) – гистограммы $FWHM$ G-линии для образца до (b) и после (c) обработки.
На рис. VI-3-5 (а) приводятся значения частот линий G и $2D$, зарегистрированные в спектре КРС одного и того же образца до и после воздействия на него паров изопропилового спирта. Видно, что линия G в спектрах испытывает дополнительный высокочастотный сдвиг. При этом диапазон изменения положения линии $2D$ остается практически неизменным. Гистограммы величин FWHM линии G, полученные до и после воздействия спирта (рис. VI-3-5 (b,c)) указывают на то, что этот параметр становится существенно меньше после воздействия паров спирта. Очевидно, что такое поведение FWHM и положения спектральных линий графена нельзя связать с возникновением дополнительной деформации в образце, но его можно объяснить, если допустить появление избытка поверхностного заряда электронов.

Набор данных о корреляции между значения частот линий G и $2D$, полученный нами на образцах, выращенных при различных технологических условиях, представлен на рис. VI-3-6.

Рис. VI-3-6. Корреляционная зависимость между положениями линий G и $2D$ для различных образцов, выращенных при различных технологических условиях на подложке SiC. Точками указаны экспериментальные данные, сплошной прямой – зависимость (VI-1), пунктирными прямыми – результаты аппроксимации экспериментальных данных различных образцов. Синяя шкала – шкала концентраций электронов, построенная по данным работ [37] и [53] при условии использования зависимости (VI-1) для нейтрального графена. Для каждого образца указана концентрация, оцененная с помощью данной шкалы.
Видно, что все данные хорошо ложатся на набор зависимостей, параллельных (VI-1). В свете рассмотрения изложенного выше логично предположить, что указанная зависимость должна быть характерна для образцов графена с наименьшей концентрацией избыточного заряда (назовем их условно нейтральными), а параллельные зависимости должны быть присущи образцам, имеющим избыточный заряд электронов. При этом вариацию точек вдоль этих зависимостей следует свяжать с локальной неоднородностью в величине деформации.

Синим цветом на рис. VI-3-6 показана шкала, построенная на основе данных работ [53] и [37] и позволяющая определять величину концентрации электронов по сдвигу G-линии при условии использования зависимости (1) для нейтрального графена.

В качестве подтверждения правильности изложенной интерпретации проведем сравнение данных о концентрации носителей, полученных методом спектроскопии КРС, с данными ФЭСУР для двух образцов. Данные о положении линий G и $2D$ для первого и второго образцов приведены на рис. VI-3-7 (a). С использованием зависимости для случая электронного легирования мы получаем значение концентрации электронов порядка 1.2×10^{13} 1/см2 для обоих образцов.

Рис. VI-3-7. Корреляционная зависимость между положениями линий G и $2D$ для двух образцов. Зелеными и красными точками указаны экспериментальные данные для образцов #EG-21 (Gr/6H-SiC) и #EG-128 (Gr/4H-SiC), сплошной прямой – зависимость (VI-1), пунктирной прямой – результат аппроксимации экспериментальных данных.

Пунктирными линиями красного и синего цвета указана величина сдвига G-линии относительно ее положения в нейтральном недеформированном образце (1581 см$^{-1}$), вызванная деформацией и легированием соответственно. Для каждого образца указана концентрация электронов (n), оцененная с использованием установленной нами зависимости (VI-1) для условно нейтрального графена, а также величина деформации (σ_0), оцененная с использованием данных работы [15].
Значение концентрации носителей заряда \(n \) в графене связано с положением его уровня Ферми \(E_F \). Эта связь выражается следующей формулой [17]:

\[
E_F(n) = -\text{sign}(n)\hbar v_F \sqrt{\pi |n|},
\]

где \(\text{sign}(n) \) – знак \(n \), \(v_F=10^6 \text{ м/с} \) – скорость Ферми в графене [18].

Согласно данным ФЭСУР, представленным на рис. VI-3-8, значение концентрации носителей заряда, составило порядка \(10^{13} \text{ 1/см}^2 \), что совпадает с их оценкой из данных спектроскопии КРС в пределах погрешности.

Рис. VI-3-8. Данные ФЭСУР для образца #EG-21 (a) и образца #EG-128(b). Пунктирными линиями указано энергетическое положение точки Дирака и уровня Ферми.

На рисунке VI-3-7 пунктиром отмечены значения \(\omega_G \) и \(\omega_{2D} \), которые в рамках модифицированного нами метода следует использовать для оценки деформации в образцах. С использованием данных работы [15], величина деформации сжатия в плоскости слоя образца #EG 21 может быть оценена как \(\varepsilon_\parallel = (0.24 \pm 0.03)\% \) из сдвига \(\omega_G = 13.7 \text{ см}^{-1} \), или как \(\varepsilon_\parallel = (0.20 \pm 0.02)\% \) из сдвига \(\omega_{2D} = 39 \text{ см}^{-1} \). Для образца #EG-128 аналогичные оценки дают значения \(\varepsilon_\parallel = (0.19 \pm 0.04)\% \) из сдвига \(\omega_G = 10.9 \text{ см}^{-1} \), или как \(\varepsilon_\parallel = (0.20 \pm 0.06)\% \) из сдвига \(\omega_{2D} = 30.5 \text{ см}^{-1} \).

Заключение

Изучено влияние деформации и избытка заряда на спектры КРС пленок графена, выращенных на Si-грани подложек 4H- и 6H-SiC. Проанализирован применяемый в литературе подход для разделения вкладов деформации и легирования в спектры КРС, основанный на совместном анализе значений частот линий \(G \) и \(2D \). Показано, что такой подход может быть успешно применен для образцов графена на SiC только
при условии использования для образцов с наименьшей концентрацией избыточного заряда (условно нейтральных) корреляционной зависимости, установленной в наших исследованиях:

$$\omega_{2D} = [2684 + 2.8(\omega_G - 1581)] \text{см}^{-1}$$

Использование предлагаемых в литературе корреляционных зависимостей, применяемых для разделения вкладов деформации и легирования в спектры КРС графена, приводит к большим ошибках, как в оценке величины заряда, так и в оценке величины плоскостной деформации. В пользу такого утверждения свидетельствует тот факт, что оценки концентрации электронов, полученные с использованием установлена корреляционной зависимости, с хорошей точностью совпали с оценками, полученными из данных ARPES при исследовании одних и тех же образцов. Теоретический анализ выявленной особенности в поведении корреляционных зависимостей между частотами линий G и $2D$ в спектрах КРС пленок графена, полученных методом сублимации Si-гранн SiC, находится в процессе работы.

Результаты исследований методом КРС изложенные в этой и двух предыдущих главах являются важной составной частью комплексных исследований, которые позволили установить связь структурных, химических и электронных характеристик графеновых пленок, выращенных методом термического разложения поверхности SiC, с технологическими параметрами роста. Это позволило осуществить оптимизацию технологических параметров и создать воспроизводимую технологию роста высококачественного монослоиного графена. Структурные, электронные и транспортные параметры выращенного графена имеют параметры, сравнимые с параметрами лучших мировых образцов, изготовленных сублимацией. Так максимальные подвижности электронов достигли значения 6000 см/(В·с), что близко к теоретически рассчитанным величинам при $T=300K$ для графена с собственной проводимостью, выращенного на Si-гранн SiC. Это открыло возможность использования созданной технологии для производства прототипов электронных приборов нового поколения широкого профиля.
Глава VII. Исследование структур «Сапфир-графен-GaN».

VII-1. Осаждение углеродных слоев на сапфире при пиролизе пропана

На рисунке VII-1-1 (a) показаны спектры КРС от сапфировой подложки при пиролизе пропана при 1150 °C. В реакторе присутствовали только водород в качестве газа-носителя и пропан.

Рис. VII-1-1. (a) – сравнение спектра, полученного нами, со спектрами высококачественного графена и дефектного графена. (b) – спектры образцов, полученных при различных температурах пиролиза пропана.

На рисунке VII-1-1 (a) представлены спектры КРС трех образцов. Нижний (фиолетовый) спектр относится к высококачественному графену, сформированному методом MOCVD. В этом спектре присутствуют только линии G и 2D, возникающие при рассеянии света на графеновой пленке. Второй (голубой) спектр, представленный на рисунке VII-1-1 (a), был получен от того же образца после облучения ионами аргона. В нем появились дополнительные линии D и D’, которые, как уже говорилось ранее, свидетельствуют о присутствии дефектов. При этом значение отношения интенсивностей линий D и D’ (I_D/I_D’~5) свидетельствует, согласно данным работы [46], о сосуществовании в нем точечных (вакансий) и линейных (границ доменов) дефектов.

Третий представленный на рисунке VI-1-1 (a) спектр (красный) был получен от одного из образцов в результате пиролиза пропана. Видно, что этот спектр, за исключением нескольких небольших отличий, повторяет спектр, полученный от высококачественного графена после его облучения ионами аргона. Таким образом,
можно сделать вывод, что полученные в данной работе образцы представляют собой слои графена с большой концентрацией дефектов. При этом, так как интенсивность линии D' в спектре образца, полученного пиролизом пропана, больше ($I_{D}/I_{D'} \sim 3$), скорее всего, преобладающим в нём типом дефектов являются границы доменов. На рисунке G1b представлены рамановские спектры образцов, полученных методом пиролиза пропана при разных температурах. Видно, что при температуре $<1060 \, ^{\circ}C$ формируются слои аморфного углерода, а при более высоких температурах – слои графена. При этом слои наилучшего качества формируются при температуре 1120 $^{\circ}C$.

Для проверки возможностей выращивания на получившемся графене слоев азотсодержащих материалов (AlN, GaN, Si$_3$N$_4$) исследовалось также влияние присутствия в реакторе аммиака на осаждение графена. Установлено, что даже при малой концентрации аммиака в реакторе осаждения каких-либо углеродных слоев на поверхности сапфировой подложки не происходит, однако ранее сформированные слои графена не разрушаются. Таким образом оказалось возможным выращивание азотсодержащих материалов на графене.

Все сформированные углеродные слои демонстрировали проводимость p-типа, наиболее проводящие слои имели концентрацию носителей $\sim(1-1.5) \times 10^{13} \, \text{cm}^{-2}$ при подвижности $\sim 100-180 \, \text{cm}^2/\text{V} \cdot \text{s}$ по данным измерений эффекта Холла. Примечательно, что наблюдалась хорошая корреляция проводимости и степени дефектности графена (чем меньше отношение A_{D}/A_{G}, тем лучше проводимость (Рис. VII-1-2)).
Разработанная технология характеризуется высокой однородностью слоев графена. На рисунке VII-1-3 (a) представлены фотографии слоев графена, осажденных на сапфировых подложках диаметром 100 мм. Однородность свойств полученных слоев подтверждается картами их проводимости. Одна из них представлена на рисунке VII-1-3 (b).

Рис.VII-1-3. Фотографии слоев графена на сапфировых подложках диаметром 100 мм (a) и карта удельного сопротивления (в омах на квадратный миллиметр) одного из этих образцов (b).

VII-2. Рост III-N слоев и гетероструктур на слоях графена на сапфире в едином технологическом процессе

Исследования пленок графена, сформированного на подложках сапфира в результате пиролиза пропана, методом спектроскопии КРС позволили получить структуры, пригодные для последующего роста на их поверхности слоев III-нитридных структур. Особенностью такого процесса является то, что графен и III-N структура выращиваются в одном реакторе в рамках единого технологического процесса и не используется дорогостоящая SiC подложка.

Как и следовало ожидать, наличие слоя графена на интерфейсе «сапфир - AlN» приводит в общем случае к некоторому ухудшению параметров эпитаксиального слоя GaN, а именно: понижается его кристаллическое совершенство и повышается шероховатость поверхности. Было установлено, что при малой толщине слоя графена параметры эпитаксиальных слоев GaN ухудшаются не очень сильно, при этом такие слои GaN отделяются от подложки с трудом. При большей толщине графена слои GaN отделяются от подложки легче, а при формировании аморфного углерода – очень легко.
Схема отделения выращенных на графене структур от подложки представлена на рисунке VII-2-1. После выращивания эпитаксиальной структуры на ее поверхность (p-GaN) наносится контактная металлизация, потом гальванически выращивается слой меди толщиной ~ 100 мкм, после чего структура отделяется от подложки.

Рис. VII-2-1. Маршрут формирования светодиодов на основе отделенных от подложки эпитаксиальных слоев.

Как уже отмечалось, качество эпитаксиальных структур, выращенных по предложенной технологии «сапфир – графен – GaN» с отжигом низкотемпературного зародышевого слоя в безводородной атмосфере приемлемо для светодиодных применений. На рисунке VII-2-2 (a) показано сравнение внешней эффективности светодиодной структуры, выращенной по такой технологии, и обычной структуры на сапфировой подложке с такой же активной областью. Измерения проводились до отделения структуры от подложки, p-контакт представлял собой каплю индия, n-контакт, также индиевый, формировался на краю образца (то есть использовалась стандартная технология быстрого контроля светодиодных пластин). Видно, что структура, выращенная на графене, не сильно уступает по эффективности обычной структуре на сапфировой подложке с такой же активной областью. На рисунке VII-2-2 (b) приведена фотография той же структуры, отделенной от половины двухдюймовой подложки. Далее из отделенной структуры были вырезаны участки ~ 1х1 мм². При протекании через них тока наблюдалась яркая электролюминесценция. Полученный результат – наглядное подтверждение перспективности подхода в создании прототипа отделенного от подложки светодиода, выращенного с помощью технологии «GaN – на графене».
Заключение

В ходе исследований возможности формирования графена методом пиролиза пропана была произведена оптимизация условий осаждения графена на сапфировых подложках при пиролизе пропана и изучены свойства выращенных слоев. Установлено, что наиболее качественные слои графена формируются при температуре пиролиза пропана 1120 ºС. Разработанная технология является простым и дешевым способом формирования графена на диэлектрической подложке (что, например, необходимо для электронных применений).

Исследована возможность формирования слоев GaN на графене. Установлено, что наиболее качественные слои GaN формируются на наиболее тонких пленках. Выращенные с помощью технологии “GaN-на графене” слои GaN обладают приемлемыми структурными характеристиками и пригодны для использования в светодиодных структурах.
Заключение

1. Создано и успешно апробировано программное обеспечение, позволяющее оперативно обрабатывать большие массивы спектров КРС графена выращиваемого на карбиде кремния, с учетом вклада буферного слоя и подложки, а также представлять данные, полученные при сканировании больших площадей графена, в виде карт и их гистограмм и строить зависимости между различными параметрами спектральных линий. С использованием созданного программного обеспечения изучены локальные и интегральные структурные характеристики исследуемых графеновых слоев.

2. Основываясь на сравнительном анализе данных четырех аналитических методик (КРС, АСМ, РФЭС и ФЭСУР) полученных на одних и тех же образцах, показано, что спектроскопия КРС позволяет надежно определять толщину графена с использованием анализа формы линии 2D-спектра. Анализ результатов комплексных исследований будет способствовать дальнейшему развитию аналитических возможностей использованных методик для количественной диагностики графеновых структур.

3. Установлено, что в графене, выращенном методами термодеструкции карбида кремния и химического осаждения из газовой фазы, основным типом дефектов являются границы доменов, а в интеркалированном железом графене – вакансии.

4. Изучено влияние деформации и избытка заряда на спектры КРС монослоинных пленок графена выращенных на подложках 4H- и 6H-SiC. Показано, что подход, применяемый в литературе для разделения вкладов деформации и легирования в спектрах КРС, применим для графена на карбиде кремния только при условии использования для образцов с наименьшей концентрацией избыточного заряда (условно нейтральных) установленной в наших исследованиях зависимости: \(\omega_{2D} = [2684 + 2.8(\omega_G - 1581)] \) см\(^{-1}\).

5. Спектроскопия КРС эффективно использована как метод диагностики для оптимизации технологических параметров и создания воспроизводимой технологии роста высококачественного монослоинного графена с характеристиками на уровне лучших мировых образцов, что открывает
возможность его использования для создания электронных приборов нового поколения.

6. С использованием спектроскопии КРС произведена оптимизация условий осаждения графена на сапфировых подложках при пиролизе пропана, что является простым и дешевым способом формирования графена на диэлектрической подложке и может быть использовано для электронных применений. Исследована возможность формирования слоев GaN на графене. Создан прототип отделенного от подложки светодиода, выращенного с помощью технологии “GaN–на графене”, с внешней эффективностью сравнимой с эффективностью светодиодной структуры с такой же активной областью, выращенной непосредственно на сапфировой подложке.
Список литературы

52. C. Riedl., A. A. Zakharov, U. Starke. Precise in situ thickness analysis of epitaxial graphene layers on SiC (0001) using low-energy electron diffraction

Список публикаций автора по теме диссертации

5. В.Ю. Давыдов, Д.Ю. Усачев, С.П. Лебедев, А.Н. Смирнов, В.С. Левицкий, И.А. Елисеев, П.А. Алексеев, М.С. Дунаевский, О.Ю. Вилков, А.Г. Рыбкин, А.А. Лебедев. Исследование кристаллической и электронной структуры графеновых пленок, выращенных на 6Н-SiC (0001) // ФТП, т. 51, вып. 8, стр. 1116-1124 (2017).

7. С. П. Лебедев, И. А. Елисеев, В.Ю. Давыдов, А.Н. Смирнов, В.С. Левицкий, М.Г. Мынбаева, М.М. Кулагина, В. Ханлин, Я. Пезoldt, А.А. Лебедев. Транспортные свойства пленок графена, выращенных методом
термодеструкции поверхности SiC (0001) в среде аргона // Письма в ЖТФ, т.43, вып. 18, стр. 64-72 (2017).