
SAINT-PETERSBURG STATE UNIVERSITY

Software and Administration of Information Systems

Chair of Software Engineering

Sergey Morozov

Tiered File System: Optimization of
Architecture and Management Algorithms

Master’s Thesis

Scientific supervisor:
Dr. Sc. (Phys.-Math.), Professor Vyacheslav Nesterov

Reviewer:
Andrey Pakhomov,

Senior Solutions Manager at Dell EMC

Saint-Petersburg
2017



Санкт-Петербургский государственный университет

Математическое обеспечение и администрирование
информационных систем

Кафедра системного программирования

Морозов Сергей Валерьевич

Многоярусная файловая система:
оптимизация архитектуры и алгоритмов

управления
Магистерская диссертация

Научный руководитель:
д.ф.-м. н., профессор Нестеров В.М.

Рецензент:
Пахомов А.В.,

рук. отд. разработки в Dell EMC

Санкт-Петербург
2017



Abstract
Automated storage tiering, from the business point of view, allows for a

considerable cut of data storage costs while preserving the storage system
performance at an acceptable level. The aim of this master’s thesis is to de-
sign and implement a tiered policy-based file system having, as tiers, a local
disk or distributed POSIX-conformant file system and cloud object storage.
As a result of this study, the tiered file system called CloudTieringFS, has
been devised. The primary use case of CloudTieringFS is mass file storage.
CloudTieringFS uses a POSIX-conformant file system as a permanent stor-
age for metadata and as “capacious cache” for data and cloud object storage
as a permanent storage for data. The key advantage of CloudTieringFS is
simultaneous provision of features such as configurability of data migration
via policies, underlying file system-agnosticism, and fault tolerance.

The study is divided into four chapters. In the first chapter, the back-
ground required to familiarize the reader with the automated storage tiering
in an environment that includes a file system and cloud object storage is
given. A survey of similar solutions is provided and common problems to
be overcome by the tiered file system developer are identified. The second
chapter surveys the selected distributed file systems and compares some of
their features important for design and implementation. The third chapter
summarizes requirements for the tiered file system and proposes a detailed
design for such a system. In the last chapter, the performance of CloudTier-
ingFS is evaluated in single- and multi-node configurations with BtrFS and
OrangeFS file systems correspondingly.

The performance results of CloudTieringFS are promising. The average
file access latency for the selected file access pattern differs insignificantly
versus the file access latency of the underlying file system. Summarizing,
it can be argued that properly adjusted automated storage tiering poli-
cies can preserve the underlying file system’s performance with neglectable
overheads while reducing data storage costs.
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Introduction
There is always a trade-off between storage performance, capacity, and

price. At a relatively small1 price, one can count on a high-performance
storage system with small-to-medium capacity or a storage system with low-
to-average performance and large capacity. There is no low-cost solution
that offers both high performance and large capacity; high-end products
are always expensive. Software, as always, can dramatically reduce the cost
in certain use cases. Often, access time requirements vary depending on
the data. For example, access to an executable binary of a program with
which employees work every day should be fast, and it is critical for business
continuity, while the time required to access a corporate event photo archive
does not affect business processes and may be quite long. For decades, the
storage industry has been offering intelligent storage systems capable of
demoting certain data to slower and hence cheaper storage devices, while
promoting other data to faster, more expensive storage devices. These
storage systems implement hierarchical storage management or information
lifecycle management (a broader concept).

The idea of hierarchical storage management has been here for years.
This is a very well studied area, extensively used in the industry. There is
a closely related concept called automated storage tiering, automatic pro-
motion, demotion, and movement of data between storage tiers based on a
policy. Nowadays, there is another surge of interest in automated storage
tiering caused by emergence of new storage technologies and increase in
customer demands. Capabilities to seamlessly migrate data between tradi-
tional storage systems and cloud storage are taking a keen interest.

Cloud technologies provide many benefits. For example, one can easily
deploy an HPC2 [22] cluster at an affordable price or an object storage
that can satisfy limitless capacity needs. In the latter case, despite the
benefits offered there are also some serious restrictions such as, in most
cases, a weaker consistency model [6] and an object interface instead of

1For enterprise markets.
2High-Performance Computing
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POSIX. It means that cloud object storage is more useful for newer, “cloud-
native” applications that do not require conformance to POSIX semantics.
This severely impacts cloud object storage applicability since some types
of applications require to be conformant at least to the POSIX consistency
model. Also, there is an enormous amount of POSIX-conformant legacy
applications that could be but will not be replaced by their cloud-native
alternatives over the next couple of decades because they already solve
business problems.

POSIX was not originally designed for distributed systems, and it is
extremely hard to design and implement, for instance, a distributed file
system that is fully POSIX-conformant. There is quite a lot of distributed
file systems, both commercial and open source, that provide near-POSIX
semantics, but only a few that are fully POSIX-conformant. Is it possible to
have the best of two worlds, POSIX access to a file system with unlimited
capacity and good performance while saving money on scaling up and out
an expensive storage system?

In this study, the specific case of automated storage tiering is considered:
file-level automated storage tiering between an arbitrary POSIX- or near-
POSIX-conformant file system and cloud object storage. The cloud object
storage acts as a capacity extender for the POSIX-conformant file system;
data location is opaque to the file system client; storage tiering policies
ensure adequate data access times. Some commercial solutions, such as
Dell EMC CloudArray [17] and Dell EMC 2 TIERS [16], address the same
problem. There are academic solutions, such as the BlueSky file system [63]
and the SCFS file system [51], addressing similar problems but in a slightly
different manner. The tiered file system proposed in this study differs from
these file systems since it takes an existing file system and uses it as a
permanent metadata storage and as “capacious non-volatile cache” for data.
The key advantages of the solution are configurability of data migration via
policies, file system-agnosticism, and fault tolerance.
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Problem Statement
The primary aim of this study is to design and implement a file system-

agnostic policy-based software component responsible for data synchroniza-
tion between a POSIX-conformant file system and cloud object storage.
The solution should be licensed under a free software license so that any
interested party can use it or make a contribution. This software compo-
nent should also become a solid platform for future research in the field of
automated storage tiering policies.

To achieve this aim, the following tasks have been formulated3:

(I) Investigate automated storage tiering problems in an environment
that includes a distributed file system and cloud object storage.

(II) Extract and compare important features of modern distributed file
systems from the perspective of automated storage tiering.

(III) Design a software component that enables automated storage tiering
between a POSIX-conformant file system and cloud object storage.

(IV) Implement the designed software component and evaluate its perfor-
mance.

3Each task has a corresponding section with the same Roman number.
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I Background and Related Work

I.1 Terminology
The following terms are used throughout this study4.

Data. The digital representation of anything in any form [57].

Metadata. Data associated with other data [57].

Object. The encapsulation of data and associated metadata [57]. (Note
that there are other definitions of «object» in [57] but they are omitted as
inapplicable in the context of the current study.)

Information Lifecycle Management (ILM). The policies, processes,
practices, services and tools used to align the business value of information
with the most appropriate and cost-effective infrastructure from the time
information is created through its final disposition. Information is aligned
with business requirements through management policies and service levels
associated with applications, metadata and data [57].

Data Lifecycle Management (DLM). The policies, processes, prac-
tices, services and tools used to align the business value of data with the
most appropriate and cost-effective storage infrastructure from the time
data is created through its final disposition. Data is aligned with busi-
ness requirements through management policies and service levels associ-
ated with performance, availability, recoverability, cost, etc. DLM is a
subset of ILM [57].

Data storage as a Service (DSaaS). Delivery of appropriately config-
ured virtual storage and related data services over a network, based on a
request for a given service level. Typically, DSaaS hides limits to scalability,

4Many of the terms in this section are taken from The 2016 SNIA Dictionary. The author is grateful to
the Storage Networking Industry Association for the permission to use these definitions.
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is either self-provisioned or provisionless and is billed based on consump-
tion [57].

Cloud Storage. Synonym for Data storage as a Service [57].

Object Service. Object-level access to storage [57].

Object Storage. A storage device that provides object services. Object
storage includes DSaaS [57].

Hierarchical Storage Management (HSM). The automated migra-
tion of data objects among storage devices, usually based on inactiv-
ity. Hierarchical storage management is based on the concept of a cost-
performance storage hierarchy. By accepting lower access performance
(higher access times), one can store objects less expensively. By automati-
cally moving less frequently accessed objects to lower levels in the hierarchy,
higher cost storage is freed for more active objects, and a better overall cost-
to-performance ratio is achieved [57].

Tiered Storage. Storage that is physically partitioned into multiple dis-
tinct classes based on price, performance or other attributes. Data may be
dynamically moved among classes in a tiered storage implementation based
on access activity or other considerations [57].

Policy. Policy can be defined from two perspectives:
(1) A definite goal, course or method of action to guide and determine

present and future decisions. Policies are implemented or executed
within a particular context (such as policies defined within a business
unit) [49].

(2) Policies as a set of rules to administer, manage, and control access to
network resources [48].
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Policy Goal. Goals are the business objectives or desired state intended
to be maintained by a policy system. As the highest level of policy ab-
straction, these goals are most directly described in business rather than
technical terms. For example, a goal might state that a particular appli-
cation operate on a network as though it had its own dedicated network,
despite using a shared infrastructure. Policy goals can include the objec-
tives of a service-level agreement, as well as the assignment of resources to
applications or individuals. A policy system may be created that automat-
ically strives to achieve a goal through feedback regarding whether the goal
(such as a service level) is being met [49].

Policy Processor. In an intelligent device, the processor that schedules
the overall activities. Policy processors are usually augmented by additional
processors, state machines, or sequencers that perform the lower-level func-
tions required to implement overall policy [57].

Policy Rule. A basic building block of a policy-based system. It is the
binding of a set of actions to a set of conditions, where the conditions are
evaluated to determine whether the actions are performed [49].

Policy Condition. A representation of the necessary state and/or pre-
requisites that define whether policy rule actions should be performed. This
representation need not be completely specified, but may be implicitly pro-
vided in an implementation or protocol. When the policy condition(s) as-
sociated with a policy rule evaluate to TRUE, then (subject to other con-
siderations such as rule priorities and decision strategies) the rule should
be enforced [49].

Policy Action. Definition of what is to be done to enforce a policy rule,
when the conditions of the rule are met. Policy actions may result in exe-
cution of one or more operations to affect and/or configure network traffic
and network resources [49]. Rule actions may be ordered [48].
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Policy Repository. A specific data store that holds policy rules, their
conditions and actions, and related policy data. A database or directory
would be an example of such a store [49].

Automated Storage Tiering. Automatic movement of data between
storage tiers based on a policy. The tiers may be within a single storage
system or may span storage systems, including a cloud storage tier [57].

File System. A software component that imposes structure on the ad-
dress space of one or more physical or virtual disks so that applications may
deal more conveniently with abstract named data objects of variable size
(files). File systems are often supplied as operating system components, but
are also implemented and marketed as independent software components.

File. An abstract data object made up of (a.) an ordered sequence of data
bytes stored on a disk or tape, (b.) a symbolic name by which the object
can be uniquely identified, and (c.) a set of properties, such as ownership
and access permissions that allow the object to be managed by a file system
or backup manager. Unlike the permanent address spaces of storage media,
files may be created and deleted, and in most file systems, may expand or
contract in size during their lifetimes [57].

Extended Attributes. Extended attributes are name:value pairs associ-
ated permanently with files and directories. An attribute may be defined or
undefined. If it is defined, its value may be empty or non-empty. They are
often used to provide additional functionality to a file system. Extended
attributes are accessed as atomic objects [64].

Monitor. A program that executes in an operating environment and
keeps track of system resource utilization. Monitors typically record CPU
utilization, I/O request rates, data transfer rates, RAM utilization, and
similar statistics. A monitor program, which may be an integral part of an
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operating system, a separate software product, or a part of a related com-
ponent, such as a database management system, is a necessary prerequisite
to manual I/O load balancing [57].

Daemon. A daemon is a process with the following characteristics:
• It is long-lived. Often, a daemon is created at system startup and

runs until the system is shut down.
• It runs in the background and has no controlling terminal. The ab-

sence of a controlling terminal ensures that the kernel never automat-
ically generates any job-control or terminal-related signals (such as
SIGINT, SIGTSTP, and SIGHUP) for a daemon [32].

I.2 File Systems
This section discusses file system-related concepts required for better

understanding of the following sections.

I.2.1 Portable Operating System Interface

POSIX is an acronym for Portable Operating System Interface. The
term POSIX refers to a group of standards developed under the auspices
of the Institute of Electrical and Electronic Engineers (IEEE), specifically
its Portable Application Standards Committee. The name POSIX was sug-
gested by Richard Stallman. The term POSIX was originally used as a
synonym for IEEE Std 1003.1-1988. A preferred term for that standard,
POSIX.1, emerged [43]. POSIX.1 documents an API5 for a set of services
that should be made available to a program by a conforming operating
system. An operating system that does this can be certified as POSIX.1
conformant [32].

The POSIX.1 standard was developed for local disk file systems. Most
of the distributed file systems that claim to be POSIX-conformant relax
some of restrictions imposed by the standard. For example, OrangeFS
does not support file locking [41] and CephFS does not guarantee atomic

5Application Programming Interface
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writes in shared simultaneous writer situations, when a write crosses object
boundaries [14]. Conformance to POSIX for some distributed file systems
is discussed in more detail in Section II.

I.2.2 Virtual File System

The virtual file system (VFS) is a kernel feature that provides an ab-
straction layer for file system operations. VFS defines a generic interface for
file system operations. All programs that work with files specify their op-
erations in terms of this generic interface. Each file system provides an im-
plementation for the VFS interface. The VFS interface includes operations
corresponding to all typical system calls used to work with file systems and
directories, such as open(), read(), write(), lseek(), close(), trun-
cate(), stat(), mount(), umount(), mmap(), mkdir(), link(), unlink(),
symlink(), and rename() [32].

Some file systems do not support all of the VFS operations. For example,
as of Linux kernel 4.11, the kernel module of the OrangeFS [40] parallel file
system does not implement the fallocate() operation (according to the
source code analysis), which, by the way, is Linux-specific and not specified
in POSIX.1. In such cases, the underlying file system passes an error code
back to the VFS layer indicating the lack of support, and VFS in turn passes
this error code back to the application.

I.2.3 Distributed File Systems

This section provides definitions for different types of distributed file
systems. Selected distributed file systems of these types are compared in
Section II.

Distributed File System. A distributed file system enables programs to
store and access remote files exactly as they do with the local files, allowing
users to access files from any computer on a network. Performance and
reliability experienced when accessing the files stored at a server should be
comparable to that for files stored on local disks [19].
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Cluster File System. A distributed file system that is not a single server
with a set of clients, but instead a cluster of servers that all work together
to provide high performance service to their clients. The cluster is trans-
parent to the clients—it is just “the file system,” but the file system software
distributes requests to elements of the storage cluster [10].

Parallel File System. A file system that supports parallel applications,
all nodes may be accessing the same files at the same time, concurrently
reading and writing. Data for a single file is striped across multiple storage
nodes to provide scalable performance to individual files [10].

I.3 Cloud Object Storage Systems
Various aspects should be considered when selecting cloud object storage

for the cloud object storage tier in a tiered file system. The most important
characteristics to be taken into account are the implemented consistency
model and possible types of service-level agreements. The object protocol
is also important since a particular protocol may offer unique features that
could be utilized to optimize performance of the tiered file system.

I.3.1 Consistency Models

Consistency Model. A consistency model is essentially a contract be-
tween processes and the data store. It says that if processes agree to obey
certain rules, the store promises to work correctly [59].

Strong Consistency. After the update completes, any subsequent access
by any process will return the updated value [62].

Weak Consistency. The system does not guarantee that subsequent ac-
cesses will return the updated value. A number of conditions need to be
met before the value will be returned. The period between the update and
the moment when it is guaranteed that any observer will always see the
updated value is referred to as the inconsistency window [62].
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Eventual Consistency. This is a specific form of weak consistency; the
storage system guarantees that if no new updates are made to the object,
eventually all accesses will return the last updated value [62].

Causal Consistency. If process A has communicated to process B that
it has updated a data item, a subsequent access by process B will return
the updated value, and a write is guaranteed to supersede the earlier write.
Access by process C that has no causal relationship to process A is subject
to normal eventual consistency rules [62].

Read-Your-Writes Consistency. This is an important model where
process, after having updated a data item, always accesses the updated
value and never sees an older value. This is a special case of the causal
consistency model [62]. It can also be referred to as read-after-write consis-
tency.

Consistency Models of Selected Cloud Object Storage Systems.
According to the survey of cloud object storage systems made in [55], dif-
ferent cloud object storage systems implement different consistency models.
For example, Amazon S3 provides read-after-write consistency for PUT re-
quests of new objects in a S3 bucket in all regions with one caveat. The
caveat is that if one makes a HEAD or GET request to the key name (to find
if the object exists) before creating the object, Amazon S3 provides eventual
consistency for read-after-write. Amazon S3 offers eventual consistency for
overwrite PUT and DELETE requests in all regions [5]. Dell EMC ECS
provides strong consistent views of data regardless of where it is stored.
It achieves this strong consistency by representing each bucket, object, di-
rectory, and file as an entity, and applying the appropriate technique on
each entity based on its traffic pattern. When the technique can avoid
a WAN roundtrip, average latency is reduced [61]. Google Cloud Stor-
age provides strong global consistency for the following operations, includ-
ing both data and metadata: read-after-write, read-after-metadata-update,
read-after-delete, bucket listing, object listing in regional locations, grant-
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ing access to resources. The following operations are eventually consistent:
list operations for objects in multi-regional locations and revoke access from
resources [28].

I.3.2 Service-Level Agreements

A service-level agreement (SLA) is an agreement between a service
provider and service customer about the required quality-of-service (QoS)
characteristics of some service(s) delivered by the provider to the customer.
The agreement as such is the intangible understanding, or accord, that ex-
ists between the provider and customer [31]. A typical SLA describes levels
of service using various attributes such as availability, serviceability or per-
formance. The SLA specifies thresholds and financial penalties associated
with violations of these thresholds [46].

The following aspects should be considered in the SLA: data preservation
and redundancy, data location, data seizure, data privacy, data availability,
planned maintenance, network availability, storage availability, service re-
sponse time, and others. All these may affect the choice of the cloud object
storage provider. The cloud object storage tier of the tiered file system, in
theory, can be represented as a combination of multiple cloud object storage
systems, some of which will store more critical data than others.

I.3.3 Protocols

Cloud object storage systems can implement one of multiple object pro-
tocols. Popular object protocols are the following:

• S3. The S3 protocol is arguably the most commonly used object
storage protocol. Some unique features of the S3 protocol include
(1) bucket-level controls for versioning and expiration, (2) server-side
copies of objects, and (3) the ability to set public access on an object
and serve it via HTTP/HTTPS without authentication [15].

• Swift. The Swift protocol is very similar to the S3 protocol. It
uses buckets (containers) that contain key-value objects. The unique
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features of the Swift API include (1) flexible authentication through
a separate mechanism creating a “token” that can be passed around
to authenticate requests, and (2) creation of objects of unknown size
beforehand [15].

• CDMI. The CDMI protocol can be used to create, retrieve, update,
and delete objects in a cloud. CDMI features include (1) ability to
display Windows and NFS compatible access controls, (2) ability to
discover whether a container (bucket) shall be deleted at the end of
its retention period, and (3) ability to find legal holds that have been
placed on a container [3].

I.4 Related Work
In this section, solutions that precede this study are presented, their

advantages and disadvantages are described, and comparison with the tiered
file system proposed in this study is given. Based on the surveyed papers,
common problems arising when designing tiered file systems with POSIX
file system and cloud object storage tiers as well as the problems revealed
during the tiered file system development are listed.

I.4.1 Existing Automated Storage Tiering Solutions

There are several commercial, open source, and academic POSIX or
near-POSIX file systems that use cloud object storage to store file data or
both file data and metadata.

Dell EMC CloudArray [17] is perhaps the most similar solution to
the one proposed in this study in terms of the covered use cases.
Dell EMC CloudArray is a mature commercial product that solves the per-
formance/capacity/price ratio problem by tiering storage between the file
system and cloud object storage. It provides cloud-integrated storage that
extends high-performance storage arrays with cost-effective cloud capacity.
By providing access to a private or public cloud storage tier through stan-
dard interfaces, Dell EMC CloudArray technology simplifies storage man-

19



agement for inactive data and offsite protection. Dell EMC CloudArray’s
policy-driven cache ensures the proper level of accessibility and performance
based on the data stored. The cache is local on the appliance and deliv-
ers high performance while asynchronously replicating data to the cloud.
Each cache can be sized and assigned a policy to support a percentage
of client’s data based on current needs [20]. Dell EMC CloudArray pro-
vides a full set of features needed for enterprise customers. Unfortunately,
Dell EMC CloudArray internal architecture is unknown to the public and
the source code is proprietary.

There is also a solution called Dell EMC 2 TIERS [16], which is pri-
marily intended for high-performance computing (HPC), and even extreme
HPC use cases. The solution is tightly integrated with the parallel file sys-
tem OrangeFS [40]. Dell EMC 2 TIERS software presents the POSIX inter-
face and namespace to applications by virtue of the file system and maps the
applications data into objects on the cloud object storage, with policy-driven
tiering between the two. The unique characteristics of Dell EMC 2 TIERS
include (1) single global namespace with dynamically loadable namespaces,
(2) tiering of both data and metadata, (3) tiering and non-tiering modes,
and (4) direct read-only access to the cloud object storage tier, bypassing
the file system tier [45]. Note that metadata tiering is an important and
unique feature of Dell EMC 2 TIERS because in HPC systems, metadata
may consume space comparable with data. This solution is HPC-oriented;
the files and dynamically loadable namespaces migrate to the file system at
the direction of the scheduler, which makes the decisions based on the HPC
tasks queue. As of May 2017, Dell EMC 2 TIERS is not released and not
production-ready.

MarFS [36] is probably the most similar solution to the one proposed
in this study in terms of architecture. It is a near-POSIX global scalable
namespace over many POSIX and non-POSIX data repositories. MarFS is
primarily intended as a file system for large data collections, but not for
application execution. It focuses primarily on HPC use cases and relaxes
POSIX semantics. MarFS does not (1) allow updating the file in place
for object data repositories and (2) check for or protect against multiple
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writers into the same file. MarFS uses a POSIX-conformant file system as
a metadata storage and as a cache for data. MarFS uses extended attributes
to store file metadata, such as the file data object identifier in cloud object
storage. The data is written to the data component, which can be a POSIX
file system or an object store. All normal attributes, such as permissions,
dates, and even file sizes, are kept up-to-date in semantically reasonable
ways. The file size is updated by truncating the POSIX metadata file to
the size of the desired file even though there may be no actual data in
the file itself. For this reason, POSIX file systems used for the metadata
component must support sparse files [37]. The solution is open source.

Saga [56] is a user mode file system based on cloud object storage service,
designed to support POSIX with the goal of minimizing cost. Saga authors
argue that Saga is efficient from the performance perspective and utilizes
parallel characteristics of cloud object storage to boost performance. Since
it was not explicitly stated whether Saga is a distributed file system or not,
it is assumed that Saga is a single-node file system. All files stored in Saga
are chunked into fixed-size blocks and all the fixed-size blocks are stored as
objects in the cloud object storage. Saga can be divided into three modules:
a cache module named Dragon Orb, a kernel module redirecting file system
calls to Dragon Orb, and a network module taking charge of writing data to
and reading data from the cloud object storage. The kernel module of Saga
redirects all the file system calls to the user mode cache module Dragon
Orb. Dragon Orb manages fixed-size cache on the local file system to store
objects and utilizes a variant of the LRU cache replacement algorithm to
evict objects when an object has to be loaded into the full object cache.
Unfortunately, the link to the repository with Saga’s source code was not
found.

BlueSky [63] is a network file system backed by cloud storage. BlueSky
stores data persistently in cloud object storage. Clients access the storage
through a proxy running on-site, which caches data to provide lower-latency
responses and additional opportunities for optimization. BlueSky provides
standard POSIX file system semantics, including atomic renames and hard
links. BlueSky supports multiple protocols—both NFS and CIFS—and is
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portable to different cloud providers. The central component of BlueSky is
a proxy situated between clients and cloud providers. The proxy commu-
nicates with clients in an enterprise using a standard network file system
protocol, and communicates with cloud providers using a cloud storage pro-
tocol. It supports multiple file system clients. Nevertheless, currently only
one proxy can be used in the system, which can become a performance
bottleneck and a single point of failure. The project is open source.

SCFS is a cloud-backed file system that provides strong consistency
and near-POSIX semantics on top of eventually consistent cloud storage
services. SCFS provides a pluggable backplane that allows it to work with
various storage clouds or a cloud of clouds. SCFS does not rely on the
features specific to the selected cloud object storage provider besides on-
demand access to storage and basic access control lists. A primary goal
of SCFS is to allow clients to share files in a controlled way, providing the
necessary mechanisms to guarantee security. SCFS also aims to offer a
natural file system API with strong consistency. SCFS is not intended to
be a big-data file system, since file data is uploaded to and downloaded
from one or more clouds. SCFS uses a fault-tolerant coordination service.
The metadata and coordination services are assumed to run in the cloud
on compute nodes, while clients connect to the file system via FUSE file
systems, which in turn are connected to the SCFS agents (daemons). The
project is open source.

Compared to the above solutions, the tiered file system presented in
this study concentrates on the mass file storage use case, uses an existing
local disk or distributed POSIX-conformant file system as a permanent
metadata storage and as a hybrid of permanent storage and cache for data.
The proposed tiered file system provides the levels of consistency and fault
tolerance similar to the underlying file system’s, and uses policies that define
data migration rules.

I.4.2 Automated Storage Tiering Problems

There are several problems to be overcome by the tiered file system
developer.
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The first one is that some cloud object storage systems use the weak
consistency model. The tiered file system should have a mechanism to
verify that the data read from the cloud object storage are of the latest
version.

The common problem of distributed systems is partitioning. The dis-
tributed tiered file systems should tolerate partitions within a cluster. Cloud
object storage connection failures should also be handled properly.

The tiered file system may implement automated storage tiering based
on a policy. No matter how advanced the policies are, there will always be
“cache misses”, accesses to files residing in the cloud object storage tier. This
means that the tiered file system should be deployed in close proximity to
the data center where cloud object storage is deployed to ensure that access
latency for relatively large files is not very high.

In tiered file systems, each file usually has more metadata than in tradi-
tional file systems. It is unreasonable to demote files of sizes less then tens
of kilobytes, since the file will consume more space due to increased total
size of data and metadata.

Finally, there is a problem which is not evident in the beginning of
the tiered file system development, but which may significantly impact the
tiered file system’s usability. Consider the following use case: one of the
tiered file system directories contains thousands of images, and the user
opens this directory with a graphical file manager. At first, for example,
files are shown in a detailed view mode, where each file is represented as a
file name with a small icon indicating the file type. Then, the user switches
to the preview mode. Suppose images are encoded with the JPEG file
interchange format (JFIF) [29], which allows for storing thumbnails using
the JFIF APP0 marker segment. To get image thumbnails, the graphical
file manager opens each file and reads a few kilobytes of data from the
beginning. If the tiered file system does not provide any special handling for
such image files, all images will be migrated to the file system tier even when
the user needs only one image to be opened. Note that modern graphical
file managers provide some sort of protection against previewing files that
reside on network file systems. For example, the user can set an option to
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preview only files smaller than a certain size to prevent unnecessary data
transfers [60].
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II Comparison of Selected Distributed File
Systems

The tiered file system proposed in this study uses an existing file sys-
tem as the tier for fast data access. One of the goals is to provide tiering
support for a distributed POSIX-conformant file system. In this regard,
before starting to work on the design and implementation, several existing
distributed file systems were surveyed. Based on the survey results, some
features of the selected file systems, which are important for design and
implementation, were identified and compared.

MooseFS. MooseFS [1] is an open source network distributed file sys-
tem. It is fault-tolerant, highly performing, easily scalable, and POSIX-
conformant. MooseFS spreads data over several physical commodity
servers, which are visible to the user as one big volume. For standard
file operations, MooseFS acts like an ordinary Unix-like file system: it pro-
vides a hierarchical directory structure, stores POSIX file attributes, sup-
ports ACLs, supports POSIX and BSD locks, supports special files (block
and character devices, pipes and sockets), and supports symbolic and hard
links. Distinctive MooseFS features are the following:

• high reliability,
• no single point of failure,
• parallel data operations,
• dynamic capacity expansion via addition of new computers,
• coherent, “atomic” snapshots of files, and
• data tiering (supports different storage policies for different files/di-

rectories).
MooseFS is an open source solution licensed under the GPLv2 license.

CephFS. CephFS [13] is a distributed near-POSIX file system that uses
a Ceph Storage Cluster to store its data. CephFS provides dynamic dis-
tributed metadata management using a metadata cluster (MDS) and stores
data and metadata in Object Storage Devices (OSD). CephFS aims to ad-
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here to POSIX semantics wherever possible. CephFS maintains strong
cache coherency across clients. The goal is for processes communicating
via the file system to behave the same way when they are on different hosts
as when they are on the same host. There are a few places where CephFS
diverges from strict POSIX semantics for various reasons:

• If a client is writing to a file and fails, its writes are not necessarily
atomic.

• In shared simultaneous writer situations, a write that crosses object
boundaries is not necessarily atomic.

• A seekdir() [52] to a non-zero offset may often work but is not
guaranteed to do so.

• Sparse files propagate incorrectly to the st_blocks member of
struct stat.

• When a file is mapped into memory via mmap() [35] on multiple hosts,
writes are not coherently propagated to other clients’ caches.

CephFS also provides some tools to relax consistency. For example, the
O_LAZY option allows users to read a file even if it is currently being rewrit-
ten [18]. CephFS is fault-tolerant and supports tiering. There are two tiers
named Cache Tier and Storage Tier. Cache Tier is usually made of rela-
tively fast/expensive storage devices while Storage Tier is made of relatively
slower/cheaper devices. CephFS is an open source solution licensed under
the LGPLv2.1 license.

GlusterFS. GlusterFS [2] is a scalable network file system suitable for
data-intensive tasks such as cloud storage and media streaming. It has
a client-server design with no metadata server. Instead, GlusterFS stores
data and metadata on multiple devices attached to different servers. In
GlusterFS, when a server becomes unavailable, it is removed from the sys-
tem and no I/O operations to it can be performed [18]. GlusterFS is fully
POSIX-conformant. GlusterFS supports tiering [27]. The tiering feature
enables different storage types to be used by the same logical volume. In
GlusterFS, the two types are classified as “cold” and “hot”, and are rep-
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resented as two groups of bricks6. The hot group acts as cache for the
cold group. GlusterFS is an open source solution licensed under the dual
GPLv2 / LGPLv3 or later license.

OrangeFS. OrangeFS [40] is a scale-out network file system designed
for use on high-end computing (HEC) systems that provides very high-
performance access to multi-server-based disk storage, in parallel. It is
designed specifically to scale to very large numbers of clients and servers.
OrangeFS is also used with data-intensive systems and projects for com-
modity networks, big data, and business applications. Since Linux kernel
4.6 release, OrangeFS kernel module is a part of the Linux kernel. OrangeFS
features include:

• file data distribution among multiple file servers,
• support of simultaneous access by multiple clients,
• storage of file data and metadata on servers using the local file system,

and
• statelessness.

OrangeFS is fault-tolerant. Given enough hardware, OrangeFS can even
handle server failures. OrangeFS does not support tiering (as of OrangeFS
2.9.6), but according to [8] there is a plan to add this feature in OrangeFS
3.0 release. OrangeFS is open source and licensed under the LGPLv2.1
license.

Comparison. The choice of the distributed file system for the file system
tier of the tiered file system was based on four characteristics: (1) POSIX
conformance, (2) tiering support, (3) fault tolerance, and (4) license. The
distributed file system should provide at least near-POSIX semantics to
be compatible with legacy applications. It should be fault-tolerant to be
used in production environments. The distributed file system should be
available for use in a binary or source code form to perform experiments
without buying it or violating a proprietary license agreement. That is

6Brick is the basic unit of storage in GlusterFS, represented by an export directory on a server in the
trusted storage pool.
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why file systems, such as GPFS [30], are not included in this short survey.
The tiering mechanism can be reused while adding support of the cloud
object storage tier. However, the absence of a tiering mechanism in the
distributed file system provides the possibility for its creation. The above-
listed distributed file systems are compared in Table 1 based on these four
characteristics.

POSIX Conformance Tiering Support Fault Tolerance License
MooseFS full + + GPLv2
CephFS near + + LGPLv2.1

GlusterFS full + + GPLv2/LGPLv3
OrangeFS near - + LGPLv2.1

Table 1: Comparison of selected distributed file systems.

During the design of the tiered file system proposed in this study, it
was decided to make the tiered file system agnostic to the file system used
as the file system tier, and the absence of a tiering feature has become a
virtue—possibility to make a contribution to the open source community.
Concerning this, as well as some other reasons, such as file system’s maturity
and the market interest in it, the OrangeFS parallel file system was chosen
to evaluate performance of the designed tiered file system in a distributed
configuration. Performance evaluation of the designed tiered file system
with OrangeFS as the file system tier is done in Section IV.2.2.
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III Requirements and Design
This section summarizes requirements for a file system implementing

automated storage tiering and proposes a design for such a system. The
storage tier represented by the POSIX-conformant file system is referred as
the hot tier, and the storage tier represented by the cloud object storage is
referred as the cold tier.

III.1 Requirements
The tiered file system should be able to run in various Linux operating

environments. It is not required to ensure its compatibility with an arbitrary
UNIX operating system. Any common Linux-specific features can be used.

III.1.1 Use Cases

The primary use case for the tiered file system is mass file storage within
an organization. It is assumed that the tiered file system will be used for file
sharing, storage of scientific computation artifacts, and storage of personal
files.

III.1.2 User Interaction

The tiered file system should provide the POSIX semantics. Tiered file
system’s client applications should not be aware of the tier in which files
reside. The time required to access a file in the cold tier of the tiered
file system should linearly depend on the file size and network bandwidth.
Tiered file system’s predictive data promotion policies should minimize the
probability of accessing a file in the cold tier.

III.1.3 Administration

The tiered file system should be highly configurable. The system ad-
ministrator should be able to optimize it for specific workloads and file
access patterns. Besides the ability to define custom storage tiering poli-
cies, the tiered file system should feature multiple operating modes, such as
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migration of data to the cold tier followed by removal of data from the hot
tier (data demotion) or backup mode, when the cold tier is an eventually
consistent replica of the hot tier.

Automated storage tiering policies can range from very simple and
straightforward to very complex and adaptive. For example, a relatively
simple policy is: demote files last accessed more than 10 minutes ago; pro-
mote files upon client’s request. An example of a relatively complex policy
is: demote files larger than 5 megabytes, for which the last access time dif-
ference with the current time is equal or greater than 1 hour; when a user
from the group accounting logs into the operating system, promote all files
from the /mnt/fs/accounting directory (start cold-to-hot tier data migra-
tion in background); when a user from the group hr accesses at least one
file from the /mnt/fs/hr directory, promote all files in that directory; for
users from other groups, provide on-demand file access, taking into account
file permissions and ACLs7 [32], if configured. An example of an adaptive
policy could be the following: collect information about peaks and troughs
of a number of accesses per minute for each file in the directory /mnt/f-
s/share within 24 hours; next day, promote and demote files based on the
collected statistics, while collecting new statistics for the following day.

III.2 Design
Designing and implementing a new file system from scratch is inex-

pedient. It is more reasonable to devise a separate software component,
responsible for automated storage tiering, and make it compatible with the
majority of POSIX-conformant file systems. Such an approach provides
the following benefits: (1) independent development cycles, (2) ability to
use the this software component with different file systems, and (3) ability
to use one instance of the software component with multiple file systems
simultaneously.

In this section, a software component responsible for automated storage
tiering is referred as the tiered component. The combination of the tiered

7Access Control List
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component and the underlying file system is referred as the tiered file system.
The underlying file system itself is simply referred as the file system.

The tiered file system consists of two high-level components: the tiered
component and the file system. This section proposes the tiered component
architecture and identifies the method of interaction between the tiered
component and the file system.

Taking into consideration the use case requirements for the tiered file
system, it is reasonable to design a system supporting file-level tiering in-
stead of block-level tiering. File storage systems allow for less use cases as
compared to block storage systems, but they fully meet the primary use
case requirement—to provide mass file storage. Moreover, file-level tiering
reduces tiered file system complexity and facilitates loose coupling of the
tiered component and the file system.

III.2.1 Components

The tiered component consists of the following components:
• Daemon

– Policy Processor
– File System Scanner
– Monitor
– Data Mover

• System Call Interceptor
A UML component diagram [54] for the tiered component is presented in
Figure 1.

Daemon. The daemon is the most intelligent part of the tiered compo-
nent. It consists of a policy processor, file system scanner, monitor, and data
mover. The policy processor schedules file demotion and promotion tasks
which, in turn, are processed by the data mover. The file system scanner is
constantly scanning the file system and feeds files to the policy processor.
The monitor collects statistics and feeds these data to the policy processor.
There is one daemon per operating system.
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Figure 1: Component diagram for the tiered component.

Policy Processor. The policy processor is responsible for scheduling
of file promotion and demotion tasks. The system administrator defines a
set of policy rules in the configuration file. The policies are selected either
from a set of predefined policy rules in the policy repository or defined
by means of a domain-specific language (DSL). There are three types of
input: (1) file names from the file system scanner, (2) file names from the
system call interceptor, and (3) statistics from the monitor, such as available
capacity, RAM utilization, number of open file descriptors, and I/O request
rate. Based on policy rules and statistics, the policy processor schedules
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file demotion and promotion tasks with a certain priority for files coming
from the file system scanner. File promotion tasks for files coming from the
system call interceptor are scheduled with the highest priority. Only the
files that must be promoted are fed to the policy processor by the system
call interceptor since there is no need to contact the daemon for files residing
in the hot tier.

File System Scanner. The file system scanner is constantly travers-
ing the file system’s directory tree. It feeds all regular files to the policy
processor for further processing.

Monitor. The monitor periodically collects information about the
available capacity and the number of open file descriptors. It also col-
lects useful statistics from all other daemon components. All data are then
fed to the policy processor.

Data Mover. The data mover is responsible for execution of file de-
motion and promotion tasks scheduled by the policy processor. During task
execution, the data mover performs predefined ordered actions on the file
data and metadata conforming to a protocol (described in Section III.2.2)
that ensures that the files are accessed correctly.

System Call Interceptor. The system call interceptor redefines some
system calls and notifies the daemon about the need to promote a file when
the tiered file system client accesses the file residing in the cold tier. The
system call interceptor can be implemented at least in four different ways:
(1) as a loadable kernel module intercepting some system calls [9], (2) as
a new file system to be used in conjunction with OverlayFS [42], (3) as a
FUSE file system [38], and (4) as a dynamically loaded shared library [32].
Each approach has its advantages and disadvantages. Implementation of
the system call interceptor as a loadable kernel module intercepting some
system calls is a controversial solution. The interception occurs before the
system call reaches the VFS kernel subsystem. Additional logic will apply to
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all invocations of this system call, which may lead to dramatic performance
degradation of the whole operating system. Implementing the system call
interceptor as a new file system kernel module used in conjunction with
OverlayFS is the best option in terms of architecture and performance.
The tiered file system’s underlying file system and the new file system can
be mounted as “upper” and “lower” file systems using OverlayFS. There will
be negligible overhead due to accessing files in the hot tier; the overhead
for accessing files in the cold tier will depend on the daemon implementa-
tion efficiency and network bandwidth. This solution has a complication
common for any kernel code—the Linux kernel is constantly changing and
guarantees neither a stable internal API nor ABI; consequently, code com-
pilation and adjustments for each new Linux kernel release will be required.
Implementation of the system call interceptor as a FUSE file system is an
elegant solution. It allows implementing all additional logic for system calls
in a user space, but it imposes overheads due to additional context switches
and memory copies between kernel and user spaces [50]. The system call
interceptor implemented as a dynamically loaded shared library is a slightly
more efficient solution than the FUSE file system, because it has two context
switches less. However, it also has substantial shortcomings—it intercepts
each of the special system calls made by the tiered file system client, even
to files residing on other file systems, and does not intercept system calls
made by statically linked programs. Notwithstanding these drawbacks, in
this study, the dynamically loaded library approach has been chosen for the
system call interceptor implementation because of its simplicity, portabil-
ity, and the ability of quick prototyping. A similar approach for system call
interception has been taken in [24].

III.2.2 Data Migration

The file demotion process includes migration of file data to the cold tier.
Similarly, the file promotion process includes migration of file data to the hot
tier. File data residing in the cold tier cannot be read and written directly
with POSIX; therefore, when the tiered file system client accesses the file,
the file data should be migrated to the hot tier first. Obviously, a client
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requesting a read of a byte range in the middle of the file should be blocked
until this byte range is available in the hot tier. In the simplest case, read
and write operations are allowed only after all file data is migrated to the hot
tier. However, reads of file data residing in the cold tier can be optimized,
for example, using object retrieval in parts by the Amazon S3 protocol [5].
Migration of large files to the cold tier can also be optimized with the
Multipart Upload S3 feature. Other object storage protocols exist, but
they are not considered in this study.

The system call interceptor intercepts file system requests made by
clients and, based on the requested file location, contacts the daemon. The
file location is defined in the file metadata using the extended attributes.
Extended attributes are often used to provide additional functionality to a
file system [64]. The tiered component makes use of extended attributes to
designate the tier in which files reside. A file resides in the hot tier when
both its data and metadata is in the hot tier. A file resides in the cold tier
when its data is in the cold tier and metadata is in the hot tier. The tiered
component’s data migration protocol ensures file data integrity.

Protocol. In the following protocol description, a file residing in the hot
tier is referred as the original file and a file residing in the cold tier is referred
as the stub file. Extended attributes are accessed as atomic objects [64].
Atomicity of extended attributes enables atomic transitions between origi-
nal and stub file states. The tiered component uses the following extended
attributes:

• lock: This is an undefined extended attribute that is used by dae-
mons to synchronize their activities. (A distributed tiered file system
includes multiple daemons.)

• object_id: This is a defined extended attribute that is used to store
an object identifier corresponding to file data.

• stub: This is an undefined extended attribute that is used as a file lo-
cation indicator. Its absence indicates an original file and its presence
indicates a stub file.

• size: This is a defined extended attribute that stores the file data
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size in bytes as if all file data was in the hot tier; namely, the value of
the st_size member of struct stat [53].
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Figure 2: State diagram of the file demotion process.

Demotion Protocol. The file demotion process is illustrated in Fig-
ure 2. When the policy processor schedules a file demotion task, the data
mover starts migrating the file data to the cold tier. Since the file re-
sides in the hot tier, it is an original file. The original file state has sev-
eral substates in the context of the file demotion process: normal, locked,
interim, recover interim, recover locked, and recover normal. When the
file demotion process completes, the file becomes a stub file. The stub
file state has several substates in the context of the file demotion process:
interim, locked, and normal. The initial file state is (original, normal)

when there are no extended attributes set. Then it atomically switches
to the (original, locked) state by setting the lock undefined extended
attribute. Then migration of file data to the cold tier starts, which can
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take quite a long time. In case of failure, a recovery process starts, pro-
viding transitions to the (original, recover locked) state and then to the
(original, recover normal) state. It includes atomic removal of the lock
extended attribute. Otherwise, in case of success, the file state atomically
switches to (original, interim) by setting the object_id defined extended
attribute. The attribute value is an identifier of an object representing the
file data in the cloud object storage. Then the file becomes the stub file
through an atomic state switch to (stub, interim) with the stub undefined
extended attribute. Note that the file data resides in both tiers in this
state. From this point on, all file access requests go through the daemon.
The next transition is determined by a predicate composed of demotion pol-
icy conditions. Some of tiered file system clients might have accessed this
file during previous state transitions. In this case, a recovery process starts,
providing transitions to the (original, recover interim) state, then to the
(original, recover lock) state, and then to the (original, recover normal)

state. The process includes subsequent removals of the previously set ex-
tended attributes in the reverse order; the object containing the file data
can optionally be removed from the cloud object storage to reduce stor-
age charges. Otherwise, if the file still satisfies all demotion conditions, it
is truncated [58] to zero length, and its state atomically switches to the
(stub, locked) state by setting the size defined extended attribute. The
attribute value equals to the st_size member of struct stat obtained
prior to the file truncation. Then the last transition, to the (stub, normal)

state, occurs via atomic removal of the lock extended attribute. After that,
the file demotion process is considered complete.

Promotion Protocol. A file promotion process is illustrated in Fig-
ure 3. When the policy processor schedules a file promotion task, the data
mover starts migrating the file data to the hot tier. Since the file resides in
the cold tier, it is a stub file. The stub file state has several substates in
the context of the file promotion process: normal, locked, interim, recover
locked, and recover normal. When the file promotion process completes,
the file becomes an original file. The original file state has several sub-
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Figure 3: State diagram of the file promotion process.

states in the context of the file promotion process: interim, locked, and
normal. The initial file state is (stub, normal) when there are the size,
stub, and object_id extended attributes set. Then it atomically switches
to the (stub, locked) state by setting the lock undefined extended attribute.
Then migration of file data to the hot tier starts, which can take quite a
long time. In case of failure, a recovery process starts, providing transitions
to the (stub, recover locked) state and then to the (stub, recover normal)

state. It includes atomic removal of the lock extended attribute. Other-
wise, in case of success, the file state atomically switches to (stub, interim)

by removing the size extended attribute. Then the file becomes an orig-
inal file through an atomic state switch to the (original, interim) state
via the stub extended attribute removal. From this point on, all file access
requests go directly through the file system, avoiding interactions with the
daemon. The next transition, to the (original, locked) state, occurs via
atomic removal of the object_id extended attribute; the object contain-
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ing the file data can optionally be removed from the cloud object storage
to reduce storage charges. Then the file state atomically switches to the
(original, normal) state via atomic removal of the lock extended attribute,
which is the last state transition in the file promotion process. After that,
the file promotion process is considered complete.

Theorem. The file data migration protocol proposed above ensures file data
integrity and guarantees that a file is processed by no more than one daemon
at a time.

Proof. The daemon starts either the file demotion or promotion process
with setting the lock extended attribute atomically and ends the process
with removal of the attribute. This guarantees exclusive access to this file
among all daemons in the tiered file system.
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Figure 4: Demotion process timeline.

Consider the file demotion process in Figure 4. Client access to file
data is not restricted during (1), (2a), (2c), (3a), (3c), (5b), and (6b) state
transitions. During these transitions, the file is always in the (original, ∗)
state, that is, there are no interactions between the system call interceptor
and the daemon during file access. If an tiered file system client accesses the
file during (1), (2a), and (3a) state transitions, the recovery process will be
triggered, and the file will end up in the (original, normal) state. The file
would not be truncated by the daemon if there were accesses to this file by
other tiered file system clients. In cases (4a), (4b), and (5a), the system call
interceptor will contact the daemon, which, in turn, guarantees exclusive
access to the file among all daemons in the tiered file system. Thus, file
integrity is ensured during the file demotion process.
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Figure 5: Promotion process timeline.

Consider the file promotion process in Figure 5. During (1), (2a), (2b),
(3a), and (3b) state transitions, the system call interceptor will contact
the daemon during file access. This guarantees exclusive access to the file
among all daemons in the tiered file system. Client access to file data is
not restricted during (4a) and (5a) state transitions. In these cases, the file
data is already in the hot tier, and there will be no interactions between
the system call interceptor and the daemon during file access. Thus, file
integrity is ensured during the file promotion process.

III.2.3 Policy Setting

A policy repository storing low-level policy rules, their conditions and
actions, and related policy data is built into the policy processor. An ex-
ample of a low-level policy condition is evaluation whether a file is of the
regular type [32] or not. Examples of low-level policy actions are “demote
file” and “promote file.” Complex policies are defined using a configuration
file that contains a DSL description of high-level policy rules [25]. This
DSL is capable of describing static policy rules, which simply map policy
conditions to policy actions, and adaptive policy rules, which are based on
collected statistics of clients’ access patterns for the particular tiered file
system deployment. The policy definition DSL, expressing policy goals in
a machine-readable way, is subject to further research.

III.2.4 System Call Interception

As noted earlier, there are several options for how to implement the
system call interceptor. In this study, the dynamically loaded library option
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is considered. When discussing this option, it is more natural to say “wrap
a system call” or “provide a system call replacement” instead of “intercept a
system call,” but the verb “intercept” will be used for consistency.

When an executable starts, the dynamic linker loads all of the shared
libraries in the program’s dynamic dependency list. It is possible to se-
lectively override functions (and other symbols) that would normally be
found by the dynamic linker using the rules described in [33]. To do so, one
can define the environment variable LD_PRELOAD as a string consisting of
space- or colon-separated names of shared libraries that should be loaded
prior to any other shared libraries. Since these libraries are loaded first, any
functions they define will automatically be used whenever required by the
executable, thus overriding any other functions of the same name that the
dynamic linker would otherwise have searched for [32].

In the light of the above, the system call interceptor can be implemented
as a shared library, with the library name prepending the LD_PRELOAD vari-
able value. In this case, all processes, except those that are statically linked
with libc.so.6 [34]—“standard C library,” will use redefined versions of
system calls with signatures listed below.

• open()-Family Calls
int open ( const char *pathname , int f l a g s , . . . ) ;
int openat ( int d i r fd , const char *pathname ,

int f l a g s , . . . ) ;
• stat()-Family Calls

int s t a t ( const char *pathname , struct s t a t * s t a tbu f ) ;
int l s t a t ( const char *pathname , struct s t a t * s t a tbu f ) ;
int f s t a t a t ( int d i r fd , const char *pathname ,

struct s t a t * s tatbu f , int f l a g s ) ;
• truncate()-Family Calls

int t runcate ( const char *path , o f f_t l ength ) ;

Both open()-family calls will schedule demotion of the requested file if
required. Their execution will last until the requested file becomes the
original file, except for the cases when O_NONBLOCK or O_NDELAY flags are
specified [39]. A sample implementation in a C-like pseudocode of the
open() call is presented in Listing 1, Appendix A. All stat()-family calls
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replace the value of the the st_size member of struct stat with the
value of the size defined extended attribute if required. A sample C-like
pseudocode implementation of the stat() call is presented in Listing 2,
Appendix A. Note that there is no need to intercept stat()-family sys-
tem calls if the file system supports the fallocate() system call with the
FALLOC_FL_PUNCH_HOLE mode argument [23]. In this case, one can use an
atomic system call to make the file sparse. Most file systems do not al-
locate space for sparse files, so there is no storage overhead. Interception
of the truncate() system call enables very useful optimization—if the file
was either shrunk or extended, one can record a data end offset in the de-
fined extended attribute data_offset (optional) and migrate the required
data range only during the file promotion process8. A sample C-like pseu-
docode implementation of the truncate() call is presented in Listing 3,
Appendix A.

III.2.5 Deployment

The use of extended attributes as a synchronization mechanism makes it
possible to run multiple daemons per tiered file system and enables the use
of the tiered component in conjunction with a distributed file system. In a
distributed environment, the tiered component comprises several daemons
and system call interceptors; namely, one daemon and system call inter-
ceptor per node in a cluster. Each daemon, which contains a file system
scanner, can be configured to scan a single subtree of the directory tree to
speed up identification of candidate files for demotion or promotion. This
configuration does not need to be static. Fault-tolerant solutions suitable
for distributed configuration management, such as Apache ZooKeeper [7]
and etcd [66], can be utilized to dynamically map subtrees of the directory
tree to daemons’ file system scanners. Apache Zookeeper and etcd can also
be used as a communication mechanism between daemons, for example, for
load balancing of file data migration tasks, as network resources on some
nodes may be overutilized, and others underutilized.

8The use of the data_offset extended attribute is optional and does not affect the correctness of the
data migration protocol if handled properly in the code.
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The deployment diagram for the tiered file system is shown in Figure 6.
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Figure 6: Deployment diagram of the tiered file system.

III.2.6 Possible Improvements and Optimizations

As discussed in Section I.4.2, one of the main problems that arises dur-
ing development of tiered file systems is the weakened consistency model
of the cloud object storage tier (depends on cloud object storage). In the
tiered file system, this problem can be addressed using the hash defined ex-
tended attribute. This attribute stores a hash of file data calculated during
demotion. The stored hash value can be used during the file promotion pro-
cess to verify that the data is of the latest version. The versioning feature
offered by some cloud object storage systems, such as Amazon S3 [5], can
also be used for this purpose. In this case, it is more natural to name the
extended attribute as version instead of hash. This concept is similar to
the consistency anchors concept proposed in [51]; the file system will act as
a strongly consistent store for metadata (consistency anchor) in the tiered
file system.

Files can be quite big. If it is known in advance that the tiered file
system will store many large files, it is reasonable to split large files into
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chunks and promote file chunks instead of the whole file. Such an approach
requires addition of extended attributes check to each read() and write()
system call invocation. If the system call interceptor is implemented as a
dynamically loaded shared library or as a FUSE file system, these checks will
cause dramatic performance degradation. However, this might be a good
option for the system call interceptor implemented as a file system kernel
module to be used with OverlayFS. In the latter case, there is no overhead
due to additional context switches between user and kernel spaces. This
is particularly useful for resolution of the graphical file managers’ problem
discussed in Section I.4.2. Upon file access, the file promotion process starts,
which now comprises several stages of chunk promotions determined by the
number of chunks in the file. As soon as the first chunk of the file is migrated
to the hot tier, the graphical file manager can read the first few kilobytes
and close the file. On close(), the daemon can abort the file promotion
process leaving the rest of file chunks in the cold tier. It is worth noting
that, in most cases, such “on-close()” behavior should not be applied to the
whole directory tree of the file system, but rather to individual directories
which are known to store large collections of images and videos. The access
latency could also be decreased via interception of the posix_fadvise()
system call [44]. When the client application takes advantage of this system
call, the daemon can migrate file chunks corresponding to the offset and
len parameters first.

Nonetheless, it is strongly believed that the maximum performance in-
crease can be gained only via careful adjustment of data migration policies
by either the system administrator or the policy processor itself, if it imple-
ments some advanced adaptive policy.
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IV Implementation
The tiered file system proposed in Section III.2 has been implemented

and its performance was evaluated with the BtrFS [11] local disk file sys-
tem and the OrangeFS [40] parallel file system on a four-node cluster. This
section provides an overview of the implementation and then discusses per-
formance evaluation results. The developed tiered file system is called
CloudTieringFS. The implementation is open source, licensed under the
GNU General Public License v3.0 (GPLv3) [26] and freely available on
GitHub9.

IV.1 Overview
CloudTieringFS is developed in the C language. It consists of only 5361

lines of code, including comments and excluding documentation and license
files. It depends on the libs3 library [67], which is used to work with
S3-compatible cloud object storage systems, and the dotconf library [65],
which is used to parse configuration files. POSIX Threads [12] are used to
enable parallelism.

The components are as proposed in Section III.2: the daemon, which
contains the policy processor, monitor, file system scanner and data mover,
and the system call interceptor in the form of a dynamically loaded shared
library. There is also a test suit covering most of the implemented function-
ality. The number of threads belonging to the data mover is configurable.
As of now, each file demotion/promotion task runs in its own thread; this
mechanism will be replaced with epoll() [21], leaving only two threads for
the data mover—one for file demotions and the other for file promotions.
Currently, there are two policies implemented:

1. Demote files that have not been accessed for X seconds and promote
files on demand.

2. Demote files that have not been accessed for X seconds and promote
all files in the directory in case the client accessed at least one file in

9https://github.com/aoool/CloudTieringFS
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that directory.
The policies are defined in the code; the policy definition DSL is subject
to further research. The implementation passes the pjdfstest [68] POSIX
conformance test.

IV.2 Performance
CloudTieringFS performance was evaluated in single- and multi-node

configurations. For the single-node configuration, the BtrFS file system
was used as the file system tier. For the multi-node configuration, the
OrangeFS file system was used as the file system tier. Amazon EC2 [4] was
used to deploy compute nodes and Amazon S3 [5] was used as the cloud
object storage tier. Compute nodes and S3 object storage were located in
North Virginia. SUSE Linux Enterprise Server 12 SP2 were installed on
all nodes. Nodes were of the t2.micro type and had 1 virtual CPU, 1 GiB
RAM and 30 GB of EBS10 space. For OrangeFS, a four-node cluster was
deployed containing three nodes with the OrangeFS Server and one node
with the OrangeFS Client11.

The following performance test scenario was performed: open and read
all files in the directory in the order in which readdir() [47] produces
the files. According to observations, BtrFS’s readdir() lists the files in
random order, while OrangeFS’s readdir() lists the files sorted by file
creation time. For both BtrFS and OrangeFS, file access latencies were
measured as follows:

• “pure” file system,
• tiered file system when files reside in the hot tier,
• tiered file system when files reside in the cold tier and on-demand file

promotion policy—policy (1)—is used, and
• tiered file system when files reside in the cold tier and the predictive

file promotion policy—policy (2)—is used.
The results of this performance test are analyzed in the following sections.

10Elastic Block Storage
11The OrageFS Client was installed on a separate compute node to save some memory; there was only

1GiB of RAM available.
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IV.2.1 Single Node (BtrFS)
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Figure 7: open() system call latency (BtrFS).

CloudTieringFS having BtrFS as the file system tier was tested with
three file sizes: 64KB, 1MB, and 16MB. For each test run, the directory
contained 1024 files of the selected size. There were four test runs per file
size: open and read 1024 files on “pure” BtrFS, open and read 1024 files
in the BtrFS tier of CloudTieringFS, open and read 1024 files in the Ama-
zon S3 tier of CloudTieringFS while the daemon implements policy (1), and
open and read 1024 files in the Amazon S3 tier of CloudTieringFS while the
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daemon implements policy (2). The results are shown in Figure 7. Figure 7a
is a bar plot presenting the mean file access latencies for various cases. Fig-
ure 7b presents box plots corresponding to the file access latencies for each
size while the daemon implements policy (2); lower and upper whiskers are
the second and ninety-eighth percentiles; outliers are not shown. Figure 7c
is a scatter plot presenting the distribution of file access latencies for 16MB
case while the daemon implements policy (2). All three plots have time axis
of logarithmic scale.

Consider Figure 7a. The first two bars in each bar group correspond to
“pure” BtrFS file system and BtrFS tier of the CloudTieringFS. Since BtrFS
is a local disk file system and system call overheads are small, it is not clear
in which configuration the open() system call runs faster. In theory, “pure”
BtrFS’s open() executes faster, because in CloudTieringFS’s implementa-
tion open() performs several additional system calls, causing a number of
user/kernel space context switches. But the compute node was an Ama-
zon EC2 virtual machine with limited resources, so performance deviations
were expected. The third bar in each bar group corresponds to the mean
file access latency with on-demand file access. An average network band-
width can be derived from this value. The fourth bar corresponds to the
mean file access latency while the daemon implements predictive policy—
policy (2). For 64KB files, performance increased 51 times, for 1MB files
it increased 16 times, and for 16MB files there was a 10-times performance
gain in comparison with on-demand access to Amazon S3 tier. There is
also some important statistics: the difference between the latencies of the
file accesses to the first file in a sequence of 1024 files in predictive and
on-demand Amazon S3 tier cases. The first access to the 64KB file takes
33 milliseconds longer than in on-demand case, to the 1MB file it was 191
milliseconds longer, and to the 16MB file—8 seconds longer. These perfor-
mance degradations are in more than payback with the next file accesses.

Consider Figure 7b. As noted earlier, the outliers are not shown and
the lower and upper whiskers are the second and ninety-eighth percentiles.
This means that there were less than 20 file accesses of 1024 lasting longer
than 1 millisecond for each file size.
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Consider Figure 7c. It shows the distribution of open() system call la-
tencies for the 16MB file sizes and predictive policy. Most of the latencies
are less than a millisecond. The overlaid linear prediction plot has negative
slope, which means that the probability to open file faster is higher for the
files in the second half of the sequence of 1024 files. This means that the
daemon performs file promotions faster than the performance test applica-
tion reads the sequence of 1024 files. (In the test run, the daemon’s data
mover had 20 threads for the file promotion tasks execution.)

Some statistics for “pure” BtrFS and predictive CloudTieringFS file ac-
cess latencies is shown in Table 2. The first value corresponds to the “pure”
BtrFS case and the second corresponds to the predictive CloudTieringFS
with BtrFS tier case.

(ms) 64KB 1MB 16MB
Mean 0.01748 | 0.48379 0.02913 | 4.89184 0.02353 | 79.53151

1st Quartile 0.00125 | 0.00159 0.00413 | 0.00213 0.0191 | 0.00401
Median 0.0013 | 0.00163 0.00608 | 0.0022 0.01968 | 0.00444

3rd Quartile 0.0013 | 0.00164 0.00649 | 0.0022 0.02008 | 0.00563
Variance 0.25811 | 40.89284 0.14525 | 431.14388 0.0 | 257196.85321
Std. Dev. 0.50805 | 6.39475 0.38112 | 20.764 0.00215 | 507.14579

Table 2: Comparison of “pure” BtrFS and CloudTieringFS with BtrFS tier.

IV.2.2 Multiple Nodes (OrangeFS)

CloudTieringFS having OrangeFS as the file system tier was tested with
three file sizes: 64KB, 1MB, and 16MB. For each test run, the directory
contained 512 files of the selected size. There were four test runs per file
size: open and read 512 files on “pure” OrangeFS, open and read 512 files in
the OrangeFS tier of CloudTieringFS, open and read 512 files in the Ama-
zon S3 tier of CloudTieringFS while the daemon implements policy (1), and
open and read 512 files in the Amazon S3 tier of CloudTieringFS while the
daemon implements policy (2). The results are shown in Figure 8. Figure 8a
is a bar plot presenting the mean file access latencies for various cases. Fig-
ure 8b presents box plots corresponding to the file access latencies for each
size while the daemon implements policy (2); lower and upper whiskers are
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Figure 8: open() system call latency (OrangeFS).

the second and ninety-eighth percentiles; outliers are not shown. Figure 8c
is a scatter plot presenting the distribution of file access latencies for 16MB
case while the daemon implements policy (2). All three plots have time axis
of logarithmic scale.

Consider Figure 8a. The first two bars in each bar group correspond
to “pure” OrangeFS file system and OrangeFS tier of the CloudTieringFS.
OrangeFS is a distributed parallel file system and system call overheads are
considerable, it is clear that the open() system call runs faster on “pure”
OrangeFS, which meets the theoretical expectations. The third bar in each
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bar group corresponds to the mean file access latency with on-demand file
access. The fourth bar corresponds to the mean file access latency while
the daemon implements predictive policy—policy (2). For 64KB files, per-
formance increased 12 times, for 1Mb files it increased 14 times, and for
16MB files there was a 41-times performance increase in comparison with
on-demand access to Amazon S3 tier. Why the results are different in com-
parison with BtrFS, where this ratio decreased with the file size increase?
Perhaps, because of the design of OrangeFS which is optimized to work
well for scientific applications in a cluster environment. BtrFS performs
good with small files, while OrangeFS performs good with larger files by
virtue of its parallel architecture. The differencies between the latencies of
the file accesses to the first file in a sequence of 512 files in predictive and
on-demand Amazon S3 tier cases are the following: 12 milliseconds longer
than in on-demand case for 64KB file size, 14 milliseconds longer for 1MB
file size, and 41 milliseconds longer for 16MB file size. Such performance
degradation is insignificant, again, because of the parallel architecture of
OrangeFS.

Consider Figure 8b. As noted earlier, the outliers are not shown and
the lower and upper whiskers are the second and ninety-eighth percentiles.
This means that there were less than 11 file accesses of 512 lasting longer
than 1 millisecond for each file size.

Consider Figure 8c. It shows the distribution of open() system call
latencies for the 16MB file sizes and predictive policy. Nearly all measure-
ments are less than 0.1 millisecond. There are only a couple of outliers.
The average read time of the 16MB size was 10 milliseconds. The overlaid
linear prediction plot has negative slope, which means that the probability
to open file faster is higher for the files in the second half of the sequence
of 512 files. One can conclude that the daemon’s data mover performs file
promotions faster than the performance test application reads the sequence
of 512 files. Such good results may also be caused by the order in which
readdir() produces file names. The performance test application and the
CloudTieringFS’s daemon use this function to read directory entries, so the
daemon schedules file promotions in the same order as the performance test
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application accesses the files. (In the test run, the daemon’s data mover
had 20 threads for the file promotion tasks execution.)

Some statistics for “pure” OrangeFS and predictive CloudTieringFS file
access latencies is shown in Table 3. The first value corresponds to the “pure”
OrangeFS case and the second corresponds to the predictive CloudTier-
ingFS with OrangeFS case.

(ms) 64KB 1MB 16MB
Mean 0.01744 | 0.10378 0.01903 | 0.17946 0.02415 | 0.29098

1st Quartile 0.01313 | 0.01733 0.01514 | 0.02029 0.02012 | 0.01957
Median 0.01329 | 0.01833 0.01515 | 0.0205 0.02037 | 0.02013

3rd Quartile 0.01339 | 0.01871 0.01518 | 0.02145 0.0205 | 0.02049
Variance 0.0 | 2.59954 0.0 | 5.24181 0.0 | 8.34067
Std. Dev. 0.00438 | 1.61231 0.00396 | 2.2895 0.00402 | 2.88802

Table 3: Comparison of “pure” OrangeFS and CloudTieringFS with Or-
angeFS tier.

IV.2.3 Summary

The main goal of the performed performance test was to prove that
carefully adjusted automated storage tiering policies can make the perfor-
mance of the tiered file system comparable to the original file system’s. A
certain file access pattern was chosen and corresponding policies were im-
plemented. It was shown that the performance of CloudTieringFS with the
BtrFS tier is comparable to the original BtrFS performance. The perfor-
mance of CloudTieringFS with the OrangeFS tier is nearly identical to the
original OrangeFS performance.

The excellent performance results inspire to further research in the field
of automated storage tiering policies. To make CloudTieringFS suitable
for production use, additional policy rules should be implemented. This
means that the policy definition DSL should be devised to allow system
administrators to configure CloudTieringFS specific usage patterns.
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Conclusion

Results
As a result of this study, the following tasks were accomplished12:

(I) Problems of automated storage tiering in an environment that includes
a distributed file system and cloud object storage were investigated.

(II) Important features of modern distributed file systems (MooseFS,
CephFS, GlusterFS, OrangeFS) related to the automated storage tier-
ing were identified and compared.

(III) A software component enabling automated storage tiering between a
POSIX-conformant file system and cloud object storage was designed.
The component is file system-agnostic and can be used in a distributed
environment.

(IV) The designed software component was implemented and its perfor-
mance evaluated in single- and multi-node configurations. It was
shown that carefully adjusted automated storage tiering policies can
preserve the underlying file system’s performance with neglectable
overheads.

Thus, the primary aim of this study, to design and implement a file
system-agnostic, policy-based software component responsible for data syn-
chronization between a POSIX-conformant file system and cloud object
storage, has been achieved.

12Each task has a corresponding section with the same Roman number.
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Future Work
This study unveils a number of directions for future research and devel-

opment.
The largest research topic is in the field of automated storage tiering

policies. A clear and concise DSL capable of describing storage tiering
policies in a general form could be developed. Machine learning could be
utilized for intelligent file promotions to improve the system ability to adapt
to new workloads and predict file accesses.

There is room for implementation improvements as well. The system
call interceptor in a form of a new file system kernel module to be used in
conjunction with OverlayFS could be implemented and compared with the
dynamically loaded shared library implementation. Various optimizations
proposed in Section III.2.6 could be implemented. epoll() mechanism
could be implemented in the data mover to reduce the duration of data
transitions between tiers. An eventually consistent backup mode could be
introduced with relatively small amount of modifications. The developed
tiered file system could be integrated with a cluster resource manager to
facilitate migration tasks scheduling. The implementation needs further
testing with POSIX-conformant file systems in different configurations in
order to ensure its stability.

Any contribution to the project is welcome. The reference implementa-
tion used in this study can be found on GitHub13.

13https://github.com/aoool/CloudTieringFS
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Appendix A open(), stat(), and truncate()
Listings

Listing 1: Sample implementation of the open() call in a C-like pseudocode.
Error handling is omitted for brevity.

1 #define _GNU_SOURCE
2
3 #include <d l f cn . h>
4 #include <stdarg . h>
5 #include <sys / types . h>
6 #include <unis td . h>
7
8
9 /**

10 * Open and p o s s i b l y c r ea t e a f i l e .
11 */
12 int open ( const char *path , int f l a g s , . . . ) {
13 /* ob ta in the address o f the next symbol ‘ ‘ open ’ ’ occurrence
14 us ing the d e f a u l t shared o b j e c t search order */
15 int (* next_open ) ( const char * , int , . . . ) =
16 dlsym ( RTLD_NEXT, ” open ” ) ;
17
18 /* ge t the mode agrument o f the ‘ ‘ open ’ ’ v a r i a d i c funct ion ,
19 i f a v a i l a b l e */
20 mode_t mode ;
21 va_l i s t ap ;
22 va_start ( ap , f l a g s ) ;
23 mode = va_arg ( ap , mode_t ) ;
24 va_end( ap ) ;
25
26 /* open the f i l e wi th the ‘ ‘ next_open ’ ’ */
27 int fd = next_open ( path , f l a g s , mode ) ;
28
29 /* contac t the daemon , i f the f i l e i s a s tub f i l e */
30 i f ( i s_s tub_f i l e ( fd , f l a g s ) ) {
31 schedule_f i le_demotion ( ” / proc/%ld / fd/%d ” ,
32 ( long ) ge tp id ( ) , fd ) ;
33 wa i t_unt i l_o r i g i na l_ f i l e ( &fd , f l a g s ) ;
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34 }
35
36 return fd ;
37 }

Listing 2: Sample implementation of the stat() call in a C-like pseudocode.
Error handling is ommited for brevity.

1 #define _GNU_SOURCE
2
3 #include <d l f cn . h>
4 #include <f c n t l . h>
5 #include <sys / types . h>
6 #include <unis td . h>
7
8
9 /**

10 * Get f i l e s t a t u s .
11 */
12 int s t a t ( const char *pathname , struct s t a t * s t a tbu f ) {
13 /* ob ta in the address o f the next symbol ‘ ‘ open ’ ’ occurrence
14 us ing the d e f a u l t shared o b j e c t search order */
15 int (* next_open ) ( const char * , int , . . . ) =
16 dlsym ( RTLD_NEXT, ” open ” ) ;
17
18 /* ob ta in the address o f the next symbol ‘ ‘ f s t a t ’ ’ occurrence
19 us ing the d e f a u l t shared o b j e c t search order */
20 int (* next_fstat ) ( int , struct s t a t * ) =
21 dlsym ( RTLD_NEXT, ” f s t a t ” ) ;
22
23 /* use f i l e d e s c r i p t o r f o r f u r t h e r opera t i ons to ensure
24 t h a t subsequent system c a l l s proces s the same f i l e */
25 int fd ;
26 i f ( ( fd = next_open ( pathname , O_RDONLY ) ) == −1 ) {
27 return −1;
28 }
29
30 /* wi th a sma l l p r o b a b i l i t y , may need to repea t the
31 f o l l ow i n g sequence o f system c a l l s */
32 do {
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33 /* i n i t i a l i z e s t a t b u f wi th the ‘ ‘ nex t_s ta t ’ ’ */
34 i f ( next_fstat ( fd , s t a tbu f ) == −1 ) {
35 c l o s e ( fd ) ;
36 return −1;
37 }
38
39 /* r ep l a c e the s t_s i z e member o f s t a t b u f ,
40 i f i t i s r e qu i r ed */
41 i f ( i s_s tub_f i l e ( fd ) ) {
42 o f f_t s i z e ;
43 i f ( ge t_stub_f i l e_s i ze ( fd , &s i z e ) == −1 ) {
44 /* the sequence o f system c a l l s was executed
45 during f i l e s t a t e t r a n s i t i o n
46 ( stub , in ter im)−>(stub , l o cked ) or
47 between entry and e x i t a c t i on s in
48 ( stub , in ter im ) */
49 continue ;
50 }
51
52 statbuf−>st_s i z e = s i z e ;
53 }
54
55 c l o s e ( fd ) ;
56 return 0 ;
57 } while ( 1 ) ;
58
59 /* unreachab le p l ace */
60 c l o s e ( fd ) ;
61 return −1;
62 }

Listing 3: Sample implementation of the truncate() call in a C-like pseu-
docode. Error handling is omitted for brevity. Only “truncate to zero
length” optimization is shown; other optimizations are possible.

1 #define _GNU_SOURCE
2
3 #include <d l f cn . h>
4 #include <f c n t l . h>
5 #include <sys / types . h>
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6 #include <sys / xa t t r . h>
7 #include <unis td . h>
8
9

10 /**
11 * Truncate the f i l e to the s p e c i f i e d l e n g t h .
12 */
13 int t runcate ( const char *path , o f f_t l ength ) {
14 /* ob ta in the address o f the next symbol ‘ ‘ open ’ ’ occurrence
15 us ing the d e f a u l t shared o b j e c t search order */
16 int (* next_open ) ( const char * , int , . . . ) =
17 dlsym ( RTLD_NEXT, ” open ” ) ;
18
19 /* ob ta in the address o f the next symbol ‘ ‘ f t r un ca t e ’ ’
20 occurrence us ing the d e f a u l t shared o b j e c t search order */
21 int (* next_ftruncate ) ( int , o f f_t ) =
22 dlsym ( RTLD_NEXT, ” f t r unca t e ” ) ;
23
24 /* use f i l e d e s c r i p t o r f o r f u r t h e r opera t i ons to ensure
25 t h a t subsequent system c a l l s proces s the same f i l e */
26 int fd ;
27 i f ( ( fd = next_open ( path , O_WRONLY ) ) == −1 ) {
28 return −1;
29 }
30
31 /* s e t s i z e va lue to zero , i f i t i s r e qu i r ed */
32 i f ( l ength == 0 ) {
33 of f_t s i z e = 0 ;
34 f s e t x a t t r ( fd , ” user . s i z e ” , &s i z e , s izeof ( o f f_t ) ,
35 XATTR_REPLACE ) ;
36 }
37
38 /* t runca t e f i l e wi th the ‘ ‘ nex t_f t runca te ’ ’ */
39 int r e t = next_ftruncate ( fd , l ength ) ;
40
41 c l o s e ( fd ) ;
42 return r e t ;
43 }
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