ПРАВИТЕЛЬСТВО РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ» (СПбГУ)

Институт наук о Земле

Кафедра геологии месторождений полезных ископаемых

Кострикин Роман Николаевич

Геологическое строение и малосульфидная платинометальная минерализация Мончетундровского расслоенного массива (Кольский полуостров)

Магистерская диссертация по направлению 05.04.01 «Геология»

«К ЗАЩИТЕ»
Научный руководитель:
ст. преподаватель С.И. Корнеев
«»2017
Заведующий кафедрой:
к.гм.н., доцент. И.А.Алексеев
· · ·
<u>2017</u>

СОДЕРЖАНИЕ

Введение	3
Глава 1: Месторождения металлов платиновой группы	6
1.1 Месторождения Карелии и Мурманской области	8
1.2 Месторождения Финляндии	13
1.3 Месторождения прочих стран	17
Глава 2: Геология Мончетундровского массива	. 23
2.1 Геологическое строение	23
2.2 Стратиграфия	. 25
2.3 Магматизм и метаморфизм	. 28
Глава 3: Геолого-петрографическая характеристика разрезов	. 32
Глава 4: Характеристика рудной минерализации	49
Глава 5: Особенности распределения рудных элементов в разрезе	61
Глава 6: Обсуждение результатов	. 80
Заключение	. 88
Список источников	. 89
Приложение 1	91

ВВЕДЕНИЕ

Металлы платиновой группы (МПГ) играют одну из ключевых ролей современных валютных запасах любого государства, определяя, таким образом, современный уровень научно-технического прогресса в промышленности и новейших технологиях. МПГ широко применяются во многих отраслях современной промышленности: начиная от ювелирных изделий и коллекционных монет и заканчивая катализаторами, присутствующих в наших автомобилях. Этот факт приводит к значительному спросу на данное сырье и более того, даже конкурентной борьбе стран-производителей, которых на сегодняшний день не так много. В связи с чем, всегда актуален вопрос о поисках и разведке новых месторождений.

В природе главные источники МПГ — ликвационные медно-никелевые руды (месторождения Норильской группы, Садбери) и малосульфидные собственно платинометальные (месторождения комплексов Бушвельд, Стиллуотер, Великая Дайка). Из перечисленных выше месторождений извлекается большая часть всех мировых запасов платиноидов.

Мончетундровский массив, в свою очередь, относится к пироксенит-норитгабброноритовой формации,связанной с вулканизмом кремнистой высокомагнезиальной серии (КВМС). Такой тип приурочен к архей-протерозойским рифтогенным структурам, имеющие очень древнюю и одновременно с этим сложную историю развития. Так, на протяжении своей чуть более чем двухмиллиардной истории существования, массив однажды попал в зону тектонической переработки связанной с Мончетундровским разломом, что в конечном итоге, возможно, и оставило след в образовании малосульфидного оруденения.

Целью настоящей работы является изучение геологического строения и малосульфидной платинометальной минерализации.

Для достижения цели были поставлены задачи:

- -геолого-петрографическое изучение пород и построение разрезов по скважинам MT-14, MT-12, MT-06
- -изучение рудной минерализации рудных зон в скважинах МТ-06, МТ-12, МТ-14.
- -выявление особенностей распределения Au, Pt, Pd, Cu, Ni, S по разрезу вышеупомянутых скважин
- -статистическая обработка геохимических данных
- -интерпретация и анализ полученных результатов

Актуальностью настоящей работы является впервые проведенное детальное изучение особенностей строения геологических разрезов, вещественного состава рудной минерализации и распределения элементов платиновой группы по разрезам скважин.

Документация керна скважин, фотографии образцов керна, собственно образцы керна, а также изготовленные из них простые шлифы и прозрачно-полированные шлифы, научная литература и прочие графические приложения были любезно предоставлены научным руководителем Корнеевым Сергеем Ивановичем.

Фондовые материалы, результаты пробирного (на Pt, Pd, Au) и атомноадсорбционного анализов (на Cu, Ni, S) проб керна предоставлены главным геологом ОАО «Центрально-Кольская экспедиция» Казановым Олегом Владимировичем.

В ходе выполнения работы были проведены следующие исследования:

- Исследованы научные и фондовые материалы
- Построены разрезы по скважинам с геологической характеристикой вмещающих пород
- Выявлены закономерности вмещающих пород, к которым приурочены интервалы сульфидной минерализации
- Изучены все шлифы и ППШ (162 шт.)
- Минераграфическое изучение рудной минерализации (50 шт.)
- Построены и проанализированы графики распределения важных элементов (Au, Pt, Pd, Cu, Ni, S) по разрезам скважин. А также такие отношения как Cu/Ni, (Cu+Ni)/S, Cu/S, Pd/Pt и корреляционные графики (Cu+Ni)/(Au+Pt+Pd), Cu/(Au+Ni+Cu), S/(Au+Ni+Cu).
- Исследование составов рудных и породообразующих минералов с использованием микрозондового анализа проводились в Научном парке СПбГУ сканирующемэлектронном микроскопе Hitachi.
- В завершении выполнена статистическая обработка геохимических данных, обобщены проделанные выше результаты, сформулированы поисковые признаки.

Зашишаемые положения:

- 1. Рудные зоны северная и южная различаются по своему геологическому строению.
- 2. Платинометальная малосульфидная минерализация приурочена в основном к крупнозернистым разновидностям ортопироксенитов и норитов.

- Количественное соотношение главных сульфидных минералов в каждой рудной зоне варьирует.
- 3. Выявлена высокая положительная корреляционная связь между содержаниями минералов благородных металлов и количеством медно-никелевых сульфидов.
- 4. Отмечены минералого-геохимические различия в составах собственно платинометальной минерализации в породах рассматриваемых рудных зон.

Автор выражает искреннюю благодарность своему научному руководителю Сергею Ивановичу за предоставленные материалы и неоценимую помощь в написании магистерской диссертации, а так же всем преподавателем кафедры ГМПИ и Института наук о Земле за их консультации, помощь, понимание и бесценный труд преподавательской деятельности.

Отдельную признательностьхочется выразить главному геологу ОАО «Центрально-Кольская экспедиция» Казанову Олегу Владимировичу за предоставленные материалы, без которого не была бы написана настоящая работа.

ГЛАВА 1 МЕСТОРОЖДЕНИЯ МЕТАЛЛОВ ПЛАТИНОВОЙ ГРУППЫ

С начала раннего протерозоя (2,50-2,45 млрд лет назад) большие площади на севере Финляндии и северо-западе России (в Карелии и Мурманской области) испытали интенсивный рифтинг. В результате был образован Печенга-Имандра-Варзугский рифтогенный пояс в Мурманской области, сланцевые пояса Перепохья и Куусамо в Финляндии и в северной части республики Карелия, Онежская мульда в центральной Карелии. С этими структурами связаны многочисленные расслоенные мафит-ультрафитовые интрузии, включающие месторождения и проявления

Рис. 1 Схема размещения главных расслоенных массивов северовосточной части Фенноскандинавского щита (Alapieti et al.,1990).

сульфидных медно-никелевых, хромитовых и платинометальных руд. В их число входят:

интрузии г.Генеральской, Мончегорская, Панских и Федоровых Тундр, Имандровский комплекс в Мурманской области; интрузии Кеми, Пеникат, Портимо и комплекс Койлиссмаа и интрузии Олангской группы в финской губернии Оулу; интрузия Койтелайнен в Лаппи; Бураковская интрузия в Карелии.[9]

Наиболее древними являются интрузии Кольского полуострова: горы Генеральской – 2505-2493 млн лет (Amelin etal., 1995; Баянова и др., 1999), Мончегорская – 2507-2470 млн лет (Смолькин и др., 2001), Панских и Федоровых Тундр – 2502-2491 (Balashov et al.,1993; Amelinetal., 1995), которые сформировались и были частично эродированы еще до образования вулканогенных толщ раннего протерозоя. Интрузии Финляндии и Карелии внедрились позже, в период 2449-2433 млн лет (Huhma, 1986; Huhmaetal., 1990; Balashovetal., 1993; Amelin etal., 1995). В этот же период (2442-2437 млн лет) были образованы интрузии Имандровского хромитоносного комплекса на Кольском п-ве (Balashovetal., 1993; Amelin etal., 1995), которые оказали термальное воздействие на вмещающие вулканиты кислого состава. Синхронно с внедрением расслоенных интрузий формировались дайки основных пород.Наиболее древними из них являются дайки габброноритов и меланоноритов Мончегорского района, имеющие возраст от 2496±14 до 2487±12 млн лет.[14]

Месторождения, образующиеся при подобном рифтинге, обычно связаны с разломами, ограничивающими рифт, или находятся на древнем континентальном склоне. К таким месторождениям относятся интрузии комплексов Маскокс, Рэглен, Джиньчуань, Ривер Уэлли, Ист-Булл Лейк, Пеникат, Печенга, Мончегорск и др. [9]

Группа месторождений Печенга-Имандра-Варзугской рифтогенной структуры расположена в мощных толщах осадочных и вулканических пород, которые отвечают четырем циклам вулканизма и разделявшим их периодам осадконакопления. В сульфидсодержащих осадочных породах, подстилающих вулканиты четвертого цикла, развиты интрузии, несущие Cu-Ni оруденение. По-видимому, они представляют собой питающие тела вулканических образований. Печенга-Имандра-Варзуский рифт, с которым связана магматическая деятельность, в процессе своего развития превратился в океан, впоследствии закрывшийся с юга (см. рис 1). В океанических условиях образовалась серия известково-щелочных пород, сохранившихся на юге Печенгской структуры, которые затем были интенсивно смяты в складки и надвинуты на толеитовые лавы.[2]

1.1 Месторождения Карелии и Мурманской области

На территории Республики Карелия платинометальная минерализация выявлена в расслоенных перидотит-пироксенит-габброноритовых хкисустни, дифференцированных базитовых и ультрабазит-базитовых массивах, в архейских зеленокаменных структурах и в других геологических обстановках. Известно 38 проявлений МПГ, при этом отдельные проявления, связанные с Бураковско-Аганозерским расслоенным массивом (Бураковской интрузией), в частности – горизонт "А", Золото-платинометальный горизонт платинометальный малосульфидные горизонты Полосчатой благороднометальные подзоны, малосульфидные благородно-метальные горизонты Верхней подзоны, представляют собой совокупность проявлений и пунктов минерализации МПГ, объединенных общей позицией в расслоенной серии интрузии.[7]

Наиболее крупные проявления МПГ в Карелии связаны с малосульфидной никель-хромовой с МПГ и золотом формацией в расслоенных базит-гипербазитовых интрузиях. В Водлозерской минерагенической зоне платинометальное оруденение данного рудноформационного типа генетически и пространственно связано с Бураковско-Аганозерским расслоенным массивом. Массив расположен в 30 км севернее г. Пудожа и занимает площадь 630 км². В пределах массива установлено наличие двух генетических типов платинометального оруденения: сингенетического и эпигенетического. Сингенетический тип платинометальной минерализации, как и в большинстве расслоенных интрузий мира, приурочен к горизонтам, занимающим определенное положение в расслоенной серии [Ганин, 2004]. Эпигенетический тип, связанный с метасоматически измененными образованиями пород габброноритовой зоны и жильными образованиями позднемагматической стадии. Содержание благородных металлов в этих образованиях достигает 5,51г/т. В связи с ненадежностью аналитических данных и крайне слабой изученностью этого типа объектов сведения о них в кадастре не приводятся.[1]

Бураковский расслоенный комплекс относится к дунит-пироксенитгабброноритовой формации с ярко выраженной металлогенической специализацией на хром, металлы платиновой группы (МПГ), Au, Ti и V. Вмещающие его породы представлены комплексом палеоархейских гнейсогранитов, мигматитов и амфиболитов возрастом \sim 3,54 млрд лет и супракрустальными образованиями мезоархея. Бураковский плутон — типичный лополит с падением контактов к центру под углами 35–70°, площадью 630 км² (длина \sim 50 км, ширина \sim 5–16 км), имеющий в плане усложненную

Рис. 2 Схема, показывающая геологическое строение Бураковского массива. Цифры — условные обозначения: 1 — Архейские породы; 2 — Маргинальная зона плутона; 3 — 8 - Расслоенная серия; 3 и 4 — Дуниты и Перидотитовая субзона Ультрабазитовой зоны; 5 — Пироксенитовая зона; 6 — Габброноритовая зона; 7 — Зона Пижонитовых габброноритов; 8 — Зона магнезиальных габброноритов-диоритов; 9 — Дизъюнктивные нарушения

северо-восточного простирания эллипсоидальную, а в разрезе — «корытообразную» форму, переходящую в северной его части в форму сплющенной воронки (Аганозерский блок). Общий наклон кровли по простиранию лополита имеет юго-западное направление. Вкрест простирания — склонение кровли на северо-запад, что хорошо иллюстрируется ассиметричным строением Аганозерского блока, в котором

ультрамафитовая часть разреза наиболее глубоко эродирована в его восточной и северной частях (рис.2).

Расслоенная серия конформна внутреннему строению интрузива и дискордантна к плоскости его контакта с вмещающими породами «рамы». Она характеризуется высокой степенью макрои микрорасслоенности, часто сопровождающейся ритмичностью различного порядка. В ее строении выделяются пять 30H, различающихся наборами кумулятивных парагенезисов (снизу вверх): ультраосновная (Ol+Cr) (с дунитовой и перидотитовой подзонами), пироксенитовая (Opx+Cpx±Ol±Cr) (переходная, по М.М. Лаврову), габброноритовая (Opx+Cpx+Pl±Ol) (с полосчатой и верхней подзонами), пижонитовых габброноритов (Pg+Cpx+Pl) и феррогабброноритов (Pg+Cpx+Pl+Tmt).Ритмичность в строении Расслоенной серии обусловлена как закономерными изменениями снизу вверх основности слагающих ее пород (от ультраосновных до основных), увеличением их железистости и уменьшением основности плагиоклаза (макроритмы), так и многократным повторением горизонтов пород различного состава в пределах зон (ритмы и микроритмы).[6]

Многочисленные проявления и пункты минерализации платины, палладия и золота в полосчатой подзоне габброноритовой зоны приурочены к пачкам контрастного переслаивания различных по составу пород (габброноритов, плагиовебстеритов, норитов, оливиновых норитов и др.) мощностью от 3 до 44 м. В этих пачках выделяются до 3 малосульфидных горизонтов, обогащенных платиной, палладием и золотом. Мощность горизонтов изменяется в пределах 0,8-3,2 м, содержание суммы благородных металлов колеблется в пределах от 0,14 до 1,74 г/т, составляя в среднем 0,6 г/т. Сульфиды, содержание которых в рудных горизонтах достигает 5%, представлены халькопирит-пентландит-миллерит-борнитовой И пирротинхалькопирит-пентландитовой ассоциациями. Здесь выявлено большое разнообразие минералов платиновых металлов: куперит, сперрилит, мончеит, котульскит, фрудит, меренскит и др. и минеральная фаза $Pd_2Pd(Pd,Ag)_3P$, $(Pd,Pb,Cu)(S,Se)_2$, $(Pt,Pd)_3(Te,Bi)_2$, что характерно для интрузий с промышленными скоплениями платиноидов. Все выявленные рудные горизонты могут быть объединены в одну рудную зону, мощностью от 5 до 29 м, имеющую площадное распространение на Аганозерском и Шалозерском блоках интрузии. Соотношение платины, палладия и золота значительно изменяется по латерали. Прогнозные ресурсы платины и палладия в горизонтах оцениваются по категории Р2 до глубины 500 м в количестве 56,6 т, золота - 5,1 т.

Рис. 3 Схема геологического строения Федорово-Панского комплекса, по [Korchagin, Mitrofanov, 2008] с авторскими добавлениями.

1 — дайки метагаббродолеритов; 2 — Имандра-Варзугская рифтогенная структура; 3—8 - Федорово-Панский комплекс расслоенных интрузий: 3 — тонкорасслоенные горизонты, 4 — оливиновые горизонты, 5 — габбро, 6 — габбронориты, 7 — нориты и плагиоортопироксениты, 8 — такситовые габбронориты краевой зоны; 9 — позднеархейские щелочные граниты; 10 — архейские метаморфические и ультраметаморфические образования Кольского блока; 11 — горизонты сульфидной и платинометальной минерализации; 12 — месторождения (а) 1 — Федоровотундровское, 2 — Киевей, 3 — Восточное Чуарвы) и проявления (б) ЭПГ; 13 — геологические границы: достоверные (а), фациальные (б); 14 — разрывные нарушения: главные (а), второстепенные (б).

Федорово-Панский комплекс имеет протяженность около 90 км при мощности до Тектоническими нарушениями комплекс разбит на четыре блока, В рассматриваемых качестве самостоятельных массивов: Федорова тундра, Ластъяврский, Западно-Панский и Восточно-Панский (см. рис. 3).

Федоровотундровское месторождение приурочено к нижней краевой зоне одноим енного массива Федорово-Панского комплекса. Основной тип оруденения на месторождении представлен малосульфидным вкрапленным типом в такситовых габброноритах и других породах краевой зоны массива. Рудная зона прослежена на двух сопряженных, разделенных зоной тектонического нарушения, участках: Федорова тундра и Пахкварака, имеет протяженность около 3 км, при средне й мощности до 60 м [Schissel et al., 2002; Korchagin, Mitrofanov, 2008]. Она состоит линзовидно-пластообразной ИЗ серии рудных тел формы сложного строения, которые залегают субсогласно простиранию пород массива и повторяют форму его нижнего контакта. Границы рудных тел определяются опробованием и, в совпадают с границами развития сульфидов, которые располагаются целом,

отдельными струями, линзами, столбами различной мощности, протяженности, ориентировки, что является результатом общего брекчиевидного строе ния рудной зоны. Распределение компонентов в рудных телах неравномерное – обогащенные сульфидами Си и Ni участки такситовых габбро-норитов разделены пустыми пироксенитами и габбро-норитами.[15]

бедной Вкрапленное оруденение представлено минерализацией пентландит-пирротин-халькопиритового состава с общим содержанием сульфидов 1 об.% в среднего качества. Наиболее типичными являются около руде неравномерная, интерстициальная сульфидная и сульфидно-оксидная вкрапленность и минерализация вкрапленно-гнездового типа с фрагментами прожилково-вкрапленныхм акро- и микротекстур. Локально, в интервалах до нескольких десятков сантиметров, распространены густовкрапленные руды. Во всех типах оруденелых пород агрегаты и индивиды рудных минералов имеют сложную форму, подчиненную интерстициям первичных магматических и вторичных силикатов. Практически всегда наблюдаются реакционные взаимоотношения сульфидов первичными магматическими силикатами: вкрапленники обычно окружены реакционн ыми каймами вторичных минералов (амфиболы, хлорит, клиноцоизит, кварц и др.).

Главными в составе малосульфидных руд месторождения являются три минерала халькопирит, пирротин и пентландит. Их соотношение в среднем по руде в пересчете н а 100-процентный сульфид – 41, 35 и 24об. %, соответственно. Доля этих минералов общей сульфидной массе составляет обычно 95-100 %. В качестве вторичных и акцессорных минералов в переменных количествах присутствуют пирит, троилит, ильменит, магнетит, макинавит, марказит, кубанит, миллерит, борнит, сфалерит, виоларит. В составе платинометального оруденения установлено 29 минералов платиновой группы И золота, a также четыре фазы, не имеющие пока статуса самостоятельных минеральных видов. Среди них наиб сульфиды, ольшим развитием пользуются арсениды И висмуто-теллуриды, сульфоарсенидов, с подчиненным количеством станнидов самородных полезных компонентов составляют: Pt+Pd 1элементов. Содержания 10 г/т, при Pd/Pt=4.3, Cu+Ni -0.2-0.5 мас. %.[14]

Рис. 4 Схематическая карта геологического строения интрузии Пеникат. План. С юга-запада на северо-восток блоки: Ала-Пеникка, Кески-Пеникка, Или-Пеникка, Килкка, Сомпуярви [Cabri et al., 2009]

1.2 Месторождения Финляндии

Интрузия Пеникат (рис. 4) имеет длину 23 км при ширине 1,5 до 3,5 км. Под действием разрывной тектоники она разбита на пять блоков: Сомпуярви, Килка, Или-Пеникка, Кески-Пеникка и Ала-Пеникка (см.рис 4). Alapieti and Lahtinen (2002), основываясь на минералогии и скрытой расслоенности, подразделили разрез интрузии на маломощную маргинальную (краевую) серию (20-30 м) и 5 мегациклических тел, в основании каждого из которых находится ультрамафитовый кумулат. Породы

маргинальной серии внизу представлены сильно контаминированными габбро с многочисленными частично расплавленными включениями вмещающих пород, выше они сменяются кумулатными породами, богатыми бронзитом. Мегациклическое тело I начинается бронзит-хромитовым ортокумулатом с пойкилитовыми авгитом и плагиоклазом. Вверх по разрезу к кумулусу присоединяются плагиоклаз и авгит, и порода переходит в габбро. Сходное строение имеют тела II и III, где залегающие внизу вебстериты и лерцолиты выше сменяются габброноритами. Верхняя часть разреза тела III местами отсутствует, представляется, что она была эродирована при внедрении магмы вышележащего слоя. У нижнего контакта мегациклического тела IV вместе с ультрамафитовым кумулатом развит маломощный Pl-Br ортокумулат, содержащий хромит и ассоциирующий с пегматоидами габбрового состава. С мегациклическим телом IV связано основное оруденение ЭПГ. В его основании находится риф SJ, в 200-300 м выше по разрезу – рифы API и APII, а близ верхнего контакта – риф PV. Все эти рифы, как представляется, образовались в результате поступлений в интрузивную камеру свежей магмы. Риф SJ связан с упомянутым выше Pl-Br ортокумулатом, находящимся у контакта между мегациклическими телами III и IV. В этом рифе, согласно Alapieti and Lahtinen (2002), выделяются 4 вида оруденения: сульфидной, хромитовой, сульфид-хромитовой и силикатной ассоциации (в последней ассоциации отсутствуют видимые сульфиды и хромит). Рифы АРІ и АРІІ приурочены к Pl-Aug-Br адкумулату и вышележащему Pl-Br мезокумулату. Оруденение рифа PV связано с плагиоклазовым ортокумулатом. Alapieti andLahtinen (2002) представили данные о содержаниях Ni, Cu и ЭПГ в рифах интрузии Пеникат, но без сведений о мощности рифов и выдержанности оруденения по простиранию.[9]

В районе Портиморазвиты сразу две интрузии: Суханко-Контиярви, состоящая из двух блоков и Наркаус, также разделенная на блоки. Во всех блоках обеих интрузий выделяется маргинальная серия (мощностью 10-170 м), которая вблизи нижнего контакта содержит многочисленные включения частично расплавленных вмещающих пород (см. рис. 5). Маргинальная серия интрузии Суханко-Контиярви отличается от интрузии Наркаус большей мощностью и тем, что контаминированные габбро переходят вверх в чередующиеся перидотиты и пироксениты. Выше маргинальной серии развиты расслоенные породы. В блоке Килвенярви они имеют небольшую мощность и подразделяются на мегациклических тела. Тело I состоит из нижнего

NARKAUS INTRUSION SUHANKO INTRUSION Erosional Roof rocks Roof rocks **GRANOPHYRE** contact 870 m 500 m **GABBRO GABBRONORITE** MCU III POIKILITIC GBNO **GABBRONORITE PERIDOTITE** SK Reef **GABBRONORITE** MCU II **PERIDOTITE** GABBRO -ayered series Layered series **GABBRO** MCU III **GABBRONORITE** RK Reef **GABBRONORITE PYROXENITE** MCU I PYROXENITE **POIKILITIC** GABBRONORITE **GABBRONORITE** PERIDOTITE MARGINAL MARGINAL CHROMITITE **PYROXENITE** SERIES SERIES GABBRONORITE **PYROXENITE** MCU I-II SET OF Floor rocks Cu-Pd offset PORTIMO DYKES

Рис. 5СхемакумулуснойстратиграфииинтрузийНаркаусиСуханко (комплекс Портимо) и положение ЭПГ минерализации(Iljina, 1994).

бронзитового кумулата, который у основания содержит кумулатный хромит; выше залегает габбронорит, где к ортопироксеновому кумулусу присоединяются плагиоклаз и авгит. Ультрамафитовые породы тел II и III, в отличие от тела I, включают значительное количество оливина. Нижние 5 метров ультрамафитового кумулата тела II содержат хромит. Хромит присутствует и в теле III, но он там менее обилен. Ультрамафитовые кумулаты тела II перекрываются габброноритами. В теле III они

перекрыты плагиоклазовыми и PI-Br кумулатами мощностью 25 м, выше к кумулатным фазам присоединяется авгит.[18],[20]

В интрузиях района Портимо выделяются 5 типов месторождений ЭПГ: 1)вкрапленные сульфиды в породах маргинальной серии; 2)массивные сульфиды маргинальной серии (редкие и прерывистые); 3)риф Синка-Сама (SK) аналог рифа SJ интрузии Пеникат, локализованный на контакте между мегациклическими телами II и III; 4)риф Ритикангас (RK), аналог рифа AP, который в настоящее время выявлен только в интрузии Суханко-Контиярви; 5)жилы, богатые ЭПГ, выполняющие трещины в породах, подстилающих комплекс. Помимо вышечисленного, минерализация ЭПГ обнаружена в ассоциации с горизонтами хромититов внутри ультрамафических кумулатов мегациклического тела I.

Интрузивный комплекс Койллисмаа подразделяется на 3 части. Непосредственно вблизи сланцевого пояса Куусамо находится Койллисмаа Западная – серия которые интерпретируются маломощных тел, как части некогда единого дифференцированного лополита, расчлененного разрывной тектоникой. В 50 км к расположена интрузия Нярянкаваара, залегающая глубже, богатая ультрамафитовыми породами. Третью часть комплекса представляет так называемая «соединяющая дайка» - не обнаженная на поверхности интрузия, которая считается дайкоподобным телом, соединяющим интрузию Нярянкаваара лополитом Койллисмаа Западная.[9]

Мафит-ультрамафитовые породы Койлиссмаа Западной подразделяются на две серии — нижнюю маргинальную и верхнюю расслоенную. Мощность маргинальной серии варьирует от 50 до 250 м. У основания она представлена контаминированными габбро, содержащими многочисленные частично расплавленные включения гнейсов. Эти породы выше переходят в габбронориты, затем сменяются чередующимися слоями перидотитов (кумулус Ol, Br и Pl) и пироксенитов (кумулус Br и Pl). Расслоенная серия представлена представлена 3 зонами. Нижняя зона образована оливиновыми норитами (кумулус Pl, Br и Ol, интеркумулус авгита). Средняя зона сложена габбро и габброноритами, где вместо оливина в число кумулатных фаз входит авгит. В верхней зоне преобладают лайкогаббро, переходящие в анортозиты. В средней части верхней зоны выделяются магнетитовые габбро, включающие горизонт обогащенного ванадием магнетита, который добывался на руднике Муставаара.

В интрузии Койлиссмаа Западная обнаружена платинометальная минерализация. Она представлена вкрапленными сульфидами в породах маргинальной

серии,подобными сульфидам маргинальных зон интрузий Портимо, но с меньшими содержаниями ЭПГ.[18]

1.3 Месторождения прочих стран (ЮАР, США, Зимбабве).

Крупнейшие мировые месторождения ЭПГ (собственно ЭПГ) связаны с тремя интрузивными телами: с комплексами Бушвельд, Стиллуотер и Великой Дайкой, которые по причине гигантских концентраций ценнейших запасов платины и палладия, в обиходе, получили название «Большой тройки». Промышленное значение комлекса Бушвельд значительно выше, чем двух других. Там находятся много действующих рудников и подготавливается несколько новых. В комплексе Стиллуотер, начиная с 1986 г., работает одноименный рудник, и в последнее время начались добычные работы на руднике Ист-Боулдер. В Великой Дайке в 1996-1999 гг. основная добыча осуществлялась в руднике Хартли, но сейчас рудники этой зоны закрыты, и работают только два относительно небольших Мимоса и Нгези.

В вышеописанных месторождениях «Большой тройки» сосредоточено около три четверти всех мировых запасов платины в мире, таким образом, эти три страны являются крупнейшими поставщиками платины и палладия в мире.[9]

Figure courtesy Ivanhoe, 2012; modified after Kruger, 2005. Figure is schematic and not to scale. Section line illustrated is shown on Figure 7.1.

Рис. 6 Схематический разрез Бушвельдского комплекса по линии South-North. Представлен снизу вверх породами: нижней зоны, нижней критической зоны, верхней критической зоны с рифом Меренски, главной зоны, верхней зоны, фрагментов верхнего Транасваальского комплекса, фрагментов фельзитов комплекса Руйлберг и комплексом Кару (Ivanhoe, 2012).

Бушвельдский комплекс(рис.6)является самым крупным на Земле расслоенным изверженным мафит-ультрамафитовым комплексом. Чтобы представить насколько он огромен, достаточно сравнить его площадь (ок. 70 тыс. км²) с площадью республики Ирландия.

Вмещающими породами отчасти являются архейские гранитоиды и зеленокаменные породы, а также раннепротерозойские образования серии Претория, входящей в систему Трансвааль – одноименной исторической области на территории Южно-Африканской республики.

Расслоенная серия в настоящее время имеет прерывистое распространение в плане, она представлена в пяти основных структурах. Три из них (Северо-Западный и Юго-Западный Бушвельд, разделенные щелочной интрузией Пиланесберг, и Восточный Бушвельд, отделенными гранитами Лебова) имеют вид сегментов магматического бассейна овальной формы. Разрез расслоенной серии (рис.) подразделяется на пять зон: маргинальная зона (мощностью 0-800 м), представлена норитами с подчиненными пироксенитами; нижняя зона (мощностью 800-1300 м) образована преимущественно бронзититами, гарцбургитами и дунитами.

В основании Критической зоны, имеющей мощность 1300-1800 м, появляется кумулатный хромит. Ее разрез подразделяется на две зоны второго порядка. Нижняя Критическая зона в основном образована бронзититами и хромититами с подчиненными гарцбургитами. Верхняя Критическая зона, где появляется кумулатный плагиоклаз, сама подразделяется на две части. Нижняя часть разреза представлена анортозитами, норитами и подчиненными бронзититами, которые не образуют циклических тел. Верхняя часть, начинающаяся с хромитита UG-1, состоит из циклических тел, в которых снизу вверх представлены: хромититы, гарцбургиты, брозититы, нориты, анортозиты. В этой же части разреза находится платиноносный риф UG-2 и риф Меренски. Затем следует Главная зона (мощностью 3000-3400 м), сложенная габбро, норитами и анортозитами. Далее следует Верхняя зона (мощностью 2000-2800 м), представленная феррогаббро и ферродиоритами.[9]

Расслоенный комплекс Стиллуотер (рис. 7)расположен в Соединенных Штатах, а именно в южной части гористого штата Монтана. Комплекс представляет собой крупное дифференцированное плоское тело докембрийских основных и ультраосновных пород, обнаженные на протяжении около 50 километров вдоль северного окончания гор Биртут.

Рис. 7 Карта массива Стиллуотер (план) и схематический разрез (слева). Породы разреза снизу вверх: перидотиты и бронзититы ультрамафитовой серии, габбронориты и нориты нижней полосчатой серии с рифом JM в оливинсодержащей зоне (ОЗ), анортозиты и ОЗ средней полосчатой серии, габбронориты и ОЗ верхней полосчатой серии.

Обнаженные породы комплекса Стиллуотер подразделяются на три серии: Базальную, Ультрамафитовую и Полосчатую, которая в свою очередь подразделяется на Нижнюю, Среднюю и Верхнюю. В составе Ультрамафитовой зоны выделяется Перидотитовая зона (включающая все слои хромититов, которые обозначаются буквенными индексами от А до К снизу вверх), и Бронзититовая зона. Полосчатая серия представляет собой чередование зон норитов, габброноритов и анортозитов, разделенных зонами (пачками) циклических тел, начинающихся с пород, содержащих кумулатный оливин. Пачки циклических тел называются оливинсодержащими зонами (olivine-bearing; OB). Обозначаются они снизу вверх ОВІ, ОВІІ и т.д. Зоны норитов (N), габброноритов (GN) и анортозитов (AN) нумеруются снизу вверх подобным образом.

Рис. 8 Великая дайка в плане. Разделена на несколько субкамер (с севера на юг): Дарвиндэйл, Сибакве, Силукве, Уэдза.

Разрабатываемый двумя рудниками, (Ист-Боулдер и Стиллуотер) так называемый местными геологами риф ЈМ, локализован в пачке пород, представленной различными по мощности слоями пород: троктолитами, анортозитами, перидотит-дунитами и норитами. Кровля пачки обычно, но не всегда совпадает с исчезновением оруденения ЭПГ. В то время как внутри пачки горизонты, богатые ЭПГ, могут быть разделены бедными горизонтами. Более того оруденение может быть развито в любом из слоев, образующих рифовую пачку и лишь местами оно представлено в породах, залегающих ниже обогащенного оливином слоя, который определяет основание пачки.

С практической точки зрения очень важны так называемые «залы» (ballrooms), где оруденение распространяется до 20 м ниже основания рифовой пачки, образуя мощные

зоны богатой минерализации. Такие «залы» принципиально отличаются от западин («potholes») рифа Меренски в Бушвельде, где риф просто переходит на более низкий стратиграфический уровень. В случае залов богатое оруденение развито и в рифовой пачке, и в подстилающих породах. Childsetal. (2002) описали три типа оруденения залов. 1. Рудная зона захватывает всю мощность рифовой пачки и уходит достаточно глубоко вниз в подстилающие породы 2. Увеличение мощности рудной зоны совпадает с увеличенной мощностью самой рифовой пачки. 3. Оруденение в породах подошвы отделено от рудной зоны рифовой пачки безрудными породами. Наиболее обычен первый тип оруденения. Структурные соотношения сульфидов и силикатов в залах в целом подобны наблюдаемым в рифовой пачке, хотя в случаях, когда оруденение «залов» развивается в габброноритах или норитах подошвы, очень часто наблюдаются сульфидные сгустки размером до 5 см с отходящими от них прожилками. Отношение Pd/Pt составляет 3.27.

Рис. 9 Схематический поперечный разрез через Великую Дайку. Снизу вверх чередование пироксенитов, гарцбургитов, дунитов, хромититов и габброноритов. На рисунке можно заметить, что интрузия представляет собой лополит.

Комплекс Великая Дайка Зимбабве (рис. 8 и 9) расположена всего в нескольких сотнях километров от Бушвельдского комплекса ЮАР, где прорезает архейские

граниты и зеленокаменные породы щита Зимбабве. Она (дайка) представляет собой расслоенную линейную интрузию мафит-ультрамафитового состава, имеющую длину 550 км при ширине от 4 до 11 км. Согласно современному датированию она образовалась в позднем архее около 2579 млн лет назад. По простиранию Великая Дайка подразделяется на несколько камер с подчиненными им субкамерами (см. рис. 8 на стр. 21), которые обособлены на основе структуры тела и характера расслоенности пород.

В вертикальном разрезе интрузии выделяется нижняя ультрамафитовая серия (мощностью более 2000 м), представлена дунитами, гарцбургитами и пироксенитами (бронзититами) с прослоями хромититов, и верхняя мафитовая серия (до 1120 м), состоящая из габброноритов. Мощность обеих серий является максимальной в наиболее крупной камере Дарвендэйл (см.рис 8). В поперечном разрезе интрузия имеет форму раструба с погружением слоев по направлению оси тела.

Основное оруденение дайки связано с двумя сульфидными зонами – Главной и Нижней. Сульфиды являются интерстиционными по отношению к кумулатному пироксену и представлены в порядке снижения их обилия – пирротином, пентландитом, халькопиритом и пиритом.[9]

ГЛАВА 2 ГЕОЛОГИЯ МОНЧЕТУНДРОВСКОГО РАССЛОЕННОГО МАССИВА

2.1 Геологическое строение

Рис. 10. Схема геологического строения центральной и юго-восточной частей Мончетундровского массива (составлена Л.И. Нерович с использованием схем из [2, 7 и 8], а также материалов ОАО ЦКЭ, ОАО "Пана" и Е.С. Борисенко. 1 плагиомикроклиновые гранито-гнейсы; 2-5 – расслоенный комплекс Мончетундровского массива: 2 – лейкократовые габбронориты и нориты, габбронорит-анортозиты, лейкогаббро, габбро-анортозиты верхней зоны. Массивные, крупнозернистые и среднекрупнозернистые; 3 – оливиновые лейконориты, лейкогаббронориты, норит-анортозиты, редко плагиогарцбургиты верхней зоны. Массивные, крупнозернистые и среднекрупнозернистые; 4 – габбронориты, реже оливиновые габбронориты, троктолиты, анортозиты средней зоны. Преимущественно трахитоидные, среднезернистые, крупносреднезернистые; 5 – нориты, пироксениты, габбронориты, реже гарцбургиты и оливиниты нижней зоны; 6 - метагабброиды ранней габбровой серии (мезократовые и мезолейкократовые амфибол-плагиоклазовые, реже плагиоклаз амфиболовые породы.Преимущественно массивные, неравномернозернистые с зонами и участками рассланцевания и бластомилонитизации); 7 - Мончеплутон (ортопироксениты горы Сопча); 8 – Дунитовый блок; 9 – метавулканиты пялочной, арваренчской и кукшинской свит; 10 - преимущественно биотитовые, гранат-биотитовые и гранат-амфиболбиотитовые, реже мусковит-биотитовые гнейсы с линзами и блоками гранат-эпидотхлоритовых сланцев и амфиболизированных габброидов; 11 – граниты и гранитогнейсы архейского комплекса;

Этот массив представлен тремя тектоническими блоками, которые образуют хребты Монче-, Чуна- и Волчьих тундр, сложенные на поверхности базитами (рис. 10).

В отличие от Мончегорского плутона, значительная часть разреза МГХ известна только по керну скважин, пробуренных на восточном склоне хр. Мончетундра. Вместе с тем, обнаженные части массива имеют однотипное строение, чтопозволяет думать о том, что и их глубинное строение различается мало. В пределах хребтов Монче-, Чуна- и Волчьих тундр массив характеризуется однотипными разрезами, которые подразделяются по вертикали на три зоны (снизу вверх): 1) габбро-норитов ((Орх + Срх + Pl ± Ol) кумулатов) мощностью от 200 до 500 м; 2) трахитоидных габброноританортозитов мощностью от 0.5 до 2 км (Pl-кумулаты с прослоями лейкогабброидов с Pl и инвертированными Pig и Pig-Aug в качестве кумулятивных фаз, а также троктолитов - (Ol + Pl)-кумулатов), и 3) массивных грубозернистых габбронорит-анортозитов (Plкумулаты) мощностью 2-3 км,однако реальная мощность этой зоны неизвестна,т.к. вышележащие породы уничтожены эрозией. [3]

Нижняя часть разреза массива Главного хребтанаиболее полно представлена в керне структурной скважины М1, пробуренной на восточномсклоне хр. Мончетундра в зоне его сочленения сМончегорским плутоном, в зоне Мончетундровского разлома. Несмотря на то, что породы здесьсильно тектонизированы и разрез, повидимому, нарушен, имеющийся материал все же позволяет составить представление об их распространенности.

Здесь под трахитоидными габбронорит-анортозитами и мощным горизонтом габброноритоврасположена зона ритмичного переслаивания габброноритов, оливиновых габброноритов, норитов и бронзититов с единичными прослоями дунитов и гарцбургитов. Ниже зоны переслаиванияснова идут катаклазированные габбронориты и габбронорит-анортозиты, разделенные мощнымикрутопадающими зонами рассланцевания. На глубинах 1400-1600 м встречены разгнейсованные породы гранодиоритового состава (вероятно, тектонический блок вмещающих архейских пород). Под ними снова идут габбронориты, затем переслаивание норитов, бронзититов, гарцбургитов и дунитов, а самая нижняя часть разреза образована мощным (около 260 м) горизонтом плагиоклазовых дунитов ((Ol + Crt) кумулаты). У контакта с подстилающими гнейсо-диоритами и кордиерит-гранат-биотитовыми гнейсами кольской серии архея наблюдается небольшая краевая зона, мощностью около 40 м, сложенная мелкозернистыми ортопироксенитами, габбро-норитами, лейкогаббро и хлорит-актинолитовыми сланцами по габброидам в непосредственном контакте.[2]

Как уже говорилось, очень вероятно, что дунитовая линза в Мончеплутоне, содержащая кумулятивные хромититы, представляет собой часть этого нижнего

горизонта дунитов на участке, где МГХ внедрялся в уже затвердевший плутон, и горизонт неравномернозернистых габбро-норитов, подстилающих эту линзу, является его краевой зоной на этом участке. В сильно тектонизированных и измененных породах МГХ в зоне его сочленения с Мончегорским плутоном (в зоне Мончетундровского разлома) встречена малосульфидная ЭПГ-минерализация (Гроховская и др., 2009). По своим особенностям эта минерализация близка к наблюдаемой вюжном обрамлении Мончеплутона. Поскольку обнаженные части главных тектонических блоков МГХ имеют однотипное строение, можно думать, что и их глубинное строениеразличается мало.

Платинометальное оруденение приурочено к нескольким уровням разреза расслоенной серии восточной части интрузии и ассоциирует с вкрапленным сульфидным Сu-Ni-Fe-орудением, иногда пространственно совмещенным с хромитовой или титаномагнетитовой минерализацией. Изучение минералогии ЭПГ было выполнено в пределах выделенных Центрально-Кольской экспедицией двух рудных зон – северной (14 и 12 скважины) и южной (6 скважины). Высокие содержания ЭПГ часто наблюдаются в породах без видимой сульфидной вкрапленности или же с редкой рассеянной вкрапленностью, а в обогащенных сульфидами породах содержания ЭПГ иногда крайне низки.

В платиноносных зонах месторождения Мончетундра было установлено более 10 минералов и неизвестных минеральных фаз ЭПГ, Аи, Аg, которые включают сплавы, сульфиды и висмутотеллуриды Pt и Pd, сульфоарсениды ЭПГ и минералы систем Pd-As-Sb, Pd-Ni-As, Pd-Ag-Te. МПГ образуют отдельные зерна и срастания в сульфидах, оксидах, породообразующих силикатах и на их контактах. Размеры МПГ колеблются от субмикронных и наноразмерных выделений до 40-60 мкм, в единичных случаях до 100-300 мкм. Полиминеральные срастания иногда включают до 6-10 МПГ и отличаются постоянным набором минеральных фаз. Среди установленных МПГ можно выделить ранние генерации и более поздние, замещающие первичные МПГ в полиминеральных вкрапленниках или локализованные в виде отдельных зерен во вторичных силикатах, оксидах и гидроксидах железа. [3]

Стратиграфия

Основные черты строения земной коры и мощной литосферы региона были сформированы в позднеархейское и раннепротерозойское время, хотя некоторые вещественные и структурные переработки их происходили и в последующие времена, особенно в позднем докембрии и палеозое (Виноградов А.Н. и др., 2005;). Значительная

часть Балтийского щита сформировалась частично в мезоархейское (саамий) и в основном в неоархейское (лопий) время, и сложена тоналит-трондьемит- гнейсомигматитовыми комплексами основания и разнообразными метаморфизованными вулканогенно-осадочными толщами чехла, пронизанными телами гранитоидов. На Кольском полуострове эти породы с возрастом 3.2-2.7 млрд. лет слагают архейские домены: Мурманский, Кольско-Норвежский, Инари, Беломорско-Терский. Более древние породы архея в Кольском регионе пока не известны, хотя южнее, в Феннокарелии палеоархейские образования (до 3.6 млрд. лет) в виде нуклеусов небольших размеров установлены. Домены иногда разделены, а чаще они включают, соответственно, межкратонные (энсиматические) и внутрикратонные (энсиалические) зеленокаменные пояса неоархея (лопия) (2.94-2.60 млрд. лет) (Митрофанов Ф.П. и др., 1997). В первой половине раннего протерозоя (Карелий 2.55-1.98 млрд. лет) регион подвергся воздействию пульсационных плюм-рифтовых процессов разной глубины заложения с формированием в рифтогенных прогибах мощных базитовых вулканитов, даек и интрузивных тел обширной Восточно-Скандинавской изверженной провинции (Митрофанов Ф.П. и др., 1997). В сумийское время (2.53-2.40 млрд. лет) были сформированы рифтогенный аккреционный Печенга-Имандра-Варзугский прогиб (пояс) и сопряженный с ним обдукционный Лапландско-Колвицкий гранулитовый пояс. Глубинные плюм-тектонические процессы в эпоху людиковия-калевия (2.00-1.98 млрд. лет) привели к образованию в низах земной коры мощного гранулитоанортозито- базитового слоя, а в верхней части коры – рифтов красноморского типа с печенгским типом магматизма. Во второй половине раннего протерозоя, в свекофеннское время (2,0- 1,7 млрд. лет назад) коллизионные процессы с региональным метаморфизмом и кислым магматизмом сформировали зрелую и стабильную кору всего Кольско-Лапландско- Карельского коллизиона (Митрофанов Ф.П. и др., 1997). Позднепротерозойский этап развития региона характеризовался платформенными условиями. Он представлен комплексами осадочных пород различных типов, распространенными в эрозионных останцах у побережья по периметру Кольского п-ова, а также слагающими о. Кильдин и п-ова Рыбачий и Средний. Породы этого возраста залегают субгоризонтально на юге, а на севере моноклинально, с падением на север и северо-восток. Из палеозойских структур следует отметить крупные интрузивные плутоны центрального типа, сложенные разнообразными щелочными породами (Хибинские и Ловозерские тундры), с возрастом 380—360 млн. лет и меньшие по размерам массивы ультраосновных щелочных пород (Ковдор, Себлъявр, Африканда и др.). Палеозойский возраст имеют также рои даек, отдельные дайковые тела и диатремы (трубки взрыва). В мезозое происходило дальнейшее выравнивание территории. Геологические сформированные в это время, представлены только сохранившимися в редких случаях каолинитовыми корами выветривания. Палеогеновый период на Кольском п-ове не охарактеризован какими-либо геологическими телами или структурами, а вот в неогеновый период начал формироваться современный морфологический орографический облик региона. В результате деятельности ледников, морей, рек, озер, проявлений процессов эрозии и неотектонических движений образовались неогеновые коры выветривания гидрослюдистого типа и неоген-четвертичные рыхлые осадочные породы разнообразных типов — ледниковые, озерные, речные, болотные, морские и др. Четвертичному периоду (антропогену), — соответствует осадочный чехол — верхний ярус, сложенный рыхлыми осадочными породами, в основном ледникового происхождения. Мощность осадков незначительна — от нескольких до десятков сантиметров, реже 100—150 м. (Митрофанов Ф.П. и др., 1997). [10]

Магматизм и метаморфизм

Рис. 11 Схема проявления раннепротерозойского суперплюма в восточной части Балтийского щита с двумя разновозрастными плюмовыми полями (обозначены пунктиром) по Смолькину и др., 2009: малый плюм с началом формирования ~ 2.53 и большой ~ 2.46 млрд лет назад.

Согласно изотопным данным, Мончегорский плутон и массив Главного хребта произошли за счет типичных для раннего палеопротерозоя расплавов кремнеземистой высоко-Мg (бонинитоподобной) серии (КВМС). Согласно имеющимся в настоящее время петрологическим, геохимическим и изотопно-геохимическим данным,

происхождение этих магм было связано с крупномасштабной ассимиляцией материала земной коры и верхов древней литосферной мантии "всплывающими" сквозь них очагами высокотемпературных ультрамафических мантийных магм. По-видимому, этот подъем осуществлялся по механизму зонной плавки, т.е. путем проплавления кровли очага, сопровождавшегося одновременной кристаллизацией высокотемпературных фаз у его дна (Шарков, 2006). При таком механизме в процессе развития магматических систем исходные мантийные ультрамафические расплавы могли ассимилировать различный коровый материал, в том числе и содержащий рудные компоненты. С этим хорошо согласуются и результаты изучения Sm-Nd-изотопии в породах Мончегорского свидетельствующие о разнородности вовлекавшихся в плавление комплекса, субстратов. Очевидно, именно благодаря этому обстоятельству, многочисленные расслоенные мафит-ультрамафитовые палеопротерозойские интрузивы во всем мире в целом похожи друг на друга по строению и составу пород, но существенно различаются по своей кумулятивной стратиграфии, а также характером и масштабами оруденения. [16]

Таким образом, на основе этих данных на Кольском п-ве, в финской Лапландии и в Северной Карелии установлены два главных разновозрастных луча-пояса рудоносных базитовых интрузивов с Pt-Pd и Cu-Ni (в меньшей степени) промышленной минерализацией. В.Ф. Смолькин с соавторами (2009) считают, что можно оконтурить два разновозрастных обширных плюмовых поля на северо-востоке Балтийского щита (рис. 11). На этой огромной территории известно множество сходных базитультрабазитовых массивов, возраст которых укладывается в интервал 2500-2300 млн лет, включая и их метаморфизованные аналоги, превращенные в коронитовые (друзитовые) породы в Беломорском домене (Богатиков и др., 2010) и в Колвицком гранулитовом поясе (Митрофанов, Нерович, 2003). Происхождение рудоносных расплавов из факта, что практически со всеми раннепалеопротерозойскими расслоенными мафит-ультрамафитовыми интрузивами региона связана Cu-Ni-ЭПГминерализация разного масштаба, следует, что магмы КВМС в целом были обогащены этими компонентами, но их концентрации были явно недостаточны для формирования месторождений в результате кристаллизационной дифференциации. Некоторое исключение из общего правила представляет никеленосный Мончеплутон – его породы характеризуются наивысшими содержаниями Ni и Cu, т.е. его исходный расплав был обогащен этими компонентами по сравнению с обычными содержаниями в аналогичных магмах, что и привело к появлению здесь месторождения сульфидных Си-Ni-ЭПГ-руд на ранних стадиях его формирования. Крупные месторождения ЭПГ на

Балтийском щите наблюдаются только в нескольких массивах, однако они связаны преимущественно с эпизодическими внедрениями порций рудоносных магм в затвердевающие или уже затвердевшие интрузивные камеры. Это и приводило к формированию рудоносных рифов – главного типа промышленных месторождений ЭПГ, связанных с расслоенными мафит-ультрамафитовыми интрузивами. Вероятно, в ряде случаев внедрение подобных рудоносных расплавов могло происходить и вне контура главного интрузивного тела. По-видимому, в таких случаях появляются крупные месторождения, связанные с небольшим интрузивным телом, как это, например, имеет место в интрузиве Войсис-Бэй в Канаде.[10]

Особенностью образований южного обрамления Мончегорского комплекса является тотальное преобразование первично-магматических пород в условиях зеленосланцевой фации, часто при полном сохранении их структурно-текстурных особенностей. Избытки кремнезема, возникавшие при массовой соссюритизации основного плагиоклаза и амфиболизации и отальковании пироксенов исходных габброидов, очевидно, поглощались циркулировавшим в породах водным флюидом и переотлагались в форме близкого по химизму к трондьемиту материала "даек" и жил, развитых в метагабброидах предгорий Вуручуайвенч и охарактеризованных Козловым (1973). Однако натрий дефицитен во вмещающих габброидах и, вероятно, поступал извне, вместе с метаморфизующими водными флюидами, содержащими NaCl; на это указывают и повышенные содержания хлора во вторичных минералах рассматриваемых метаморфизованных пород (Припачкин, Рундквист, 2008; Гроховская и др., 2012). В этой связи возникает вопрос о причинах метаморфизма пород южного обрамления Мончегорского комплекса. Этот контакт проходит по падающей в южных румбах зоне пологого совместного рассланцевания как пород плутона, так и супракрустальных образований Имандра-Варзуги, происходившего в условиях зеленосланцевой фации. Степень рассланцевания и метаморфизма пород постепенно уменьшается по мере удаления от шовной зоны надвига, с чеми связано постепенное затухание динамометаморфических процессов в северном направлении и на глубину, как это следует из буровых данных. Этим же объясняется и конформность зоны морфологией наложенных изменений c тектонического контакта между Мончеплутоном и супракрустальными породами рифтогенной структуры. Таким образом, формирование рассматриваемой полосы метаморфизованных пород южного обрамления комплекса было связано c процессами надвигообразования сопутствующего метаморфизма при формировании структурного коллажа в системе среднепалеопротерозойского Центрально-Кольского разлома. При этом масштабы

вторичной переработки пород требуют практически неограниченного притока воды, фильтрующейся по зонам тектонических нарушений, с которыми связаны рассматриваемые процессы. Скорее всего, это осуществлялось за счет поддонной гидросферы морского бассейна, существовавшего в то время в Имандра-Варзугском рифте наподобие современного рифта Красного моря, 2.0–1.9 млрд лет назад (Смолькин и др., 1995; Sharkov, Smolkin, 1997). Поскольку часть этой воды расходовалась по пути на образование водосодержащих вторичных минералов (амфибола, хлорита, цоизита и др.), самых нижних горизонтов достигал уже концентрированный рассол, необходимый для метасоматических процессов с участием платиноидов, а также для формирования тел трондьемитового состава. Кстати, вторичные включения рассолов установлены и в минералах платиноносного комплекса Лак-де-Иль (Hanley и Gladney, 2011), который также подвергался вторичной переработке.[11]

ГЛАВА З ГЕОЛОГО-ПЕТРОГРАФИЧЕСКАЯ ХАРАКТЕРИСТИКА РАЗРЕЗОВ

Главным источником информации о процессах формирования пород являются их структурно-текстурные особенности. Морфология зерен, соотношения в породе которых позволяют судить о последовательности формирования и кристаллизации минералов.

В расслоенных интрузиях при выделении последовательности формирования минералов, принята следующая терминология. Выделяются две группы зерен. Первая группа - минералы кумулуса, представлена гипидиоморфными, идиоморфными формирующими основной каркас породы. Минералы зернами, кумулуса кристаллизуются из расплава, заполняющего магматическую камеру первоочередно, и накапливаются на дне камеры. Вторая группа зерен - группа интеркумулуса. ксеноморфными Минеральные агрегаты представлены зернами, и занимают пространство минералов кумулуса. минеральная межзерновое Эта группа кристаллизуется в более позднюю стадию расплава и играет роль связующего цемента в породе (Шарков, 2006).

Геолого-петрографическая характеристика разреза участка Мончетундра основана на материалах, полученных в результате документации керна, изучения образцов и шлифов по профилям скважин МТ-14, МТ-12, МТ-06.

Для характеристики кумулус-интеркумулусных отношений используется упрощенная запись формулы хСу, где х - минералы кумулуса, у — минералы интеркумулуса. Минералы в формулах располагаются в порядке последовательности их кристаллизации.

Ниже приводятся следующие условные обозначения минералов, представленных в данной формуле:

С- знак, разделяющий кумулусную и интеркумулусную ассоциации;

р– плагиоклаз;

b – ромбический пироксен (бронзит);

а – моноклинный пироксен (авгит);

o - оливин;

q – кварц;

bt - биотит;

ар – апатит.

Кроме того, при оформлении фотографий образцов и шлифов используются другие общепринятые сокращенные обозначения породообразующих и рудных минералов. Pl — плагиоклаз, Opx — ромбический пироксен, Cpx — моноклинный пироксен, Ol — оливин, Qtz — кварц, Amf — амфибол, Sulf —сульфиды, Mgt — магнетит. Также при оформлении разрезов по скважинам были использованы сокращения: м/з — мелкозернистый, с/з — среднезернистый, к/з — крупнозернистый, г/з — гигантозернистый.

Скважина МТ-14

Рис. 12 Разрез по скважине МТ-14. Построен Кострикиным Р.Н с использованием материалов ОАО «Центрально-Кольская экспедиция» и данных С.И.Корнеева. Условные обозначения пород смотрите на следующей странице

Резкие Постепенные Современные отложения Тектоническая зона 🔳 Метагаббронориты **Г**аббронориты **Плагиопироксениты Ортопироксениты** [⊢]⊢[⊢] Нориты Оливиниты, метаоливиниты **—** Перидотиты, метаперидотиты 🕶 Дуниты, метадуниты Метасоматиты, катаклазиты, бластомилониты • Голубой кварц Интервалы оруденения **А** Хромитовое **◆ №** Магнетитовое Вкрапленное 🗱 Гнездово-вкрапленное

Условные обозначения

Рис. 13 Условные обозначения к разрезу скважины МТ-14 (Войтехович, Казанов 2008)

Интервал 230-160. Ритмичное чередование плагиоклазовых ортопироксенитов (рис.14) с гипидиоморфнозернистой структурой и массивной текстурой от к-с/з до г/з (рис. 15) и с/з норитов меланократовых с габброофитовой и пойкилитовой структурой и массивной текстурой. Мощность ритмов от первых метров до нескольких десятков сантиметров. Ассоциации кумулуса-интеркумулуса меняются так: от **bC**, **bCpc** гипидиоморфнозернистой до **pbC**сгабброофитовойи**рCbc** пойкилитовой. Контакты преимущественно постепенные, с углами к оси керна (к.о.к) от 30 до 40°. Породы сильно-средне амфиболизированы, средне хлоритизированы, соссюритизированы, карбонатизированы и рассланцованы. В нижней части интервала (220-215 м) находятся перидотиты — с/з, массивные с петельчатой структурой с зернами магнетита с ассоциациейоСтва. В рудном интервале интервале от 220 м до 160 м распространена сульфидная интерстиционная вкрапленность хальпирита, пирротина и пентландита (2-3%) и отдельные зерна магнетита и ильменита.

Интервал 160-143. Метаоливиниты (рис.16) с/з, равномернозернистые с массивной текстурой и панидиоморфнозернистой структурой (рис.17). Порядок минералообразования (**mgt**)о**Cmgt**. Обнаружены многочисленные зерна магнетита, который присутствует как в кумулусе, так и интеркумусе.

Рис. 14 Образец 175.6; Ортопироксенит крупнозернистый с гипидиоморфнозернистой структурой и массивной текстурой. Фото керна.

Рис. 15 Шлиф 175.1; **bC**. К/з плагиоортопироксенит с массивной текстурой и гипидиоморфнозернистой структурой.Вторичные изменения: слабая амфиболизация, хлоритизация. В проходящем свете с анализатором.

Рис. 16 Образец 160.3; метаоливинит массивный, среднезернистый. Фото керна

Рис. 17 Шлиф 154.4; (mgt)оСmgt. С/з массивный оливинит с панидиоморфнозернистой структурой.Вторичные изменения: слабая серпентинизация. В проходящем свете с анализатором

Интервал 143-60. Ритмичное переслаивание метагабброноритов с/з (в кровле и подошве) с габброофитовой структурой, сильно амфиболизированных, средне соссюритизированных,слабо окварцованных, карбонатизированных,биотитизированных и гранатизированных и габброноритов мезократовых к/з, структура габброофитовая в отдельных случаях трахитоидная. Взаимоотношения кумулус-интеркумулус: **pCb** от практически неизмененных пород в

нижних частях и pCpx(q) в измененных верхних с добавлением кварца. Контакты резкие, с углами к.о.к. $45-50^{\circ}$.

В интервале 90-73 м присутствует мелкая рассеянная сульфидная вкрапленность и гнезда. Сульфиды представлены главным образом пирротином и халькопиритом 0,5-2%. Наблюдается: мелкая неравномерно распределенная вкрапленность, гнездововкрапленное оруденение в верхней части интервала, а также редкие зерна магнетита. В середине тектонической зоны, в интервале 110 м отмечена пирротиновая жила мощностью 4 см. В прикровлевой и приподошвенной частях тектонической зоны отмечается неравномерно распределенная мелкая вкрапленность голубого кварца (1-2 %).

Интервал 60-15. Метагаббронориты (рис. 18) от м-с/з до к-с/з с габброофитовыми структурами и сланцеватыми текстурами с резким нижним контактом (угол 40° к о. к.). Порядок минералообразования **рСb** — на рисунке (рис. 19) видно полное замещение пироксена амфиболом. Породы сильно амфиболизированы, хлоритизированы и биотитизированы, соссюритизированы, милонитизированы, лимонитизированы, рассланцованы. На границе с тектонически переработанными породами, отмечаются зерна магнетита 5-7%, в интервале 30-40 м отмечаются мелкие вкрапленности и гнезда сульфидов 0,5% представленных пентландитом и пирротином.

Рис. 18 Образец 52.5; метагаббронорит лейкократовый среднекрупнозернистый с массивной и слегка сланцеватой текстурой (вдоль трещин) и габброофитовой структурой. Фото керна.

19 Шлиф 51.5; Рис. pCb. Метагаббронорит массивный габброофитовой структурой. Замещение пироксена амфиболом. Вторичные изменения: средняя амфиболизация, слабая соссюритизация. В проходящем свете с анализатором

Скважина МТ-12

Рис.20 Разрез по скважине МТ-12. Построен Кострикиным Р.Н с использованием материалов ОАО «Центрально-Кольская экспедиция» и данных С.И.Корнеева. Условные обозначения пород смотрите на следующей странице

Условные обозначения

Гнездово-вкрапленное

Рис. 21 Условные обозначения к разрезу скважины МТ-12 (Войтехович, Казанов 2008)

Интервал 250-220. Метагаббронориты кварцсодержащие (1-2% голубого кварца) с-к/з, в целом равномернозернистые. Породы слабо катаклазированные. Сильно амфиболизированные, слабо биотитизированные, слабо гранатизированы (рис.22). Структуры: бластогабброофитовые до кристаллобластических. В интервалах 225-220 м отмечаются зерна магнетита. Контакты разбурены, угол к.о.к 30-40°.

Mgt Le mm

Рис. 22 Шлиф 220.9; Гранатизация в сильнокатаклазированных Q-Amf-Bt-Grt породах. В проходящем свете с анализатором.

Рис. 23 Шлиф 166.3; к/з ортопироксениты. Подошва рудного интервала. Микрошлиры магнетита, приуроченные к плоскостям рассланцевания. В проходящем свете без анализатора.

Рис. 24 Образец 121.5; норит с/з мезократовый с массивной текстурой и габброофитовой стр-рой. Наблюдаются редкие мелкие зерна голубого кварца, а также вкрапленные агрегаты халькопирита

Рис. 25 Шлиф 120.1; мезократовый норит из рудного интервала с массивной текстурой и бластогабброофитовой структуройрьС. В проходящем

Интервал 220-160. Сложная зона переслаивания интенсивно катаклазированных пород и тектонически переработанных, (предположительно по пироксенитам и M-c/3метагаббродолеритами. Отмечается перидотитам) карбонатизация, лимонитизация, амфиболизация, соссюритизация, хлоритизация, окварцевание, милонитизация. Сульфиды - пирротин - преимущественно редкие эпидотизация, мелкие зерна и небольшие вкрапленности. Многочисленные интервалы магнетита (рис. 23) (до 5 %), приуроченные к плоскостям рассланцевания. Контакты в основном разбуренные, рассланцованные.

Интервал 160-118.Ритмичное переслаивание с резкими переходами различных невыдержанных по мощности слоев к-с/з пироксенитов, в интервале 160-130

м,неравномернозернистых массивных, с гипидиоморфнозернистой структурой (рис. 27)и (мета)меланоноритов (рис. 24) с/з с габброофитовой структурой (рис. 25), в интервале 130-118 м. Ассоциация кумулус-интеркумулус меняется снизу вверх: от **bCp** с гипидиоморфнозернистой структурой в пироксенитах до **pCb** с пойкилитовой и **pbC**с габброофитовой структурой в норитах.Мощности ритмов изменяются от нескольких десятков сантиметров до первых метров. Сульфиды в норитах (рис. 26): гнездововкрапленные агрегаты (от 1-2% до 3-5%); в пироксенитах: – м-с/з гнездововкрапленные агрегаты (3 - 5%), интерстициальные, распределены неравномерно (Ро+Рп>Сср). В подошвенной части прожилково-вкрапленные агрегаты 10-40%, в среднем 20-25%. Контакты резкие, с углами к.о.к. 40°. Лишь в подошве и кровле постепенные.

Рис. 26 Образец 140.0; резкий неровный контакт между: норитами и пироксенитами. На контакте проявлена сульфидная гнездово-вкрапленная минерализация. Фото керна.

Рис. 27 Образец 128.2; массивные с/з ортопироксениты с гипидиоморфнозернистой структурой из рудного интервала. Фото керна.

Интервал 118–98. Ритмичное чередование с/з перидотитов с петельчатой структурой и с/з пироксенитов с гипидиоморфнозернистой при заметном преобладании по мощности первых. Сульфиды - мелкая неравномерная вкрапленность. В середине интервала прослои габброноритов. Мощности ритмов – до первых метров. Контакты резкие. Вариации минералообразования меняются снизу вверх от **oCchr** к **oCb.**

Интервал 98–80.Неравномерное переслаивание к-с/з метагабброноритов и с/з метаноритов мезократовых, нередко содержащих вкрапленность голубого кварца (0,5-5%). Сульфиды – вкрапленность 0,5-7%. Контакты резкие с углами к.о.к 40-50°.

Интервал 80–70. Дайка метамикрогаббродолеритов средне трещиноватых. Сульфиды т/з редкие зерна, мелкая вкрапленность и прослой магнетита, приурочен к контакту. Резкие контакты.

Интервал 70–25. Ритмичное переслаивание разномощных слоев с/з равномернозернистых гипидиоморфнозернистой структуры метапироксенитов и к-с/з неравномернозернистых трахитоидной структуры метагабброноритов. Мощности ритмов — 2-5 м. Резкие контакты (угол 30-50 к.о.к). Нередко содержат участки рассланцевания (угол 20-60 к оси керна). Породы сильно подвержены процессам вторичных изменений (амфиболизация, хлоритизация, эпидотизация). Сульфидная минерализация колонки проявлена неравномерно 0,1%. В середине интервала присутствуют рассеянные зерна магнетита до 1%.

Скважина МТ-06

Рис. 28 Разрез по скважине МТ-06. Построен Кострикиным Р.Н с использованием материалов ОАО «Центрально-Кольская экспедиция» и данных С.И.Корнеева. Условные обозначения пород смотрите на следующей странице

Условные обозначения

Рис. 29 Условные обозначения к разрезу скважины МТ-06 (Войтехович, Казанов 2008)

Рис. 30 Образец 71.05; Меланократовый норит к-м/з с такситовой текстурой, обусловленной переходом от псевдопорфировидной к пойкилитовой (синий) и габброофитовой (черный) структурами. Фото керна

Рис. 31 Шлиф 84.6; p_1bCp_2 мезократовый норит из рудного интервала с псевдопорфировидной структурой. Вторичные изменения проявлены слабо — очень слабая амфиболизация на каймах. В проходящем свете с анализатором

Интервал 90-80. Нориты мезократовые к-с/з, равномернозернистые, массивные и неравномернозернистые м-с/з внизу с пойкилитовой и псевдопорфировидной структурой (рис. 31). Сульфиды — вкрапленность 1-2 %. Смена ассоциаций кумулуса происходит с $\mathbf{p_1bCp_2}$ для пойкилитовой на $\mathbf{p_1bp_2Caq}$ для псевдопорфировидной.

Интервал 80-56. Чередование плагиопироксенитов с гипидиоморфнозернистой структурой и мелано-, мезократовых норитов к-с/з, трахидоидных и массивных с псевдопорфировидной и габброофитовой структурой и участками пойкилитовой (рис. 30), такситовой текстурой. Смена порядка минералообразования происходит так (снизу вверх): **bpC(a)** у плагиоортопироксенитов с гипидиоморфнозернистой структурой, до **pCb** у меланократовых норитов с пойкилитовой структурой (рис. 32, 33). Сульфиды – вкрапленность и гнезда 1-2%, неравномерно распределенные – в основном в к-с/з породах. Мощности ритмов – первые метры. Контакты резкие с углами к.о.к 60°.

Рис. 32 Образец 62.25; меланократовый с-к/з норит с участками пойкилитовой pCb (черным) и габброофитовой pbC(светлым) структур. Текстура такситовая. Фото керна

Рис. 33 Шлиф 62.25; с-к/з норит из рудного интервала с участком пойкилитовой структуры. В проходящем свете с анализатором

Интервал 56-40. Нориты мезократовые, на отдельных участках до меланократовых, г-с/з и м-к/з, с тонким чередованием плагиоортопироксенитов с гипидиоморфнозернистой структурой. Нориты неоднородные по структуре — с участками от псевдопорфировидной до пойкилитовой, массивной и такситовой текстурами, с преобладанием первой. Смена порядка минералообразования происходит так: от **p**₁**b**C**p**₂ для псевдопорфировидной структуры до **bp**C(**a**) для габброофитовой. Иногда присутствуют зерна голубого кварца. Сульфиды — неравномерная к-с/з вкрапленность и гнезда в интервале 50-45 м, 2% халькопирит, пирротин, пентландит. Контакты резкие, в местах микрорасслоенности — постепенные.

Рис. 34 Шлиф 39.8; **bСар**меланократовый норит с участком пойкилитовой структуры. В проходящем свете с анализатором

Рис. 35 Шлиф 19.4; **b**Сортоплагиопироксенит с гипидиоморфнозернистой структурой и массивной текстурой. Слабо амфиболизирован. В проходящем свете с анализатором

Интервал 40-15. Сложное чередование участков к-с/з и г-к/з мезократовых, меланократовых норитов пойкилитовой (рис. 34) и псевдопорфировидной структуры, с участками кварцсодержащих, плагиоклазовых ортопироксенитов 35), гипидиоморфнозернистой структуры (рис. иногда содержащие вкрапленность голубого кварца. Изменчивость ассоциации кумулуса-интеркумулуса наблюдается от **bCp** для пироксенитов и **bCap** для норитов.Сульфиды – вкрапленность и гнезда халькопирита и пирротина 2-3% иногда в ассоциации с голубым кварцем. Мощности ритмов – первые метры. Контакты между породами резкие, с углами к.о.к 30-40°.

ГЛАВА 4

ХАРАКТЕРИСТИКА РУДНОЙ МИНЕРАЛИЗАЦИИ

В ходе поисковых работ на площади Мончетундровского расслоенного массива были выявлены две рудных зоны: Северная и Южная. Первая вскрыта 6 скважиной и представлена чередованием, главным образом, крупнозернистых и среднезернистых меланократовых норитов, норитов и плагиоклазовых пироксенитов. Южная рудная зона наблюдается в скважинах номер 12 и 14 и состоит из переслаивания преимущественно к/з и с/з ортопироксенитов и в меньшей степени с-к/з меланократовых норитов. При написании данной главы были приняты следующие сокращения названий минералов: Міl – миллерит,Во— борнит, Ро —пирротин, Ру — пирит, Ilm — ильменит, Mgt — магнетит, Рп — пенландит, Сср — халькопирит, Sph — сфалерит, Cbt — кубанит, CTL-котульскит, SB — соболевскит, SOP — сопчеит, MON — мончеит, MER-меренскит, EL — электрум, IFP-изоферрроплатина, BRG — брэггит, СООР — куперит, ТАР — теларгпалит, ZV — звягинцевит, VAS — василит, HS — гессит.

Скважина МТ-14

В скважине номер 14 рудный интервал находится на глубинах 220-160 м. Интервал сложен ритмическим переслаиванием, в основном крупнозернистых ортопироксенитов, отдельных слоев среднезернистых их разновидностями и крупнозернистых норитов. Вторичные изменения представлены амфиболизацией, хлоритизацией, карбонатизацией, соссюритизацией средне-слабой интенсивности.

Перекрывают рудный интервал с/з метаоливиниты, с массивной текстурой и панидиоморфнозернистой структурой, а постилают с/з массивные метаперидотиты, с петельчатой структурой (см. рис)

Сульфидная минерализация представлена одним морфоструктурным типом – вкрапленным, которое включает в себя редкую неравномерно распределенную м-с/з вкрапленность (0.5-2%) и изредка отдельные интеркумулусные гнезда. Парагенезис пентландит-пирротин-халькопирит.

Халькопирит занимает интеркумулусное положение по отношению к породообразующим минералам и образует аллотриоморфные агрегаты, нередко с продуктом распада — борнитом. Также в редких могут наблюдаться сложные краевые срастания с пирротином и (или)с пентландитом. Помимо всего прочего с халькопиритом могут встречается такие минералы как сфалерит и магнетит. (см. рис)

Рис. 36 Интервал 177.4-177.5. Сульфидная вкрапленная минерализация в к-с/з ортопироксените. Фото керна.

Рис. 37 ППШ 174.45. К/з ортопироксенит. Халькопирит со структурами распада — борнитом и кубанитом. REM фото

Рис. 38 ППШ 174.45. К/з ортопироксенит. Срастание халькопирита и сфалерита со структурами распада борнита. REM фото.

Рис. 39 ППШ 164.4. С/з ортопироксенит. Срастание халькопирита с продуктами распада борнита с магнетитом. REM фото

Отличительной чертой этого рудного интервала является преимущественно халькопиритовый состав минерализации с характерными структурами распада: главным образом борнитом, реже кубанитом, который образует полосовидные вростки.

При проведении минераграфического исследования и микрозондового анализабыли обнаружены различные по составу, морфологии и размеру минералы платиновыхгрупп (МПГ). В процессе изучения благороднометального оруденения выявлены различные минералы платины и палладия: висмутиды, висмуто-теллуриды, плюмбоматы, а также прочие агломераты серебра и теллура (гессит), селена и свинца (клаусталит).

В интервале 174.45, встречено сложное срастание агрегатов МПГ: котульскита, теларгпалита, звягинцевита и соболевскита. Оно занимает промежуточное положение на границе сульфидов и силикатов и приурочено к парагенезису с халькопиритом (рис.57).

Рис. 40 ППШ 174.45. Сложное срастание котульскита, соболевскита (PdBi), теларгпалита(Pd,Ag)₃Те и звягинцевита. Агрегат занимает промежуточное положение на границе халькопирита и вмещающих силикатов. REM фото

 Рис.
 41
 ППШ
 174.45

 Гипидиоморфное котульскитаРd(Те,Ві)
 зерное внутри калькопирита, со структурами распада борнита. REM фото

Рис. 42 ППШ 174.45 Включение призмовидного зерна мончеита ${\rm Pt(Te,Bi)}_2$ в породобразующих силикатах. REM фото

Рис. 43 ППШ 174.45. Срастания звягинцевита (Pd₃Pb) на границе халькопирита и силиката. Продукты распада в халькопирите – борнит, а также на периферии находится более поздний миллерит. REM фото

Рис. 44 ППШ 174.45 Аллотриморфное зерно куперита (PtS) внутри халькопирита со структурами распада борнита. REM фото.

Рис. 45 ППШ 174.45 Изоферроплатина (Pt_3 Fe) каплевидной формы внутри пентландита и халькопирита, которые образовались после. REM фото.

Рис. 46 ППШ 164.4 Включение зерна василита(Pd,Cu) $_{16}$ (S,Te) $_{7}$ в халькопирите. REM фото а) срастания магнетита с халькопиритом б) Гипидиоморфный агрегат василита в халькопирита со структурами распада борнита

Гипидиоморфное зерно котульскита внутри халькопирита размерами около 50 мкм.(см. рис).

Включение призмовидного зерна мончеита в породобразующих силикатах размером до 40 мкм.

Срастания звягинцевита на границе халькопирита и силиката. Размеры около 30 мкм.

Аллотриморфное зерно куперита внутри халькопирита размером 30 мкм.

Изоферроплатина размером 25 мкм каплевидной формы внутри более поздних пентландита и халькопирита.

Гипидиоморфное зерно василита в халькопирите около 40 мкм.

Скважина №12

В скважине №12 рудный интервал устанавливается на глубинах 160-110 м. Интервал представлен переслаиванием с постепенными переходами различных невыдержанных по мощности слоев к-с/з, равномернозернистых, массивных метаортопироксенитов и метаноритов. Вторичные изменения проявлены среднесильно, и характеризуются амфиболизацией, хлоритизацией, карбонатизацией, соссюритизацией.

Перекрывает рудный интервал сложный ритм метаперидотитов и метапироксенитов, с массивной и сланцеватой текстурами и петельчатой и бластогипидиоморфнозернистой структурами соответственно, а постилают сильно-очень сильно измененные бластомилонит-катаклазитовые породы предположительно по перидотитам, дунитам, оливинитами пироксенитам (см. рис).

Сульфидная минерализация представлена двумя морфоструктурными типами – рассеянным гнездово-вкрапленным и как единичный случай в нижней части – прожилково-шлировидным.

Минерализация гнездово-вкрапленного типа распределена неравномерно. Практически все сульфиды – интерстициальные. Гнезда, редкие мелкие зерна и вкрапленность от 0.1-0.5% в верхних частях до 5% в нижних. Характерно преобладание пирротина И пентландита нал халькопиритом.Порядок минералообразования таков: пирит-пентландит-пирротин-халькопирит.

Минерализация шлировидного типапроявлена лишь на отдельном интервале 157.3 м и представляет собой протягивающиеся вдоль всего штуфа керна шлир (жилку) размерами 2-3 см.

Для конкретного интервала характерны сложные срастания как между собой таких минералов как пирротина, халькопирита, пентландита и пирита, который может встречаться как в ранней, так и в поздней генерации, так и отдельных вростков с краев. Например в одних случаях можно видеть структуры распада пирита в пентландите, а в других - отдельные небольшие вростки того же пирита, но уже поздней генерации в халькопирите.

Характерным отличием данного интервала над предыдущим является отсутствие структур распада по халькопириту в виде борнита или кубанита, а также в некоторых случаях ярким количественным превосходством агрегатов пирротина и пентландита над халькопиритом.

47 Интервал 121.5-121.6. К/з Рис. Меланократовый норит, равномернозернистый. Неравномерно распределенная рассеянная гнездововкрапленная минерализация. Фото керна

Рис. 48 Интервал 157.3-157.4. К/з ортопироксенит. Крупное (около 2 см) шлировидное оруденение. Фото керна.

Рис. 49 ППШ 123.2. Меланократовый к/з норит. Сложные срастания пирита, халькопирита, пентландита пирротина. Микрофотография отраженном свете с анализатором

Рис. 50 ППШ 134.8. K/3метаортопироксенит. Срастания пирита ранней генерации пентландитом и пирротином поздней. REM фото

51 ППШ 146.2. Рис. K/3ортопироксенит. Сложные срастания сульфидов ассоциации халькопиритпирротин-пирит. REM фото

Рис. 52 ППШ 123.2. Меланократовый K/3норит. Сложные срастания халькопирита, пирита, пирротина и 5 пентландита. REM фото

В результате проведенного микрозондового анализа были обнаружены МПГ относящиеся к теллуридам, теллуро-висмутидам, сульфидам. Стоит заметить, что агрегаты МПГ занимают разное положение. Это может быть либоконтакт между сульфидами и силикатами, либо внутри самих сульфидов. Встречаются приведенные ниже МПГ в различных парагенезисах. Как правило, в ассоциациях пирротинпентландит-халькопирит и в некоторых случаях может добавляться пирит, который бывает как ранним, так и поздним.

Брэггит – самый распространенный минерал этого рудного интервала. Имеет средние размеры до 30 µm. Образует изометричные гипидиоморфные агрегаты.(см. рис).

Котульскит формирует гипидиоморфные, ксеноморфные агрегаты размерами до 25 µm. Встречается в парагенезисе с халькопиритом и пирротином, локализуясьна границе силикатных минералов (см. рис).

Электрум представлен лишь одним зерном до 10 µm в поперечнике и занимает окраинное положение в халькопирит-пентландитовом парагенезисе (см. рис).

Рис. 53 ППШ 134.8 Изометричное зерно брэггита (PtS) на границе пентландита и породообразующего силикатного минерала REM фото а) общий план, парагенезис пентландит-халькопирит б) увеличенное фото.

Рис. 54 ППШ 130.9 Брэггит с включениями куперита (PtS) на контакте пирротина, халькопирита и породообразующего силикатного минерала. REM фото а) общий план, парагенезис пирротин-халькопирит б) увеличенное фото.

Рис. 55 ППШ 134.8. Сложные срастания зерен котульскита $Pd(Te,Bi)_2$, с включением меренскита ($PdTe_2$), на контакте пирротина и породообразующего силикатного минерала. REM фото а) общий план. Срастания главных сульфидов: пирротина и халькопирита, а также пирита, пентландита и пирротина. Зерна ильменита б) увеличенное фото

Рис. 56 ППШ 123.2 Электрум (AuAg) в парагенезисе с пентландитом и халькопиритом. REM фото а) общий план, типоморфные срастания главных сульфидных минералов: халькопирита, пирротина и пентландита б) увеличенное фото, зерно электрума

Скважина №6

Малосульфидное платинометальное оруденение включает в себя породы всего разреза, а именно от 90 до 15 м. Вмещающие породы представлены ритмически и микроритмически расслоенными толщами крупнозернистых и среднезернистых норитов и пироксенитов (см. рис). В верхних частях разреза находятся преимущественно пироксениты, в нижних – нориты.

Минерализация представлена двумя морфоструктурными типами: каплевидным с подчиненным значением гнездово-вкрапленного и прожилково-шлировидным.

Каплевидная минералиция в отличие от предыдущей рудной зоны здесь широко распространена. Наиболее часто встречаема неравномерная интерстициальная каплевидная вкрапленность и гнезда сульфидов от 1% до 7%, причем с заметным преобладанием пирротина и пентландита над халькопиритом.

Прожилково-шлировидное оруденение проявлено локально лишь в интервале 46.0-44.0 м и образует местами сплошные массивные руды сульфидов размерами до 4 см, в основном пирротинового состава.

Как ранее отмечалось, в качестве ярко доминирующих минералов распространены тройные парагенезисы пентландита, халькопирита и пирротина. Помимо всего прочего были замечены: пирит двух генераций — ранняя представляет собой вростки в пентландит, часто в ассоциации с халькопиритом, образуя порой причудливые графические образования; поздняя генерация представляет собой небольшие участки пирита по краям; магнетит в срастании с сульфидами, а также многочисленные структуры распада по халькопириту представленные борнитом, кубанитом.

Рис. 57Интервал 70.75-70.9. Такситовая текстура. Переход от к/з меланоноритов к м/з пироксенитам. Каплевидная сульфидная минерализация в норитах (5%). Фото керна.

Рис. 58Интервал 44.0. К/з нориты мезократовые. Массивное прожилковошлировидное оруденение (20-40%). Фото керна.

Рис. 59ППШ 57.0. Нориты с-г/з мезократовые. Сложные срастания халькопирита, пентландита и пирротина с пиритовыми вростками в халькопирите. Микрофотография ППШ. В отраженном свете с анализатором

Рис. 60ППШ 71.05. Меланомезократовые нориты м-к/з. Структуры распада кубанита в халькопирите. Микрофотография ППШ. В отраженном свете с анализатором

Рис. 61ППШ 52.7. Нориты с/з мезократовые. Сложные графические срастания халькопирита и пирита в пентландите. REM фото

Рис. 62ППШ 52.7. Нориты с/з мезократовые. Деформированное каплевидное срастание пирротина и халькопирита. REM фото

В результате проведенного микрозондового анализа были обнаружены МПГ относящиеся к теллуридам и теллуро-висмутидам. Стоит подчеркнуть, что нижеописанные и приведенные на фото агрегаты МПГ занимают положение на контакте между сульфидами и силикатами, а также часто находятся непосредственно в сульфидной матрице или только в породообразующих силикатах.

Котульскит — один из самых часто встречаемых разновидностей МПГ в этом интервале и в некоторых местах имеют место довольно крупные зерна, почти до 1 мм. Занимает положение как внутри сульфидов в парагенезисе халькопирита, пентландита и пирротина, так и внутри породообразующих силикатов(см. рис)

Мончеит образует гипидиоморфные зерна размерами до 30 µm, находясь как внутри силикатов, так и внутри сульфидов. Часто находится в парагенезисе пирротинхалькопирит-пентландит.

Меренскит можно видеть в виде аллотриоморфных зерен, размером до 100 µm в срастаниях сопчеитом. Занимает внутреннее положение в сульфидном пространстве. (см. рис)

Сопчеит и теларгпалит образуют тонкие каемки на краю вышеописанных меренскита и котульскита.

Гессит встречен в виде небольших изометричных зерен, находящихся в подорообразующих силикатах в непосредственной близости от МПГ.

Рис. 63ППШ 57.0. Периферийные срастания мончеита $Pt(Te,Bi)_2$ в агрегате котульскита $Pd(Te,Bi)_2$, находящегося в породообразующих силикатах. REM фото

Рис. 64ППШ 54.6. Сложные срастания котульскита и теларгпалита $(Pd,Ag)_3$ Те а) Общий план парагенезиса пирротина, халькопирита, пентландита в ассоциации с котульскитом. Микрофотография ППШ. В отраженном свете с анализатором б) Увеличенное фото. Теларгпалит образует небольшие срастания по краям котульскита. REM фото

Рис. 65ППШ 52.7. Гипидиоморфное зерно мончеита внутри сульфида. REM фото а) общий план, ассоциация пирротин-халькопирит-пентландит б) увеличенное фото, мончеит приурочен к границе двух сульфидных минералов

Рис. 66 ППШ 71.05. Вростки сопчеита в аллотриоморфное зерно меренскита (PdTe₂) REM фото а) Общий план. Капля халькопирита с небольшими включениями магнетита и ильменита б) увеличенное фото. МПГ внутри сульфида. 1 Гессит (Ag₂Te) внутри силикатов.

ГЛАВА 5 ОСОБЕННОСТИ РАСПРЕДЕЛЕНИЯ РУДНЫХ ЭЛЕМЕНТОВ В РАЗРЕЗЕ

Скважина МТ-14

В рудном интервале, находящемся на глубинах 220-160 м породы представлены ритмическим чередованием слоев к/з и с/з пироксенитов, а также — с/з пироксенитов и отдельных прослоев с/з меланоноритов. На рисунках можно наблюдать колебания концентраций таких элементов, как Cu, Ni, S в широких пределах (рис. 67). Так, если отдельно рассмотреть каждый график по отдельности можно уследить определенную зависимость, которая в первую очередь обусловлена схожим поведением меди и серы. А именно с увеличением снизу вверх по разрезу концентраций Cu от 0.01 % до 0.15 % также увеличивается Sc 0.1 до 0,6%.

Если рассмотреть характер распределения Pt,Pd,Au (рис. 68), то несомненно, можно увидеть их взаимосвязь именно с к/з ортопироксенитами, а также наблюдать явный постепенный тренд увеличения их концентраций снизу вверху по интервалу, а именно с 0.045 г/т до 8.9 г/т. Причем наиболее резкие темпы увеличения наблюдаются в самых верхних частях (инт. 180-160 м), вплоть до контакта с метаоливинитами.

Показатели коэффициентов корреляции потвердили, что наблюдается приуроченность МПГ к медным сульфидам. По разрезу рудной зоны отношение Си к Au+Cu+Ni составляет 0.68, в то время как Ni – -0.08, а S– 0.8. (см. рис. 70)

Количество суммы благородных металлов возрастает снизу вверх по разрезу (см. рис. 69).

Рис. 67 Распределение содержаний элементов Cu, Ni, S по разрезу Скважины МТ-14 (с использованием материалов ОАО «Центрально-Кольская экспедиция»)

Рис. 68 Распределение содержаний элементов Au, Pt, Pd по разрезу Скважины МТ-14 (с использованием материалов ОАО «Центрально-Кольская экспедиция»)

Рис. 69 Распределение отношений элементов Au+Pt+Pd/S ,(Cu+Ni)/S, Pd/Pt, Au+Pd+Pt по разрезу. Скважина МТ-14

Рис. 70 Графики корреляционных зависимостей значений Au+Pd+Pt к S, Au+Pd+Pt к Cu+Ni и Au+Pd+Pt к Cu в породах рудного интервала. Скважина MT-14

Табл.1 Коэффициенты корреляций для содержаний Cu, Ni, S, Pt, Pd, Au, Cu+Ni и Au+Pt+Pd в породах по рудному интервалу скважины МТ-14 (N=109, r=0.18, сумма ЭПГ>0,045, красным цветом выделены критические значения коэффициентов корреляции)

фициентов коррел	^{яции}) Au	Pt log	Pd	Cu	Ni log	S log	Cu+Ni	Au+Pt+Pd log	
	log	rilog	log	log	Ni log	S log	log	Auti iti u log	
Au log	1.00								
Pt log	0.53	1.00							
Pd log	0.47	0.70	1.00						
Cu log	0.64	0.50	0.71	1.00					
Ni log	-0.13	0.12	-0.18	-0.41	1.00				
S log	0.66	0.60	0.81	0.87	-0.12	1.00			
Cu+Ni log	0.14	0.29	0.02	-0.15	0.94	0.14	1.00		
Au+Pt+Pd	0.55	0.83	0.97	0.68	-0.08	0.80	0.12	1.00	
log	0.55	0.83	0.97	0.08	-0.08	0.80	0.12	1.00	

Табл. 2 Средние содержания Cu, Ni, S, Pt, Pd, Au, Cu+Ni, Pd/Pt, Au+Pt+Pd в породах скважины MT-14 по рудному интервалу. (N=109, сумма $\Im\Pi\Gamma>0,045$)

	N набл.	Среднее	Геометр. Среднее	Медиана	Мода	Минимум	Максимум	Стд.откл.
Аи г/т	109	0.040266	0.022303	0.020000	.0100000	0.010000	0.42000	0.064944
Pt, Γ/T	109	0.270229	0.101497	0.110000	.0250000	0.025000	3.69000	0.546476
Pd, г/т	109	0.358716	0.120411	0.150000	.0100000	0.010000	4.93000	0.688919
Cu, %	109	0.069365	0.034786	0.046000	.1300000	0.000700	0.31000	0.068028
Ni, %	109	0.107761	0.068408	0.100000	Множест.	0.005000	0.32000	0.084108
S, %	109	0.094927	0.051154	0.070000	.1400000	0.002000	0.86000	0.109297
Pd/Pt	109	1.797134	1.186352	1.200000	Множест.	0.076923	17.20000	2.195283
Cu+Ni	109	0.177127	0.128223	0.172000	.2700000	0.014000	0.49000	0.116727
Au+Pd+Pt	109	0.669211	0.273429	0.250000	.0450000	0.045000	8.96000	1.278990

Скважина МТ-12

Рудный интервалнаходится на глубинах 160-110 м и его вмещающие породы могут быть охарактеризованы, как сложное ритмическое переслаивание к/з плагиопироксенитов и с/з плагиопироксенитов в нижних частях, и чередование с/з ортопироксенитов и с/з меланоноритов, с отдельными участками к/з норитов в верхних частях. Таким образом, рудный интервал по петрографическому признаку условно можно разделить на две части — нижнюю (160-130) и верхнюю (130-110).

Если рассмотреть графики распределения Cu, Ni и S (рис. 71), то можно увидеть, что снизу вверх динамика концентраций меди и серы ведет себя похожим образом, как в предыдущей скважине — а именно с трендами колебаний значений Cu подобно меняются и значения S, причем Ni практически никак не изменяется на протяжении всего интервала. Таким образом, количество медных сульфидов преобладает над общим числом прочих сульфидов.

Рассматривая графики Pt и Pd (рис. 72), важно заметить, что они демонстрируют отчетливый тренд увеличения снизу вверх концентраций благородных металлов от 0,5 г/т до 3-4 г/т и приурочены к вышеуказанным породам, а главным образом к с/з меланократовым норитам и с/з пироксенитам с содержаниями 3,1 г/т в верхних частях рудного интервала.

Посчитанные коэффициенты корреляции выявили сродство МПГ и медных сульфидов, со значением Cu к Au+Pt+Pd равному 0.8, что является значимым.

Рис. 71 Распределение содержаний элементов Cu , Ni, S по разрезу Скважины МТ-12 (с использованием материалов ОАО «Центрально-Кольская экспедиция»)

Рис. 72 Распределение содержаний элементов Au , Pd, Ptпо разрезу Скважины MT-12 (с использованием материалов ОАО «Центрально-Кольская экспедиция»)

Рис. 73 Распределение отношений элементов Au+Pt+Pd/S ,(Cu+Ni)/S, Pd/Pt, Au+Pd+Pt по разрезу. Скважина МТ-12

Рис. 74 Графики корреляционных зависимостей значений Au+Pd+Pt к S, Au+Pd+Pt к Cu+Ni и Au+Pd+Pt к S по рудному интервалу. Скважина MT-12

Табл.3 Коэффициенты корреляции для содержаний Cu, Ni, S, Pt, Pd, Au, Cu+Ni и Au+Pt+Pd в породах рудного интервала скважины MT-12. (N=58, r=0.26, сумма ЭПГ>0,045, красным цветом выделены критические значения коэффициентов корреляции)

	Au log	Pt log	Pd log	Cu log	Ni log	S log	Cu+Ni log	Pd+Pt+Au log
Au log	1.00							
Pt log	0.79	1.00						
Pd log	0.76	0.91	1.00					
Cu log	0.81	0.75	0.80	1.00				
Ni log	0.49	0.33	0.37	0.50	1.00			
S log	0.63	0.69	0.66	0.85	0.48	1.00		
Cu+Ni log	0.77	0.62	0.63	0.84	0.84	0.79	1.00	
Pd+Pt+Au log	0.82	0.97	0.98	0.80	0.38	0.69	0.66	1.00

Табл. 4 Средние содержанияCu, Ni, S, Pt, Pd, Au, Cu+Ni и Au+Pt+Pd в породах скважины MT-12 по рудному интервалу. (N=58, сумма ЭПГ>0,045)

	N набл.	Среднее	Геометр. Среднее	Медиана	Мода	Минимум	Максимум	Стд.откл.
Au, Γ/T	58	0.062414	0.040755	0.050000	.0100000	0.010000	0.220000	0.050966
Pt, Γ/T	58	0.345690	0.195199	0.275000	.0250000	0.025000	1.300000	0.302854
Pd, г/τ	58	0.519052	0.297203	0.410000	Множест.	0.010000	1.790000	0.433686
Cu, mas. %	58	0.068750	0.042689	0.058000	.1300000	0.000500	0.230000	0.054216
Ni, mas. %	58	0.089138	0.079713	0.075000	.0580000	0.020000	0.220000	0.043935
S, mas. %	58	0.399259	0.208750	0.260000	.1400000	0.008000	2.500000	0.464770
Pd/Pt	58	1.778811	1.522565	1.482857	.4000000	0.400000	6.000000	1.115407
Cu+Ni, mas.%	58	0.157888	0.136764	0.154000	Множест.	0.026000	0.350000	0.080325
Au+Pt+Pd	58	0.927155	0.561156	0.720000	.0450000	0.045000	3.150000	0.756536

Скважина МТ-06

Рудный интервал «Южной» рудной зоны представляет весь разрез скважины, а именно это интервал от 120 м до 15 м. Минерализация установлена главным образом в крупнозернистых норитах, с отдельными прослоями среднезернистых, а также ритмичным переслаиванием крупнозернистых и среднезернистых плагиопироксенитов, находящихся в верхних частях разреза.

Графики распределения Cu, Ni и S (рис. 75) ведут себя крайне неравномерно, но при этом можно наблюдать общий тренд плавного возрастания концентраций этих элементов снизу вверх по разрезу. Варьируя в широких пределах от 0.01 % до 1 % для Cu и Ni и от 0.01 % до 10 % для серы, заметны наиболее высокие концентрации приурочены к интервалу 50-22 м и связаны с разнозернистыми (от крупно- до средне) меланоноритами.

Графики распределения благородных металлов (рис. 76) (суммы Au,Pt, Pd) демонстрируют схожие тренды, которые наиболее отчетливо видны на примере графиков Pt и Pd. Здесь можно увидеть такое же плавное возрастание снизу вверх, с интервала 120 м до 44 м, с увеличением концентраций от 0.045 г/т внизу до 19 г/т вверху.

Графики концентраций суммы ЭПГ (рис. 77) увеличиваются снизу вверх по разрезу, достигая повышенных значений 19.6 г/т в интервале 44.0 м и связываются с к/з меланократовыми норитами.

Коэффициенты корреляции (см. рис. 78) выявили связь МПГ с сульфидами как меди, так и никеля, со значениями 0.79.

Рис. 75 Распределение содержаний элементов Cu , Ni, S по разрезу Скважины МТ-06 (с использованием материалов ОАО «Центрально-Кольская экспедиция»)

Рис. 76 Распределение содержаний элементов Au,Pt,Pd по разрезу Скважины MT-06 (с использованием материалов ОАО «Центрально-Кольская экспедиция»)

Рис. 77 Распределение отношений элементов Au+Pt+Pd/S ,(Cu+Ni)/S, Pd/Pt, Au+Pd+Pt по разрезу. Скважина МТ-06

Рис. 78 Графики корреляционных зависимостей значений Au+Pd+Pt к S и Au+Pd+Pt к Cu+Ni. Скважина МТ-06

Табл.5 Коэффициенты корреляции для содержаний Cu, Ni, S, Pt, Pd, Au, Cu+Ni и Au+Pt+Pd в породах скважиныМТ-06 по рудному интервалу. (N=109, r=0.18, сумма ЭПГ>0,045, красным цветом выделены критические коэффициенты корреляции)

коррелиции)	Au log	Pt log	Pd log	Cu log	Ni log	S log	Cu+Ni	Au+Pt+Pd
							log	log
Au log	1.00							
Pt log	0.75	1.00						
Pd log	0.66	0.91	1.00					
Cu log	0.77	0.76	0.70	1.00				
Ni log	0.52	0.57	0.60	0.54	1.00			
S log	0.62	0.66	0.65	0.82	0.61	1.00		
Cu+Ni log	0.76	0.75	0.74	0.83	0.89	0.82	1.00	
Au+Pt+Pd	0.75	0.96	0.98	0.77	0.62	0.69	0.79	1.00
log								

Табл. 6 Средние содержания Cu, Ni, S, Pt, Pd, Au, Pd/Pt, Cu+Ni и Au+Pt+Pd в породах скважины MT-06 по рудному интервалу. (N=109, сумма Π >0,045)

	N	Среднее	Геометр.	Медиана	Мода	Минимум	Максимум	Стд.откл.
	набл.		Среднее					
Au, Γ/T	109	0.027798	0.019236	0.010000	.0100000	0.010000	0.14000	0.027634
Pt, Γ/T	109	0.222615	0.086998	0.080000	.0250000	0.025000	6.48000	0.634109
Pd, Γ/T	109	0.496881	0.193328	0.190000	Множест.	0.010000	13.10000	1.355671
Cu, %	109	0.054358	0.027845	0.033000	Множест.	0.000500	0.76000	0.084455
Ni, %	109	0.068936	0.056039	0.055000	.0500000	0.016000	1.01000	0.096301
S, %	109	0.265844	0.064182	0.067000	.0230000	0.002000	10.50000	1.031144
Pd/Pt	109	2.585939	2.222199	2.121212	Множест.	0.400000	9.20000	1.620738
Cu+Ni	109	0.123294	0.092623	0.086000	.0460000	0.024000	1.77000	0.175735
Au+Pt+Pd	109	0.747294	0.316865	0.290000	Множест.	0.055000	19.70000	1.987937

Рис. 79 Расшифровка условных обозначений

MT-06 **MT-12 MT-14** MGN ma MGN mg с/з метагаббронориты с/з метагаббронорит ♦ PI-PX mg △ PX mg с/з плагиопироксенит с/з пироксенит TZ тектоническая зона GN mg с/з габбронорит △ PI-PX cg к/з плагиопироксенит к/з метагаббронориты MGN cg TZ тектоническая зона * N ma mN cg с/з норит ■ GN cg к/з габбронориты к/з меланонорит MN mg с/з метанорит mN mg MPX ma с/з метапироксениты с/з меланонорит с/з метадолерит + MDB ma * DB ma с/з долерит ▲ MDNT mg с/з метадуниты * N cg к/з норит o gGN mg с/з кв. габбронорит + MOLV mg с/з метаоливиниты N mg GN cg к/з габбронорит с/з норит * PX mg ◆ MPDT с/з пироксениты метаперидотит GN mg с/з габбронорит MPX mg с/з метапироксенит ∘ PX cq к/з пироксениты • PDT перидотит * qN mg с/3 кв. норит □ N cg к/з нориты ■ G pg габбро пижонитовое ♦ PDT mg с/з перидотит MDNT метадунит ♦ PDT mg с/з перидотиты mN1 mg с/з меланорит △ MPX cg к/з метапироксениты PX ca к/з пироксенит GN mg с/з габбронориты qGN cg к/з кв. габбронорит PI-PX cq к/з плагиопироксенит mN1 mg с/з меланонориты PI-PX ma с/з плагиопироксенит MDB fq м/з метадолерит △ N cg к/з норит

к/з плагиопироксенит

* PI-PX* ca

ГЛАВА 6 ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Скважина МТ-14

Обобщая проведенные исследования, можно выделить следующие особенности строения разреза, состава и распределения малосульфидной минерализации рудного интервала в породах МТ-14.

Скважина представлена разнозернистыми (преимущественно крупносреднезернистыми) породами. Разрез переслаиванием K/3c/3сложен (мета)габброноритов, c/3(мета)оливинитов K/3c/3плагиоклазовых И И (мета)ортопироксенитов (рис.15). По всемуразрезу между ЭТИМИ породами наблюдаются резкие и постепенные типы контактов, которые наблюдаются только в ортопироксенитах. Для данныхпород характерны кумулусные ассоциации:pCpxq, pCb, габброофитовой габброноритов;(mgt)оСmgtдля pxC для структуры панидиоморфнозернистой структуры оливинитов; bСр, bCДЛЯ структуры пироксенитов, а также pCb, pbC гипидиоморфнозернистой ДЛЯ пойкилитовой структуры норитов. Основные текстуры пород: массивная, трахитодная, такситовая.

В скважине МТ-14 рудный интервал устанавливается в интервале от 230,4 до 160,2 м. Вмещающими породами являются к-с/з плагиоортопироксениты, массивные с гипидиоморфнозернистой структурой, с отдельными прослоями меланократовых к-с/з норитов, такситовых и массивных с пойкилитовой и габброофитовой структурами.

Рудные минералы представлены малосульфидным вкрапленным морфологическим типом. Сульфидная вкрапленность представлена главным образом халькопиритовым составом, с подчиненным пентландитовым. Второстепенные рудные минералы — сфалерит и магнетит. Сульфидная вкрапленность распределена по разрезу неравномерно. Порядок кристаллизации Pn-Ccp-Mt. МПГ образуют минеральные фазы внутри силикатов, срастаются с сульфидами или локализуются на контакте сульфидов и силикатов. Обнаружены следующие МПГ: котульскит, теларгпалит, соболевскит, звягинцевит, мончеит, куперит, василит. (Приложение 1)

Исследование распределения содержаний Cu, Ni, S, Au, Pt, Pd по разрезу рудной зоны показало следующие особенности распределения:

- -отмечается участок с повышенными содержаниями ЭПГ: инт. 230-160 м.
- -ЭПГ имеют жесткую прямую корреляционную зависимость с сульфидами, главным образом с медными (rAu+Pt+Pd=0.68)
- -при пороге определения Au+Pt+Pd>0.045 г/т установлены максимальные содержания 8.96 г/т при средних 0.67 г/т.

Скважина МТ-12

Скважина представлена чередованием пород, различных по минеральному структурно-текстурным особенностям интеркумулусным составу, И кумулус Разрез состоит их переслаивания к-с/з (мета)габброноритов и ассоциациям. пироксенитов с отдельными маломощными прослоями с/з (мета)перидотитов, а также к-с/з (мета)плагиоортопироксенитов и (мета)меланократовых норитов (рис.29).По всемуразрезу между этими породами наблюдаются преимущественно резкие контакты с углами к оси керна от 30° до 50°. Для пород характерны кумулусные ассоциации:pbC, рСь для габброофитовой и пойкилитовой структуры меланоноритов; bСр для гипидиоморфнозернистой структуры пироксенитов; oCb, oCchr для петельчатой структуры перидотитов. Основные текстуры пород: массивная, трахитодная, такситовая.

В скважине МТ-14 платинометальное оруденение, установлено в интервале 160,0 – 110,0 м. Рудовмещающий интервал представлен ритмичным переслаиванием в нижней части к/з и с/з массивных плагиопироксенитов с гипидиоморфнозернистой структурой с отдельными участками с/з норитов (инт. 160-130 м.), и в верхней части преимущественно с/з массивных и такситовых меланоноритов с габброофитовой структурой и с/з пироксенитов (инт. 130-110 м).

В данной скважине наблюдаются два морфоструктурных типа сульфидной минерализации: редкая рассеянная вкрапленность и гнезда (рис.65) и прожилки-шлиры различных размеров, приведенные в качестве частного случая (рис.). Вкрапленность и гнезда, неравномерно распределены по всему объему породы, занимая ксеноморфное положение. Сульфидная вкрапленность представлена главным образом пирротинпентландит-халькопиритовым составом. Второстепенные рудные минералы – магнетит, пирит. Порядок кристаллизации Ро-Pn-Сср-Ру.

МПГ образуют собственные минеральные формы, срастаются с сульфидами или локализуются на контакте сульфидов и силикатов. Были выявлены следующие МПГ: брэггит, котульскит, куперит, меренскит (Приложение 1).

Исследование распределения содержаний Cu, Ni, S, Au, Pt, Pd по разрезу рудной зоны показало следующие особенности распределения:

-отмечается участок с повышенными содержаниями ЭПГ: инт. 160-110 м.

-по всему разрезу наблюдается достаточно высокая корреляция между концентрациями благородных металлов с Cu (rAu+Pt+Pd=0.8) и не высокая, но значимая между Pt, Pd, Au и S (rAu+Pt+Pd=0.69) и Ni (rAu+Pt+Pd=0.38) (таб.28).

-при пороге определения Au+Pt+Pd>0.045 г/т установлены максимальные содержания 3.15 г/т при среднем 0.92 г/т.

Скважина МТ-06

Скважина представлена чередованием пород, различных по минеральному составу, структурно-текстурным особенностям и кумулус-интеркумулусным ассоциациям. Разрез состоит их переслаивания к-с/з меланократовых норитов и с-к/з плагиоклазовых ортопироксенитов(рис.29).По всемуразрезу между этими породами наблюдаются как резкие контакты с углами к оси керна от 30° до 40°, так и постепенные – с углами к.о.к равными 60°. Для пород характерны кумулусные ассоциации:p1bp2Caq,p1bCp2 для псевдопорфировидной структуры, pCb для пойкилитовой структуры, pbC для габброофитовой структуры норитов; bCp, bCp(a) для гипидиоморфнозернистой структуры плагиопироксенитов Основные текстуры пород: массивная, трахитоидная, такситовая.

В скважине МТ-06 платинометальное оруденениепредставляет из себя целый интервал в промежутке глубин 90.6–15 м. Рудовмещающий интервал представлен ритмичным переслаиванием с/з и к/з меланоноритов и с/з плагиопироксенитов, занимающих подчиненное значение.

В данной скважине наблюдаются два морфоструктурных типа сульфидной минерализации: рассеяная каплевидная вкрапленность и гнезда (рис.65) и прожилкишлиры различных размеров, приведенные в качестве частного случая (рис.). Вкрапленность и капли, неравномерно распределены по всему объему породы (1-7%), занимая ксеноморфное (интеркумулусное) положение. Сульфидная вкрапленность представлена главным образом пирротин-пентландит-халькопиритовым составом. Второстепенныйрудный минерал –пирит. Порядок кристаллизации Ро-Pn-Сср-Ру либо Pn-Po-Сср-Ру.

ЭПГ находятся либо в силикатной массе, либо срастаются с сульфидами или локализуются на контакте сульфидов и силикатов. Были выявлены следующие МПГ: теларгпалит, котульскит, сопчеит, меренскит, мончеит. (Приложение 1).

Исследование распределения содержаний Cu, Ni, S, Au, Pt, Pd по разрезу рудной зоны показало следующие особенности распределения:

-отмечается участок с повышенными содержаниями ЭПГ: инт. 90.6 – 15 м.

-по всему разрезу наблюдается достаточно высокая корреляция между концентрациями благородных металлов как с Cu (rAu+Pt+Pd=0.77), так и с

Ni(rAu+Pt+Pd=0.62). Не высокая, а значимая между Pt, Pd, Au и S (rAu+Pt+Pd=0.69)(таб.28).

-при пороге определения Au+Pt+Pd>0.045 г/т установлены максимальные содержания 19.7 г/т при средних 0.7 г/т.

Сравнение рудных интервалов скважин МТ-14, МТ-12, МТ-06. Сравнение вмещающих пород рудных интервалов.

Вмещающими для рудного интервала 220-160 м скв. МТ-14 является пачка ритмично-переслаивающихся преимущественно крупнозернистых плагиоклазовых пироксенитов с гипидиоморфнозернистыми структурами и средне- крупнозернистых меланократовых норитов, такситовых и массивных, с переходами от габброофитовой к псевдопорфировидной структуре и локально пойкилитовой, имеющие подчиненное значение с непосредственной связью с МПГ.

В скважине МТ-12 платинометальное оруденение установлено в интервале 160-110 м. Рудовмещающий интервал представлен ритмичным переслаиванием с-к/з плагиоклазовых ортопироксенитов, массивных, гипидиоморфнозернистых, чередующихся между собой главным образом в нижних частях, а именно в интервале 160-130 м. Верхняя часть интервала (130-110 м) приурочена главным образом к чередованию средне- и крупнозернистых меланократовых норитов, массивных и такситовых, с габброофитовыми и пойкилитовыми структурами.

Таким образом, крупнозернистые пироксениты и с-к/з меланонориты двух вышеописанных скважин (МТ-12 и МТ-12) имеют схожие структурно-текстурные и кумулус-интеркумулусные ассоциации и могут представлять единую рудную зону – «Южную».

Исходя из этого, можно провести корреляционные границы, устанавливаемые по подошве и кровле данных интервалов и выделяющиеся по сходному петрографическому контролю.

Сравнение состава малосульфидной платинометальной минерализации рудных интервалов.

По полученным результатам микрозондового анализа было проведено сравнение составов минералов платиновых групп, а также сульфидных минералов присутствующих в рудных интервалах различных скважин.

Было выявлено следующее:

- 1. Состав сульфидных минералов рудных интервалов различных скважин меняется незначительно.
- 2. Состав минералов платиновых групп, также меняется незначительно, особенно это касается котульскита, присутствующего во всех трех скважинах (таб. 32,33,рис.89)

Табл. 7 Основные типы малосульфидного платинометального оруденения в рудных зонах «Северная» и «Южная».

Номер шлифа, описание пород интервала	Характеристи ка главных сульфидов и прочих минералов	Характеристи ка МПГ	Xmin- max	Pd/Pt
14 скважина, Шлиф 198.75. Плагиоклазовый к/з массивный ортопироксенит с гипидиоморфнозернистой структурой. Средняя амфиболизация, слабая хлоритизация	Редкая неравномерно распределенная м/з вкрапленность (0.5-2%). Парагенезис пентландит- халькопирит. В пентландите с краю присутствует свинец, а в одном из халькопиритовых агрегатов на границе с силикатами - клаусталит	-	0.98	1.22 5
Шлиф 179.3. Плагиоклазовый ортопироксенит к/з равномернозернистый с массивной текстурой и гипидиоморфнозернистой структурой. Слабо хлоритизирован и слабо амфилозирован	Неравномерно распределенная м-с/з вкрапленность (0.5-2%) с отдельными интеркумулусным и гнездами. Парагенезис халькопиритборнит	-	0.7	1.37

Шлиф 177.5. Плагиоортопироксенит к/з равномернозернистый, массивный с гипидиоморфнозернистой структурой. Амфиболизация и хлоритизация средние.	Неравномерно распределенная вкрапленность (0.5-2%). Парагенезис халькопирит-борнит	-	1.18	0.98
Шлиф 174.45. Плагиоортопироксенит к/з, равномернозернистый,массив ный с гипидиоморфнозернистой структурой. Средняя амфиболизация, средняя хлоритизация	Сульфиды — неравномерно распределенная мелкая вкрапленность (0.1-2%) Соотношение главных сульфидов в основном: Сср>Ро+Рп	Сложные срастания теларгапалита, котульскита, соболевкита и звягинцевита на контакте силиката и халькопирита. Идиоморфное зерно котульскита в халькопирите. Призмовидное включение мончеита в силикате.	0.84	1.10
Шлиф 164.4. Ортопироксенит с-к/з, массивный, неравномернозернистый с гипидиоморфнозернистой структурой. Средне хлоритизирован, средне амфиболизирован.	Сульфиды мелкая равномерная вкрапленность (0.1-0.5%).	Гипидиоморфное зерно василита размером 40 мкм внутри халькопирита	6.33	1.19 6
Шлиф 138.1. Метадунит массивный м-с/з, неравномернозернистый с панидиоморфнозернистой структурой. Сильно оталькован и серпентинизирован.	Хромит – т-м/з неравномерно распределенная вкрапленность до 1 % нередко в срастаниях с халькопиритом и пентландитом.	-	0.04	0.4

Скважина 12.Шлиф 146.2. Плагиоклазовый ортопироксенит к/з, равномернозернистый, массивный с гипидиоморфнозернистой структурой. Средняя амфиболизация, слабые эпидотизация и хлоритизация.	С/з вкрапленность и гнездововкрапленные агрегаты до 3-5%. Они представлены двумя морфоструктурными разновидностями: а) редкие «капли» (Ро+Рп>Сср); б) интерстициальны е (Ро+Рп>Сср).	-	1.27	0.87
Шлиф 134.8. метаортопироксенит с/з, равномернозернистый, массивный, с гипидиоморфнозернистой структурой. Средне-сильно амфиболизирован и хлоритизирован.	Практичес ки все сульфиды — интерстициальны е. Редкие мелкие зерна и вкрапленность (0.1-0.5%). Ро+Рп>Сср. Магнетит (0.1-0.5 %) — м/з равномерно распределенная вкрапленность в нижней части интервала.	Изометричное зерно брэггита на границе пентландита и породообразующе го силиката. Сложные срастания котульскита и меренскита на контакте пирротина и порообразующего силиката.	2.8	2
Шлиф 130.9. метаортопироксенит с/з, равномернозернистый, массивный с гипидиоморфнозернистой структурой. Средне-сильно амфиболизирован и хлоритизирован.	То же самое	Зерно брэггита с включениями куперита на контакте пирротина, халькопирита и силиката. Размеры до 30 мкм.	0.72	1.51 9

Шлиф 123.2. Меланократовый норит к/з, равномернозернистый, массивный с габброофитовой структурой. Слабо амфиболизирован, хлоритизирован.	к-м/з гнездововкрапленные агрегаты (2-5%) двух морфоструктурны х разновидностей: 1) отдельные капли (Сср<Ро) в подошве интервала; 2) интерстициальны е агрегаты (Сср>Ро).	Электрум 15 мкм призмовидной формы в парагенезисе с халькопиритом и пентландитом.	1.46	1.21
Скважина 6. Шлиф 71.05. Меланократовый норит к-с/з с такситовой текструрой и переходом от псевдопорфировидной к габброофитовой структуре.	Сульфиды –(1-5%) неравномерная интерстициальная вкрапленность и гнезда Ро+Рп>Сср	Меренскит с сопчеитом на границе Орх и Сср. Аллотриоморфны й. Размеры до 50 мкм.	1.28	2.7
Шлиф 57.0. Мелано- мезократовый норит от массивной до такситовой текстуры и от пойкилитовой до псевдопорфировидной структуры.	То же самое	Агрегат котульскита, размером до 30 мкм, внутри силиката, с вростками мончеита по краям.	1.15	2.2
Шлиф 54.6.Мелано- и мезократовый норит с такситовой текстурой с-к/з. Структура от псевдопорфировидной к пойкилитовой.	То же самое	Аллотриоморфное зерно котульскита размером до 250 мкм в срастаниях с теларгпалитом на краях. Парагенезис: Pn-Po-Ccp	5.91	7.18
Шлиф 52.7. Мелано- и мезократовый норит с такситовой текстурой с-к/з. Структура от псевдопорфировидной к пойкилитовой.	То же самое	Зерно мончеита внутри сульфидов на границе Ро и Сср. Размером до 25 мкм. Изометричная морфология.	2.1	2.12

ЗАКЛЮЧЕНИЕ

В результате проведенных исследований геологического строенияразрезов рудных интервалов, вещественного состава сульфидной и платинометальной минерализации, а также распределения элементовСu, Ni, S, Pt, Pd, Au по разрезам установлено:

-разрез «Северной» рудной зоны представлендвумя разновидностями: в первом случае, это груборитмическое переслаивание с/з и к/з массивных плагиоортопироксенитов с гипидиоморфнозернистыми структурами (bCp) имассивных и такситовых с/з норитов, имеющими второстепенное значение, с габброофитовыми (pbC) ипойкилитовыми (pCb) структурами, а во втором случае – переслаиванием пачек к/з и с/з пироксенитов снизу и к/з меланократовых норитов сверху.

-разрез «Южной» рудной зоны представлен макроритмичным переслаиванием преимущественно к/з мелано- мезократовых норитов, с пойкилитовыми (pCb), габброофитовыми (pbc) и псевдопорфировидными структурами (p1bCp2) ис-к/з ортопироксенитов, массивных с гипидиоморфнозернистой структурой (bCp).

-сульфидная минерализация характеризуется ассоциацией пирротин-пентландитхалькопирит, различаясь количественными соотношениями данных минералов по рудным зонам. В «Северной» это преобладание халькопирита над пентландитом, в то время как, в «Южной» - преобладание пирротина над халькопиритом и пентландитом.

-выявлено 13 разновидностей минералов благородных металлов, относящихся к разным классам соединений: самородным элементам, сульфидам, теллуридам, висмутидам, теллуровисмутидам, плюмбидам, станноплюмбидам.

- установлено, что в «Южной» рудной зоне проявлена значимая положительная корреляционная связь с медно-никелевыми сульфидами, в то время как в «Северной» - преимущественно с медными и в меньшей степени с никелевыми.

СПИСОК ИСТОЧНИКОВ

- 1. Авдонин В.В., Бойцов В.Е., Григорьев В.М. и др. «Месторождения металлических полезных ископаемых» М.: Академический проект, Трикста, 2005. 702 с.
- Гроховская Т.Л., Лапина М. И. «Ассоциация и генезис минералов платиновой группы в малосульфидных рудах месторождения Мончетундра (Кольский полуостров, Россия)» Геология рудных месторождений, 2009 Т. 51, № 6
- 3. Гроховская Т.Л., Бакаев Г.Ф., Шолохнев В.В. и др. «Рудная платинометальная минерализация в расслоенном Мончегорском магматическом комплексе (Кольский полуостров, Россия)» Геология рудных месторождений, 2003 Т. 45. № 4. с. 329–352.
- 4. Гроховская Т.Л., Иванченко В.Н., Каримова О.В. и др. «Геологическое строение, минералогия и генезис ЭПГ-минерализации Массива Южная Сопча, Мончегорский комплекс, Россия» Геология рудных месторождений, 2012 Т. 54, № 5, с. 416 440.
- 5. Гроховская Т.Л., Тевелев А.В., Носик Л.П. «Процессы формирования платинометальной минерализации в массиве Мончетундра, Кольский полуостров» Материалы Всероссийской конференции (Петрозаводск, 11-13 ноября 2009 г) с. 68-71.
- 6. Додин Д.А., Чернышов H.M., Полферов Д.В., Тарновецкий Л.Л. «Платинометалльные малосульфидные месторождения в ритмично расслоенных комплексах» Платинометальные месторождения мира». M.: 3AO «Геоинформмарк».1994. Т. 1. 279 с.
- 7. Лазаренков В.Г., Петров С.В., Таловина И.В. «Месторождения платиновых металлов», М.: Недра, 2002 г.
- 8. Лихачев А.П. «Возможные механизмы накопления рудных веществ платино-медноникелевых и платиновых месторождений» Материалы Центрального научноисследовательского геологоразведочного институту цветных и благородных металлов, МПР, Москва.
- 9. Налдретт А. Дж. «Магматические сульфидные месторождения медно-никелевых и платинометальных руд» СПб: Изд-во СПбГУ, 2003 г.
- 10. Рундквист Т.В., Припачкин П.В, Гребнев Р.А. «Особенности взаимоотношений интрузивных тел в зоне контакта ультрамафит-мафитовых комплексов Мончегорский и Главного Хребта (Участок «Южносопчинский», Кольский полуостров) Апатиты: ЛИТОСФЕРА, 2012, № 3, с. 65–79

- 11. Смолькин В.Ф., Кременецкий А.А., Ветрин В.Р. «Модель формирования рудномагматической системы для расслоенных интрузий палеопротерозоя Балтийского щита» Материалы третьей международной конференции «Ультрабазит-базитовые комплексы складчатых областей и связанные с ними месторождения»
- 12. Уилсон Г.Д.Б. «Магматические рудные месторождения» М.: Недра, 1973 г.
- 13. Уэйджер Л., Браун Г. Расслоенные изверженные породы. М. Мир, 1970 г.
- 14. Чащин В. В., Митрофанов Ф. П. «Палеопротерозойская Имандра-Варзугская рифтогенная структура (Кольский полуостров): интрузивный магматизм и минерагения», г. Апатиты, 2014 г.
- 15. Шарков Е.В «Формирование расслоенных интрузивов и связанного с ними оруденения» Научный мир, 2006 г.
- 16. Шарков Е.В. «Геолого-петрологические аспекты ЭПГ-Сu-Ni-оруденения в Раннепалеопротерозойском Мончегорском расслоенном мафит-ультрамафитовом комплексе (Кольский полуостров)» Геология рудных месторождений, 2014 Т. 56, № 3, с. 171-194.
- 17. Шарков Е.В., Богатиков О.А. «Механизмы концентрирования ЭПГ в расслоенных интрузивах Карело-Кольского типа» Библиотечный комплекс «Дубна», 1998 г.
- 18. Alapieti T.T. and Karki A.J.eds "Field trip guidebook" Geological Survey of Finland, Espoo, 2005.
- 19. Bekker A., Grokhovskaya T.L., Hiebert R. eds "Multiple sulfur isotope and mineralogical constraints on the genesis of Ni-Cu-PGE magmatic sulfide mineralization of the Monchegorsk Igneous Complex, Kola Peninsula, Russia" 2015, Miner Deposita.
- 20. Cabri L.J. "The Geology, Geochemistry, Mineralogy and Mineral Benefication of Platinum-Group Elements" Canadian Institute of Mining, Metallurgy and Petrolium, 2002.

Приложение 1: Исследование составов рудных минералов с помощью микрозондового анализа по трем скваживам (МТ-14, МТ-12, МТ-06)

Табл. 8 Таблица возможных вариаций состава пентландита по скв. МТ-14

№ образца	Минерал	№ анализа	Ni, %	Fe, %	S, %	Co, %	Формула
198.75	Пентландит	5	32.4-30.1	29.8-27.7	33.9-35.1	0-3.8	$(Ni_{4.7}Fe_{4.1}Co_{0.2})_9S_8$
174.45	Пентландит	5	26-27.1	25.43-23.3	32.96-30	5.2-15.5	(Ni _{3.9} Fe _{3.4} Co _{0.7}) ₉ S ₈
164.4	Пентландит	5	27.2-28.3	23.9-24.5	32.36-32.1	6.3-16.2	(Ni _{3.9} Fe _{3.4} Co _{0.7}) ₉ S ₈

Табл. 9 Таблица возможных вариаций состава халькопирита по скв. МТ-14

№ образца	Минерал	№ анализ	Fe, %	S, %	Cu, %	Формула
177.5	Халькопирит	5	31.5- 30.4	33.9-34	34.6-35.1	$Cu_{1.14}Fe_{1.1}S_2$
179.3	Халькопирит	5	29.4- 30.4	34.02- 34.9	33.2-35.6	$Cu_{1.13}Fe_1S_2$
174.45	Халькопирит	10	30.2- 32.2	32.9-33.1	32.3- 36.68	$Cu_{1.14}Fe_1S_2$
164.4	Халькопирит	10	31.7- 34.3	32.9- 33.13	32.56- 35.9	$\mathrm{Cu}_{1.13}\mathrm{Fe}_{1.1}\mathrm{S}_2$

Табл.10 Таблица возможных вариаций составов МПГ по скв. МТ-14

№ образі	Минерал	№ анал а	Pd, %	Te,	Bi, %	Ag, %	S, %	Pb, %	Pt, %	Cu,	Формула
174. 45	Котульск ит	7	37.7 7- 41.2	14.1 - 20.2 3	39.4 1- 42.3	-	-	-	-	-	Pd _{1.0} (Bi _{0.55} Te _{0.45}) _{1,0}
174. 45	Теларгпа лит	2	37.2 - 38.7 8	15.6 - 16.6 3	6.23 -7.3	28- 28. 93	-	3.7 9- 4.1	-	-	$(Pd_{2.7}Ag_{0.2}Bi_{0.1})_{3.0}$ $Te_{1.0}$
174. 45	Соболевс кит	1	45.3 8	-	55.0 8	-	-	-	-	-	$Pd_{0.55}Bi_{0.45}$
174. 45	Звягинце вит	3	57.9 - 58.4 7	-	-	-	-	36. 2- 37. 56	-	-	Pd _{3.0} Pb _{0.95}
174. 45	Мончеит	2	-	52.5 3- 53.2	5,2- 6.21	-	-	-	36, 6- 37. 62	-	Pt _{0.85} (Te,Bi) _{2.0}
174. 45	Куперит	3	-	-	-	-	28.4 8- 28.9 8	-	41- 42. 1	-	Pt _{0.8} S _{0.2}
164. 4	Василит	3	45.3 1- 45.9 5	22.0 6-23	-	-	5.04 - 6.02	-	-	15, 8- 16. 11	$(Pd_{10.1}Cu_{5.6})_{15.7}(S_{2.}$ ${}_{9}Te_{4.1})$

Табл.11 Таблица возможных вариаций состава пентландита по скв. МТ-12

№ образца	Минерал	№ анализ	Ni, %	Fe, %	S, %	Co, %	Формула
123.2	Пентланди	7	30.44-31.	29.25-30,	30.7-32.7	0-7.5	(Ni _{4.4} Fe _{4.3} Co _{0.3}) ₉ S ₈
134.8	Пентланди	7	32.4-32.8	31.7-32.6	30.1-33.6	1.34	$(Ni_{4.5}Fe_{4.4}Co_{0.1})_9S_8$

Табл.12 Таблица возможных вариаций состава пирротина по скв. МТ-12

№ образца	Минерал	№ анализа	Fe, %	S, %	Формула
123.2	Пирротин	10	60.9-61.18	37.9-38.8	Fe _{0.9} S _{1.0}
130.9	Пирротин	5	60.4-62.4	38.1-39.4	Fe _{0.9} S _{1.0}
134.8	Пирротин	10	60.5-62.3	37.61-38.9	Fe _{0.9} S _{1.0}
146.2	Пирротин	5	60.1-61.7	38.3-39.5	Fe _{0.9} S _{1.0}

Табл.13 Таблица возможных вариаций состава халькопирита по скв. МТ-12

№ образца	Минерал	№ анализ	Fe, %	S, %	Cu, %	Формула
123.2	Халькопирит	7	30,9- 31.26	33.9- 34.34	34.39- 35.5	$Cu_{1.11}Fe_{1.0}S_2$
130.9	Халькопирит	5	30.1- 31.9	33.3-34.1	34.91- 36.6	$Cu_{1.11}Fe_{1.0}S_2$
134.8	Халькопирит	3	30.65- 31.1	34.4- 35.15	34.19- 35.78	$\mathrm{Cu}_{1.11}\mathrm{Fe}_{1.0}\mathrm{S}_2$
146.2	Халькопирит	3	30.2- 30.8	33.7-34.5	34.63- 35.9	$\mathrm{Cu}_{1.11}\mathrm{Fe}_{1.0}\mathrm{S}_2$

Табл.14 Таблица возможных вариаций составов МПГ по скв. МТ-012

№ образи	Минерал	№ анализ	Pd, %	Pt, %	S, %	Te, %	Bi, %	Ni, %	Формула
134.8	Брэггит	5	28.48- 30.1	45.28- 46.1	17.9- 19.54	-	-	5.1- 5.26	$(Pd_{0.48}Pt_{0.41}Ni_{0.15})S_{1.0}$
130.9	Куперит	2	9.93- 10.5	70.1- 71.16	15.87- 16.6	-	-	-	(Pt _{0.8} Pd _{0.2})S _{1.0}
134.8	Меренскит	2	16.1- 16.35	16- 17.03	-	45.7- 46.24	17.7- 19.63	-	(Pd _{0.7} Pt _{0.3})(Te, Bi) _{2.0}
134.8	Котульскит	5	39.72- 41.5	-	-	33.16- 35.5	25.7- 27.12	-	Pd _{1.0} (Te _{0.7} Bi _{0.32}) _{1.02}

Табл.15 Таблица возможных вариаций состава пентландита по скв. МТ-06

№ образца	Минерал	№ анализа	Ni, %	Fe, %	S, %	Со, %	Формула
52.7	Пентландит	7	33.8-34.5	30.9-32.3	33.4-34.4	-	(Ni _{4.4} Fe _{4.2}) _{8.6} S ₈
54.6	Пентландит	7	33.9-34.6	30.3-32.5	32.9-34.5	0-2.1	(Ni _{4.4} Fe _{4.2} Co _{0.4}) ₉ S ₃
57.0	Пентландит	7	33.7-34.5	30.7-32.1	33.05-34.1	-	(Ni _{4.4} Fe _{4.2}) _{8.6} S ₈
71.05	Пентландит	7	33.1-34.7	30.7-33.1	33.1-34.9	-	(Ni _{4.4} Fe _{4.2}) _{8.6} S ₈

Табл.16 Таблица возможных вариаций состава пирротина по скв. МТ-06

№ образца	Минерал	№ анализа	Fe, %	S, %	Формула
52.7	Пирротин	7	61.2-61.8	38.1-38.7	Fe _{0.92} S _{1.0}
54.6	Пирротин	7	61.35-62.0	38.4-38.6	Fe _{0.92} S _{1.0}
57.0	Пирротин	7	60.3-61.57	38.0-38.4	Fe _{0.92} S _{1.0}
71.05	Пирротин	7	62.3-63.1	38.1-38.6	Fe _{0.92} S _{1.0}

Табл.17 Таблица возможных вариаций состава халькопирита по скв. МТ-06

№ образца	Минерал	№ анализ	Fe, %	S, %	Cu, %	Формула
52.7	Халькопирит	7	30.6- 31.2	32.8-33.1	33.6	$Fe_{1.07}Cu_{1.02}S_{2.0}$
57.0	Халькопирит	7	30.3- 31.1	32.4-33.9	34.9	$Fe_{1.07}Cu_{1.02}S_{2.0}$
54.6	Халькопирит	7	30.1- 31.5	32.7- 33.88	35.9	$Fe_{1.07}Cu_{1.02}S_{2.0}$
71.05	Халькопирит	7	30.4- 31.3	32.6-33.9	34.7	$Fe_{1.07}Cu_{1.02}S_{2.0}$

Табл.18 Таблица возможных вариаций составов МПГ по скв. МТ-06

№ образца	Минерал	№ анализа	Pd, %	Pt, %	Te, %	Bi, %	Ag, %	Формула
54.6	Котульскит	5	43.26- 44.1	1	44.4- 45.76	10.98- 12.2	ı	Pd _{1.0} (Te _{0.9} Bi _{0.1}) _{1.0}
54.6	Теларгпалит	2	25- 25.5	-	39.89- 40.7	-	33.9- 35.11	(Pd _{2.5} Ag _{0.4}) _{2.9} Te _{1.0}
52.7	Мончеит	4	-	40.74- 43.3	49.8- 51.4	7.7- 8.15	-	Pt _{1.0} (Te _{1.8} Bi _{0.2}) _{2.0}
71.05	Меренскит	3	11.17- 12.2	25.3- 26.96	61.88- 62.3	-	-	$(Pt_{0.55}Pd_{0.45})_{1.0}Te_{2.0}$
71.05	Сопчеит	2	27.02- 28.1	1.64-2	44.4- 46.4	0-0.33	24.6- 25.0	Ag _{2.6} Pd _{2.9} Pt _{0.3} Te _{4.0}