Санкт-Петербургский государственный университет Прикладная математика и информатика Статистическое моделирование

Бзикадзе Андрей Важевич

Статистические свойства некоторых процедур сжатия данных

Выпуская квалификационная работа

Научный руководитель:

к. ф.-м. н., доцент В. В. Некруткин

Рецензент:

исследователь Е.А. Советкин

Saint Petersburg State University Applied Mathematics and Computer Science Statistical Modelling

Bzikadze Andrey

STATISTICAL PROPERTIES OF SOME DATA COMPRESSION PROCEDURES

Graduation Project

Scientific Supervisor:

Associate Professor V. V. Nekrutkin, PhD

Reviewer:

Researcher E. A. Sovetkin

Оглавление

Введен	ие	4
Глава	1. Семейство «Book Stack»-подобных преобразований	Ć
1.1.	Описание общей схемы преобразования	Ć
1.2.	Описание стандартного «Book Stack»-преобразования	11
Глава	2. «Book Stack»-тест при отклонении от независимости: однород-	
ная	марковская цепь	13
2.1.	«Стопка книг» как марковская цепь	13
2.2.	Закон Больших Чисел для частот выходной последовательности	20
2.3.	Центральные Предельные Теоремы для частот входной и выходной по-	
	следовательностей	28
2.4.	Сравнение предельных распределений входной и выходной последова-	
	тельностей	35
2.5.	Статистические приложения	38
Глава	3. «Order»-преобразование и «Order»-тест	43
3.1.	Описание преобразования	43
3.2.	Свойства «Order»-теста	45
3.3.	Связь между предельными свойствами входной и выходной последова-	
	тельностей	45
Заклю	чение	47
Стисот		40

Введение

Рассмотрим нулевую гипотезу о независимости и равномерной распределенности некоторого набора дискретных случайных величин, имеющих одинаковый носитель. Эта стандартная статистическая задача возникает, в частности, при проверке свойств генераторов псевдослучайных чисел (в дальнейшем — ГСЧ), которые используются повсеместно, начиная от решения задач с помощью метода Монте-Карло, вплоть до задач криптографии. «Качество» ГСЧ, определяемое их статистическими свойствами, оказывает существенное влияние, например, на результаты применения метода Монте-Карло.

Для проверки этих свойств существует несколько батарей тестов, среди которых наиболее известные: система, разработанная NIST [1], в основном предназначенная для криптографических генераторов, система под названием «Die Hard» [2], а также достаточно развитая и подробно документированная батарея «TestU01» [3].

В 2004 году появилась статья [4], в которой рассматривается новый тест для проверки свойств ГСЧ, названный «Воок Stack». В основе теста лежит одноименное преобразование, предложенное в 1980 году в статье [5], применение которого заключалось в описании простой и наглядной процедуры сжатия информации. В англоязычной литературе более распространено название «Move-to-Front» [6]. Алгоритм приобрел достаточно широкую популярность и ныне используется в некоторых утилитах для сжатия данных — в основном как один из промежуточных шагов (см., например, [7]). После [4] было опубликовано еще несколько статей [8]—[15], так или иначе касающихся теста «Воок Stack». В статье [11] теми же авторами предложен другой тест для проверки свойств ГСЧ, названный «Order»-тест.

Суть «Book Stack»- и «Order»-преобразований, лежащих в основе соответствующих тестов, заключается в том, что на вход алгоритмов подается набор случайных величин $\{\eta_i\}_{i\geqslant 1}$, принимающих значения во множестве $\{1,2,\ldots,S\}$ и (при выполнении нулевой гипотезы) независимых и равномерно распределенных на этом множестве (будем кратко обозначать такое распределение U_S). Результатом является новый набор случайных величин $\{\xi_i\}_{i\geqslant 1}$, которые при выполнении нулевой гипотезы обладают теми же свойствами, что и $\{\eta_i\}_{i\geqslant 1}$ (формальное описание «Book Stack»- и «Order»-преобразований дано в разделах 1.2 и 3.1 соответственно).

Авторами было предложено использовать «Book Stack»- и «Order»-преобразования

для проверки свойств Γ СЧ. Стиль тестирования — побитовый, то есть рассматриваются отдельные двоичные биты (или их группы) псевдослучайных чисел, вырабатываемые Γ СЧ, которые проверяются на равномерную распределенность на соответствующем множестве. Поэтому стандартным выбором S является некоторая степень двойки.

С формальной точки зрения проверяется гипотеза \mathbb{H}_0 , заключающаяся в том, что последовательность $\{\eta_i\}_{i\geqslant 1}$ является последовательностью независимых случайных величин, причем $\mathbb{P}(\eta_i=k)=1/S$ при $1\leqslant k\leqslant S$. Проверка осуществляется с помощью стандартного критерия χ^2 , причем в случае больших S производится приемлемая группировка. Суть «Book Stack»- и «Order»-теста согласно статье [4], однако, состоит в том, что критерий χ^2 применяется не к исходным случайным величинам $\{\eta_i\}_{i\geqslant 1}$, а к преобразованным $\{\xi_i\}_{i\geqslant 1}$, причем с той же степенью свободы. При этом утверждается, что «более вероятные буквы будут в среднем иметь более высокие частоты встречаемости» (см., например, [15]).

Таким образом, можно рассматривать два критерия: χ^2 , примененный к исходному набору $\{\eta_i\}_{i\geqslant 1}$, и χ^2 — к преобразованному с помощью «Book Stack» или «Order» набору $\{\xi_i\}_{i\geqslant 1}$. Авторами неявно утверждается, что «Order»- и «Book Stack»-преобразования увеличивают мощность критерия, хотя теоретические и экспериментальные результаты, подтверждающие этот факт, в названных статьях отсутствуют, равно как не обсуждается и выбор альтернатив, относительно которых мощность должна потенциально увеличиваться. Более того, утверждается, что предложенные тесты улавливают отклонения от «случайности» даже для тех генераторов, которые выдерживают проверку некоторыми лучше изученными и более распространенными тестами.

В [14] приводятся результаты применения «Book Stack»-теста к линейным конгруэнтным генераторам (в дальнейшем — ЛКГ), рекомендованным в [16]. Утверждается, что это лучшие генераторы в классе ЛКГ, отбор происходил на основе так называемого спектрального теста (рассматривается в [17]). Каждый генератор, который был рассмотрен, в итоге отвергнут при применении «Book Stack».

В [11] рассматриваются результаты применения «Order»-теста к ЛКГ. После двойного тестирования не отвергнут только один мультипликативный генератор со следующими параметрами: модуль = 18776556235061 и период = 2^{48} .

В [18] рассматриваются некоторые генераторы, которые рекомендуются для практического применения (например Вихрь Мерсенна [19], который один из немногих вы-

держивает проверку «Book Stack»-тестом). В [12] «Book Stack» применяется к криптографическим генераторам.

В литературе (например в [8], [9] и [10]) также присутствует обсуждение программных реализаций алгоритма. В частности, в [8] приводится ссылка на компьютерную реализацию с описанием функциональности и краткой документацией. Обзор эффективных реализаций «Book Stack»-преобразования, а также реализаций в открытом доступе с описанием их достоинств и недостатков см. в [20].

Со статистической точки зрения задача заключается в сравнении мощностей критерия χ^2 , примененного к исходному набору $\{\eta_i\}_{i\geqslant 1}$, и χ^2 — к преобразованному с помощью «Book Stack»- или «Order»-преобразования набору $\{\xi_i\}_{i\geqslant 1}$. Для доказательства корректности тестов необходимо доказать, что случайные величины $\{\xi_i\}_{i\geqslant 1}$ независимы и равномерно распределены на множестве $\mathbb S$ тогда и только тогда, когда этими же свойствами обладают случайные величины $\{\eta_i\}_{i\geqslant 1}$. Поскольку в цитированных статьях доказательство этого факта (а также ссылка на него) отсутствует, для «Book Stack»-теста доказательство было проведено в [20] и в [21]. Для «Order»-теста корректность следует из результатов, полученных в данной работе (подробнее в Главе 3).

Нельзя говорить о сравнении мощностей критериев без выбора определенной альтернативной гипотезы. В рамках выпускной квалификационной работы бакалавра [20] и в [21] для «Воок Stack» теста было проведено исследование альтернативной гипотезы, заключающейся в том, что случайные величины $\{\eta_i\}_{i\geqslant 1}$ являются независимыми и одинаково, но не равномерно, распределенными. Было показано, что относительно такого выбора альтернативной гипотезы мощность критерия «после» преобразования «Воок Stack», как правило, является асимптотически меньшей, чем мощность критерия «до» преобразования. В [21] для проверки нулевой гипотезы \mathbb{H}_0 помимо критерия χ^2 было предложено использовать критерий отношения правдоподобия. Удалось доказать, что относительно той же альтернативы мощность такого критерия «после» «Воок Stack»-преобразования всегда является асимптотически меньшей, чем мощность критерия «до». Доказательство основывается на соотношении предельных распределений исходной последовательности $\{\eta_i\}_{i\geqslant 1}$ и преобразованной — $\{\xi_i\}_{i\geqslant 1}$.

Задачей данной работы является изучение поведения «Book Stack»-теста против альтернативы, заключающейся в том, что исходные случайные величины $\{\eta_i\}_{i\geqslant 1}$ образуют эргодическую однородную марковскую цепь со стационарным равномерным рас-

пределением. Удается показать, что против такой альтернативы критерий χ^2 до преобразования «Book Stack» оказывается несостоятельным, в то время как при некоторых ограничениях такой же критерий «после» преобразования является состоятельным. Заметим, что доказательство вновь основывается на сравнении предельных распределений исходной последовательности $\{\eta_i\}_{i\geqslant 1}$ и преобразованной — $\{\xi_i\}_{i\geqslant 1}$.

В работе также получено обобщение «Воок Stack»-преобразования, для которого сохраняются многие теоретико-вероятностные результаты. В предположении, что исходные случайные величины $\{\eta_i\}_{i\geqslant 1}$ образуют однородную марковскую цепь, удовлетворяющую некоторым свойствам, доказано наличие предельного распределения у преобразованных случайных величин $\{\xi_i\}_{i\geqslant 1}$, сходимость частот к которому обеспечивается Законом Больших Чисел. Более того, доказана Центральная Предельная Теорема для частот исходных и преобразованных случайных величин. Для (стандартного) «Воок Stack»-преобразования такие результаты получены в предположении эргодичности марковской цепи $\{\eta_i\}_{i\geqslant 1}$. Для обобщений «Воок Stack»-преобразования те же результаты получены при положительности всех переходных вероятностей марковской цепи $\{\eta_i\}_{i\geqslant 1}$.

В работе также изучаются свойства «Order»-теста. Удается доказать, что для любого критерия для проверки \mathbb{H}_0 , такого что его статистика зависит только от частот выборки и инвариантна относительно их перестановок, статистики «до» и «после» «Order»-преобразования совпадают. С связи с этим применение «Order»-теста против любой альтернативной гипотезы вряд ли является оправданным.

Общая структура работы следующая. В Главе 1 приводится описание семейства преобразований, являющихся обобщением преобразования «Воок Stack», а также вводятся основные обозначения. В Главе 2 рассматривается ситуация, состоящая в том, что входная последовательность $\{\eta_i\}_{i\geqslant 1}$ образует однородную марковскую цепь: в разделе 2.1 дано описание преобразования всей «стопки книг» марковской цепью, в разделе 2.2 найдено стационарное распределение выходной последовательности $\{\xi_i\}_{i\geqslant 1}$, сходимость к которому обеспечивается Законом Больших Чисел, в разделе 2.3 рассматриваются результаты, относящиеся к ЦПТ частот «входной» и «выходной» последовательности, а в разделе 2.4 производится сравнение предельных распределений входной и выходной последовательности. В Главе 3 рассматривается «Отder»-преобразование и «Отder»-тест: в разделе 3.1 приводится описание лежащего в основе теста «Оrder»-преобразования, а также вводятся основные обозначения, в разделе 3.2 обоснована бесперспективность

применения «Order»-теста, в разделе 3.3 произведено сравнение предельных распределений частот «входной» и «выходной» последовательностей.

Глава 1

Семейство «Book Stack»-подобных преобразований

1.1. Описание общей схемы преобразования

Рассмотрим формальное описание общей схемы «Book Stack»-подобного преобразования. «На вход» подается последовательность, вообще говоря, случайных величин $\{\eta_i\}_{i\geqslant 1}$, принимающих значения во множестве $\mathbb{S}\stackrel{\mathrm{def}}{=}\{1,2,\ldots,S\}$. Обозначим \mathfrak{S}_S — множество всевозможных перестановок чисел от 1 до S, причем перестановки упорядочены лексикографически. Рассмотрим некоторое отображение $f\colon \mathfrak{S}_S \times \mathbb{S} \to \mathfrak{S}_S$, задающее «Book Stack»-подобное преобразование.

Введем последовательность векторов $\{\Xi_n\in\mathfrak{S}_S\}_{n\geqslant 0}$ так, что для $i\geqslant 1$

$$\Xi_i = f(\Xi_{i-1}, \eta_i), \tag{1.1.1}$$

а Ξ_0 — вообще говоря, случайный вектор, принимающий значения во множестве перестановок \mathfrak{S}_S . Конечно, все компоненты вектора Ξ_i (для всех $i \geqslant 0$) различны.

Наконец, для всех $i\geqslant 1$ введем «выходную» последовательность $\{\xi_i\}_{i\geqslant 1}$, где $\xi_i\in\mathbb{S}$ определяется как решение уравнения

$$\eta_i = \Xi_{i-1}[\xi_i], \tag{1.1.2}$$

где $\Xi_i = (\Xi_i[1], \Xi_i[2], \dots, \Xi_i[S])^{\mathrm{T}}$. Заметим, что для всех $i \geqslant 1$ решение уравнения (1.1.2) существует и единственно, так как Ξ_{i-1} является некоторой перестановкой чисел $1, 2, \dots, S$, а $\eta_i \in \mathbb{S}$.

Таким образом, «Book Stack»-подобному преобразованию «на вход» подается последовательность случайных величин $\{\eta_i\}_{i\geqslant 1}$, а «на выходе» имеется последовательность случайных величин $\{\xi_i\}_{i\geqslant 1}$, которая определяется отображением f, вектором Ξ_0 и «входной» последовательностью $\{\eta_i\}_{i\geqslant 1}$.

Нам понадобятся несколько определений, характеризующих условия, в дальнейшем накладываемые на отображение f.

Определение 1.1.1. Пусть X, Y — некоторые множества. Отображение $g: X \times Y \to X$ будем называть *интективным по второй компоненте*, если $g(x_1, y_1) \neq g(x_2, y_2)$ для любых неравных $y_1, y_2 \in Y$ и любых $x_1, x_2 \in X$.

Введем удобное сокращенное обозначение. Пусть $g\colon X\times Y\to X$ и пусть $\mathcal{Y}=(y_1,\ldots,y_n,\ldots),\ y_i\in Y$. Для j-й декартовой степени множества Y введем обозначение Y^j (для всех $j\geqslant 1$). Обозначим $Y_j=(y_1,\ldots,y_j)$ для всех $j\geqslant 1$ и введем отображения $g^{(j)}:X\times Y^j\to X$ следующим образом: для любого $x\in X$ положим $g^{(1)}(x,Y_1)=g^{(1)}(x,y_1)=g(x,y_1)$ при j=1 и

$$g^{(j)}(x, Y_j) = g\left(g^{(j-1)}(x, Y_{j-1}), y_j\right)$$
(1.1.3)

при j > 1.

Определение 1.1.2. Пусть X, Y — некоторые множества. Рассмотрим отображение $g: X \times Y \to X$. Будем говорить, что отображение g n-связно по первому аргументу (или просто n-связно), если для любых $x_1, x_2 \in X$ существует такое $Y_n = Y_n(x_1, x_2) \in Y^n$, что $g^{(n)}(x_1, Y_n) = x_2$.

Если отображение g является n-связным при некотором n, то оно называется κ онечно-связным. Порядком связности конечно-связного отображения является минимальное n, при котором отображение является n-связным.

Вернемся к описанию «Book Stack»-подобного преобразования. По-прежнему, рассматриваем отображение $f:\mathfrak{S}_S\times\mathbb{S}\to\mathfrak{S}_S$. Обозначим для любого $\alpha\in\mathfrak{S}_S$

$$C_{\alpha}^{\mathfrak{S}_S} = \{\beta \mid \text{существует } k \colon f(\beta, k) = \alpha\},$$
 (1.1.4)

$$C_{\alpha}^{S} = \{k \mid \text{ существует } \beta : f(\beta, k) = \alpha\}. \tag{1.1.5}$$

По определению $\mathcal{C}_{\alpha}^{\mathfrak{S}_S} \subset \mathfrak{S}_S$, а $\mathcal{C}_{\alpha}^S \subset \mathbb{S}$.

Лемма 1.1.1. Рассмотрим отображение $f:\mathfrak{S}_S\times\mathbb{S}\to\mathfrak{S}_S$ и выберем произвольное $\alpha\in\mathfrak{S}_S$. Тогда

- 1. Если f конечно-связно, то множества $\mathcal{C}_{\alpha}^{\mathfrak{S}_S}$ и \mathcal{C}_{α}^S непусты.
- 2. Если f инъективно по второй компоненте, то множество \mathcal{C}^S_{α} либо пусто, либо состоит из одного элемента.
- 3. Если f одновременно удовлетворяет пунктам 1 и 2, то \mathcal{C}^S_{α} состоит ровно из одного элемента.

Доказательство. 1. Зафиксируем $\beta \in \mathfrak{S}_S$. Обозначим n — порядок связности отображения f. Тогда существует $\overline{k}_n = (k_1, k_2, \dots, k_n) \in \mathbb{S}^n$ такое, что $f^{(n)}(\beta, \overline{k}_n) = \alpha$. Если

n=1, то $f(\beta,k_1)=\alpha$, а значит $\beta\in \mathrm{C}_{\alpha}^{\mathfrak{S}_S}$ и $k_1\in \mathrm{C}_{\alpha}^S$ и утверждение доказано. В противном случае обозначим $\overline{k}_{n-1}=(k_1,k_2,\dots k_{n-1})$. Тогда $f^{(n-1)}(\beta,\overline{k}_{n-1})\in \mathrm{C}_{\alpha}^{\mathfrak{S}_S}$, а $k_n\in \mathrm{C}_{\alpha}^S$.

2. Очевидно следует из определения 1.1.1.

Замечание 1.1.1. В дальнейшем всегда предполагается, что отображение $f:\mathfrak{S}_S \times \mathbb{S} \to \mathfrak{S}_S$ — конечно-связно и инъективно по второй компоненте. В связи с п.3 Леммы 1.1.1, будем отождествлять множество \mathcal{C}_α^S и его единственный элемент.

Введем несколько дополнительных обозначений.

Пусть $\bar{\ell} = (\ell_0, \dots, \ell_j, \dots)$ и $\bar{k} = (k_0, \dots, k_j, \dots)$ — бесконечные последовательности с $\ell_j, k_j \in \mathbb{S}$. Обозначим $\bar{\ell}_m = (\ell_0, \dots, \ell_m), \ \bar{k}_m = (k_0, \dots, k_m) \in \mathbb{S}^{m+1}$ для любого $m \geqslant 0$ и положим

$$\mathcal{F}_m(\overline{\ell}, \overline{k}) = \left\{ \alpha \in \mathfrak{S}_S \,|\, \alpha_{\ell_0} = k_0 \text{ и } f^{(j)}(\alpha, \overline{k}_{j-1})[\ell_j] = k_j \text{ при } j \in 1 : m \right\}. \tag{1.1.6}$$

В случае m=0 обозначим $\ell=\ell_0$ и $k=k_0$, тогда

$$\mathcal{F}_0(\ell, k) = \{ \alpha \in \mathfrak{S}_S \mid \alpha_\ell = k \}. \tag{1.1.7}$$

1.2. Описание стандартного «Book Stack»-преобразования

Частным случаем описанной в предыдущем разделе общей схемы является так называемое (стандартное) «Book Stack»-преобразование. Отображение $f:\mathfrak{S}_S\times\mathbb{S}\to\mathfrak{S}_S$ для него определяется следующим образом. Для любого $x\in\mathbb{S}$ и любой перестановки $\alpha=(\alpha_1,\alpha_2,\ldots,\alpha_S)\in\mathfrak{S}_S$ обозначим $i_0=i_0(\alpha,x)$ такой индекс, что $\alpha_{i_0}=x$. Тогда

$$f(\alpha, x)[i] \stackrel{\text{def}}{=} \begin{cases} x & \text{при } i = 1, \\ \alpha_i & \text{при } i > i_0, \\ \alpha_{i-1} & \text{при } 1 < i \leqslant i_0. \end{cases}$$
 (1.2.1)

Нетрудно проверить, что f является инъективным по второй компоненте и S-связным. Заметим, что $\mathcal{C}^S_{\alpha} = \{\alpha_1\}$ для любой перестановки $\alpha = (\alpha_1, \alpha_2, \dots, \alpha_S) \in \mathfrak{S}_S$, где \mathcal{C}^S_{α} введено в (1.1.5).

Приведем теперь неформальное описание преобразования «Book Stack», которое лежит в основе рассматриваемого ниже алгоритма. Рассмотрим множество \mathbb{S} , как некоторый набор «книг», которые лежат в стопке («Book Stack») в каком-то начальном порядке. Можно для наглядности считать, что $1, \ldots, S$ — это названия книг.

Само преобразование состоит в том, что из стопки некоторым образом выбирается (по названию) книга и кладется наверх. Так делается n раз. Более формально, есть некоторая последовательность величин η_i , принимающих значения в множестве \mathbb{S} , о которых всегда в дальнейшем будем говорить, как о названиях книг.

Пусть после (i-1)-й итерации порядок книг в стопке оказался $(b_1,b_2\ldots,b_S)$. Найдем тот номер ξ_i , при котором $\eta_i=b_{\xi_i}$. Иначе говоря, найдем ξ_i — порядковый номер в стопке книги η_i (затем эта книга перекладывается наверх, и процедура повторяется с заменой η_i на η_{i+1}).

Результат n-кратного преобразования «Book Stack» — это последовательность положений $\xi_1, \xi_2 \dots, \xi_n$ в стопке выбранных книг. При фиксированном начальном положении книг эта последовательность, конечно, определяется последовательностью η_i .

Обозначим начальное состояние стопки (b_1, b_2, \dots, b_S) , где $b_i \in \mathbb{S}$, и сформулируем общее алгоритмическое описание «Book Stack»-преобразования.

Общее алгоритмическое описание «Book Stack»-преобразования

Входные данные: $n, S, (b_1, b_2 \dots, b_S), (\eta_1, \eta_2 \dots, \eta_n)$. Результат: $(\xi_1, \xi_2 \dots, \xi_n)$.

- **1.** (Цикл по шагам Book Stack) For i = 1 to n do
 - (Инициализация) $j \leftarrow 1$;
 - (Поиск места выбранной книги) While $(b_j \neq \eta_i)$ do $(j \leftarrow j+1); \ \xi_i \leftarrow j;$
 - (Формирование новой стопки) $b_1, \dots b_{j-1} \to b_2, \dots b_j; \ b_1 \leftarrow \eta_i.$
- **2.** (Завершение работы) STOP.

Глава 2

«Book Stack»-тест при отклонении от независимости: однородная марковская цепь

Предположим, что «входная» последовательность «Book Stack»-подобного преобразования $\{\eta_i\}_{i\geqslant 1}$ образует однородную марковскую цепь (в дальнейшем ОМЦ). Как хорошо известно (см., например, [22]), для эргодических ОМЦ (в дальнейшем ЭОМЦ) существует единственное стационарное распределение, сходимость частот ЭОМЦ к которому обеспечивается Законом Больших Чисел (в дальнейшем ЗБЧ). При этом, согласно [23], в тех же предположениях выполняется многомерная Центральная Предельная Теорема (в дальнейшем ЦПТ) для частот цепи. В этом разделе доказывается, что если ОМЦ $\{\eta_i\}_{i\geqslant 1}$ является эргодической, то для «Book Stack»-преобразования, определенного в разделе 1.2, «выходная» последовательность $\{\xi_i\}_{i\geqslant 1}$ имеет некоторое предельное распределение, причем выполняется соответствующие ЗБЧ и многомерная ЦПТ для частот этой последовательности. Если же ОМЦ $\{\eta_i\}_{i\geqslant 1}$, обладает переходной матрицей с положительными переходными вероятностями, то те же результаты сохраняются для произвольного инъективного по второй компоненте и конечного-связного отображения.

2.1. «Стопка книг» как марковская цепь

Целью данного раздела является изучение марковских свойств последовательности состояний «стопки книг» $\{\Xi_i\}_{i=1}^{\infty}$, введенной в (1.1.1), а также отыскание условий, которые обеспечивают существование стационарного распределения у этой последовательности. Предположим, что выполнены следующие условия:

- а) последовательность $\{\eta_n\}_{n\geqslant 1}$ является ОМЦ с фазовым пространством $\mathbb S$, переходной матрицей $\mathbf P^{(\eta)}=(p_{ij})$ и начальным распределением $\big(p_1^{(1)},p_2^{(1)},\ldots,p_S^{(1)}\big),$
- b) случайный вектор $\Xi_0 \in \mathfrak{S}_S$, имеющий распределение $\left(\pi_{1,2,\dots,S}^{(0)},\dots,\pi_{S,S-1,\dots,1}^{(0)}\right)$, и марковская цепь $\{\eta_n\}_{n\geqslant 1}$ независимы.

Начнем с общего случая, когда отображение f является конечно-связным и инъективным по второй компоненте.

Предложение 2.1.1. 1. Если отображение $f:\mathfrak{S}_S\times\mathbb{S}\to\mathfrak{S}_S$ является конечно-связ-

ным и инъективным по второй компоненте, то последовательность $\{\Xi_i\}_{i=1}^{\infty}$, введенная в (1.1.1), образует ОМЦ с фазовым пространством \mathfrak{S}_S , начальным распределением

$$\mathbb{P}(\Xi_1 = \alpha) = p_{\mathcal{C}_{\alpha}^S}^{(1)} \sum_{\beta \in \mathcal{C}_{\alpha}^{\mathfrak{S}_S}} \pi_{\beta}^{(0)}, \quad \alpha \in \mathfrak{S}_S, \tag{2.1.1}$$

и матрицей переходных вероятностей $\mathbf{P}^{(\Xi)} = \left(p_{\alpha\beta}^{(\Xi)}\right)$, где для $\alpha, \beta \in \mathfrak{S}_S$

$$p_{\alpha\beta}^{(\Xi)} = \begin{cases} p_{\mathcal{C}_{\alpha}^{S}, \mathcal{C}_{\beta}^{S}} & npu \ \alpha \in \mathcal{C}_{\beta}^{\mathfrak{S}_{S}}, \\ 0 & uhave, \end{cases}$$
 (2.1.2)

а множества $\mathcal{C}_{\alpha}^{\mathfrak{S}_S}$ и \mathcal{C}_{α}^S введены в (1.1.4) и (1.1.5) соответственно.

2. Если дополнительно потребовать, чтобы $p_{ij} > 0$ для всех i и j, то марковская цепь $\{\Xi_n\}_{n\geqslant 1}$ окажется эргодической.

Доказательство. 1. По п.3 Леммы 1.1.1 для любой перестановки $\alpha \in \mathfrak{S}_S$ множество C_{α}^S состоит ровно из одного элемента. Для любого $n \geqslant 1$ и любых перестановок $\alpha_1, \alpha_2, \ldots, \alpha_n \in \mathfrak{S}_S$ рассмотрим вероятность $\mathbb{P}(\Xi_1 = \alpha_1, \ldots, \Xi_n = \alpha_n)$. Нужно доказать, что

$$\mathbb{P}(\Xi_1 = \alpha_1, \dots, \Xi_n = \alpha_n) = \left(p_{C_{\alpha_1}^S}^{(1)} \sum_{\alpha_0 \in C_{\alpha_1}^{\mathfrak{S}_S}} \pi_{\alpha_0}^{(0)} \right) p_{\alpha_1 \alpha_2}^{(\Xi)} \dots p_{\alpha_{n-1} \alpha_n}^{(\Xi)}.$$
(2.1.3)

Если найдется такое $i \in 2: n$, что $\alpha_{i-1} \notin C_{\alpha_i}^{\mathfrak{S}_S}$, то $p_{\alpha_{i-1}\alpha_i}^{(\Xi)} = 0$ и поэтому левая часть (2.1.3) равна нулю и совпадает с правой. Если же $\alpha_{i-1} \in C_{\alpha_i}^{\mathfrak{S}_S}$ для всех i, то ввиду инъективности по второй компоненте отображения f события $\{f(\alpha_{i-1}, \eta_i) = \alpha_i\}$ и $\{\eta_i = C_{\alpha_i}^S\}$ совпадают. Следовательно,

$$\mathbb{P}(\Xi_{1} = \alpha_{1}, \dots, \Xi_{n} = \alpha_{n}) = \sum_{\alpha_{0} \in \mathfrak{S}_{S}} \mathbb{P}(\Xi_{0} = \alpha_{0}, \Xi_{1} = \alpha_{1}, \dots, \Xi_{n} = \alpha_{n}) =$$

$$= \sum_{\alpha_{0} \in \mathcal{C}_{\alpha_{1}}^{\mathfrak{S}_{S}}} \mathbb{P}(\Xi_{0} = \alpha_{0}, \Xi_{1} = \alpha_{1}, \dots, \Xi_{n} = \alpha_{n}) =$$

$$= \sum_{\alpha_{0} \in \mathcal{C}_{\alpha_{1}}^{\mathfrak{S}_{S}}} \mathbb{P}(\Xi_{0} = \alpha_{0}, f(\Xi_{0}, \eta_{1}) = \alpha_{1}, \dots, f(\Xi_{n-1}, \eta_{n}) = \alpha_{n}) =$$

$$= \sum_{\alpha_{0} \in \mathcal{C}_{\alpha_{1}}^{\mathfrak{S}_{S}}} \mathbb{P}(\Xi_{0} = \alpha_{0}, \eta_{1} = \mathcal{C}_{\alpha_{1}}^{S}, \dots, \eta_{n} = \mathcal{C}_{\alpha_{n}}^{S}) =$$

$$= \mathbb{P}(\eta_{1} = \mathcal{C}_{\alpha_{1}}^{S}, \dots, \eta_{n} = \mathcal{C}_{\alpha_{1}}^{S}) \sum_{\alpha_{0} \in \mathcal{C}_{\alpha_{1}}^{\mathfrak{S}_{S}}} \mathbb{P}(\Xi_{0} = \alpha_{0}) =$$

$$= p_{\mathcal{C}_{\alpha_{1}}^{S}}^{(1)} p_{\mathcal{C}_{\alpha_{1}}^{S}} \mathcal{C}_{\alpha_{2}}^{S} \dots p_{\mathcal{C}_{\alpha_{n-1}}^{S}} \mathcal{C}_{\alpha_{n}}^{S} \sum_{\alpha_{0} \in \mathcal{C}_{\alpha_{1}}^{\mathfrak{S}_{S}}} \pi_{\alpha_{0}}^{(0)},$$

то есть согласно определению $p_{\alpha\beta}^{(\Xi)}$ в (2.1.2) равенство (2.1.3) снова имеет место.

2. Пусть теперь $p_{ij} > 0$ для всех i и j. Для того, чтобы конечная ОМЦ $\{\Xi_i\}_{i\geqslant 1}$ была эргодической, достаточно существование такой степени k, что матрица $(\mathbf{P}^{(\Xi)})^k$ имеет все положительные элементы. Очевидно, что достаточно возвести матрицу $\mathbf{P}^{(\Xi)}$ в степень равную порядку связности отображения f.

Хорошо известен следующий результат (см., например, [22]).

Предложение 2.1.2. Пусть выполнены условия второго пункта Предложения 2.1.1. Тогда

- 1. У ОМЦ $\{\Xi_n\}_{n\geqslant 1}$ имеется стационарное распределение $(\pi_{\alpha}, \alpha \in \mathfrak{S}_S)$ со всеми положительными вероятностями.
- 2. Для любого начального распределения $\{\Xi_n\}_{n\geqslant 1}$ (т.е. согласно первому пункту Предложения 2.1.1 для любых $\mathcal{L}(\eta_1)$ и $\mathcal{L}(\Xi_0)$) при $n\to\infty$

$$\mathbb{P}(\Xi_n = \alpha \mid \Xi_1 = \beta) \to \pi_\alpha,$$

$$\mathbb{P}(\Xi_n = \alpha) \to \pi_\alpha,$$

для всех α , $\beta \in \mathfrak{S}_S$.

При этом существует такое $\rho \in [0;1)$ и C>0, что для всех $\alpha, \beta \in \mathfrak{S}_S$

$$\left| \mathbb{P}(\Xi_n = \alpha \mid \Xi_1 = \beta) - \pi_\alpha \right| \leqslant C\rho^n. \tag{2.1.4}$$

Таким образом, для произвольного «Book Stack»-подобного преобразования положительность всех вероятностей перехода p_{ij} «входной» последовательности $\{\eta_i\}_{i\geqslant 1}$ является достаточным условием для существования стационарного распределения у ОМЦ $\{\Xi_i\}_{i\geqslant 1}$. Оказывается, что для преобразования «Book Stack», введенного в разделе 1.2, условие можно ослабить, а именно потребовать лишь эргодичности ОМЦ $\{\Xi_i\}_{i\geqslant 1}$. Прежде, чем сформулировать строгий результат, необходимо доказать вспомогательную лемму.

Лемма 2.1.1. Рассмотрим f — преобразование «Book Stack», определенное в разделе 1.2. Пусть $\alpha \in \mathfrak{S}_S$ и $X_m = (x_1, x_2, \ldots, x_m)^{\mathrm{T}} \in \mathbb{S}^m$. При этом среди $\{x_i\}_{i=1}^m$ ровно $k \leqslant S$ различных элементов. Обозначим $\beta = f^{(m)}(\alpha, X_m) \in \mathfrak{S}_S$. Тогда $\beta[1:k]$ состоит только из компонент вектора X_m . Причем порядок компонент в $\beta[1:k]$ однозначно определяется вектором X_m .

Доказательство. Индукция по k. База при k=1 и $m\geqslant 1$ очевидна. Пусть утверждение верно для k и любого $m\geqslant k$ и пусть теперь среди $\{x_i\}_{i=1}^m$ ровно $k+1\leqslant S$ различных элементов, при этом $m\geqslant k+1$. Выберем такое $t\in 1:m$, что среди $\{x_i\}_{i=1}^t$ ровно k различных элементов. Обозначим $\gamma=f^{(t)}\left(\alpha,(x_1,x_2,\ldots,x_t)^{\mathrm{T}}\right)$. Тогда по индукционному предположению $\gamma[1:k]$ состоит из элементов $\{x_i\}_{i=1}^t$, причем порядок компонент в $\gamma[1:k]$ однозначно определяется набором $\{x_i\}_{i=1}^t$. По базе индукции, примененной к γ , и определению отображения f имеем $\beta[1]=x_{t+1}=x_{t+2}=\ldots=x_m$, поэтому $\beta=f(\gamma,x_{t+1})$. Заметим, что по индукционному предположению $\gamma[i]\neq x_{t+1}=x_m$ для любого $i\in 1:k$. По определению отображения f имеем, что $\beta[2:(k+1)]=\gamma[1:k]$, откуда следует требуемое.

Следствие 2.1.1. В обозначениях Леммы 2.1.1 перестановка β при k=S не зависит от выбора α .

Предложение 2.1.3. Пусть f — стандартное «Book Stack»-преобразование, определенное в разделе 1.2 и пусть «входная» ОМЦ $\{\eta_n\}_{n\geqslant 1}$ — эргодическая. Тогда $\{\Xi_n\}_{n\geqslant 1}$ образует ОМЦ и имеет ровно один непериодический эргодический класс и, быть может, несколько несущественных состояний.

Доказательство. В первом пункте Предложения 2.1.1 показано, что $\{\Xi_n\}_{n\geqslant 1}$ образует ОМЦ для любого инъективного по второй компоненте и конечно-связного и, в частности, для стандартного «Book Stack»-преобразования.

Сначала докажем единственность эргодического класса ОМЦ $\{\Xi_i\}_{i=1}^{\infty}$. Из эргодичности «входной» ОМЦ $\{\eta_i\}_{i\geqslant 1}$ следует существование траектории $\{x_i\}_{i=0}^m\in\mathbb{S}^m$ с положительными вероятностями переходов, такой что $x_0=x_m$ и среди $\{x_i\}_{i=0}^m$ есть все элементы множества \mathbb{S} . Для дальнейшего обозначим $X_m=(x_1,x_2,\ldots,x_m)^{\mathrm{T}}$.

Рассмотрим произвольную перестановку $\alpha \in \mathfrak{S}_S$. В силу эргодичности «входной» ОМЦ $\{\eta_i\}_{i\geqslant 1}$ существует траектория положительной вероятности $Y_\ell \in \mathbb{S}^\ell$ с $Y_\ell[\ell] = x_0$ и $p_{\alpha[1]Y_\ell[1]} > 0$. Обозначим $\beta = f^{(\ell)}(\alpha, Y_\ell)$. Ясно, что $\beta[1] = x_0$.

Теперь определим $\gamma = f^{(m)}(\beta, X_m)$. Ясно, что $\gamma[1] = x_m = x_0$. По Следствию 2.1.1 γ не зависит от выбранной перестановки β (и, следовательно, α) и полностью определяется последовательностью $\{x_i\}_{i=0}^m$.

Таким образом, построена перестановка $\gamma \in \mathfrak{S}_S$, являющаяся достижимой из любой другой перестановки $\alpha \in \mathfrak{S}_S$. Из этого мгновенно следует единственность эргодического класса ОМЦ $\{\Xi_i\}_{i=1}^{\infty}$.

Теперь докажем непериодичность единственного эргодического класса ОМЦ $\{\Xi_i\}_{i=1}^{\infty}$. Для любого непустого множества $A \subset \mathbb{N}$ обозначим $\gcd(A)$ — наибольший общий делитель элементов множества A. По условию $\gcd(n \mid p_{ii}(n) > 0) = 1$ для любого $i \in 1: S$. Требуется показать, что $\gcd\left(n \mid p_{\alpha\alpha}^{(\Xi)}(n) > 0\right) = 1$ для любого существенного $\alpha \in \mathfrak{S}_S$.

Фиксируем существенное $\alpha \in \mathfrak{S}_S$. Обозначим $\overline{\alpha} = \alpha[1]$. Заметим, что для некоторого $n \geqslant S$ существует траектория положительной вероятности $X_n = (x_1, x_2, \dots, x_n)^{\mathrm{T}} \in \mathbb{S}^n$, такая что $\alpha = f^{(n)}(\alpha, X_n), \ p_{\overline{\alpha}x_1} > 0$ и при этом среди компонент X_n встречаются все элементы \mathbb{S} . Действительно, из доказательства единственности эргодического класса следует, что существует траектория положительной вероятности, удовлетворяющая указанным свойствам, но «приходящая» в некоторое γ , а по предположению α является существенным состоянием.

Рассмотрим теперь любое такое ℓ , что $p_{\overline{\alpha}\overline{\alpha}}(\ell)>0$ и траекторию положительной вероятности $Y_{\ell}=(y_1,y_2,\ldots y_{\ell})^{\mathrm{T}}\in\mathbb{S}^{\ell},$ с $y_{\ell}=\overline{\alpha}$ и $p_{\overline{\alpha}y_1}>0$. Положим $\beta=f^{(\ell)}(\alpha,Y_{\ell}).$ Заметим, что, вообще говоря, $\beta\neq\alpha$. Однако, по Следствию 2.1.1 $f^{(n)}(\beta,X_n)=\alpha,$ причем $p_{\beta[1]x_1}>0$, так как $\beta[1]=y_{\ell}=\overline{\alpha},$ а $p_{x_ix_{i+1}}>0$ для всех $1\leqslant i< n$ по построению X_n .

Обозначим теперь $Z_{n,\ell}=Z(X_n,Y_\ell)=(y_1,y_2,\ldots,y_\ell,x_1,x_2,\ldots,x_n)^{\rm T}\in\mathbb{S}^{\ell+n}$. Ясно, что $f^{(n+\ell)}(\alpha,Z_{n,\ell})=\alpha$, причем вероятности всех переходов положительны. Таким образом, для n и такого ℓ , что $p_{\overline{\alpha}\overline{\alpha}}(\ell)>0$, выполнено неравенство

$$p_{\alpha\alpha}^{(\Xi)}(n+\ell) > 0.$$
 (2.1.5)

Покажем, что

$$\gcd\left(n+\ell \mid p_{\overline{\alpha}\overline{\alpha}}(\ell) > 0, \ell \in \mathbb{N}\right) = 1. \tag{2.1.6}$$

Из этого по (2.1.5) будет следовать, что $\gcd\left(n+\ell \mid p_{\alpha\alpha}^{(\Xi)}(n+\ell)>0, \ell \in \mathbb{N}\right)=1$. А, значит, будет доказано, что и $\gcd\left(\ell \in \mathbb{N} \mid p_{\alpha\alpha}^{(\Xi)}(\ell)>0\right)=1$.

Итак, доказываем (2.1.6). Обозначим

$$\mathcal{L} = \{ \ell \in \mathbb{N} \, | \, p_{\overline{\alpha}\overline{\alpha}}(\ell) > 0 \}.$$

По условию

$$gcd(\mathcal{L}) = 1.$$

Если $1 \in \mathcal{L}$, то (2.1.6) очевидно и утверждение Предложения доказано. Пусть $1 \notin \mathcal{L}$. Выберем $t \in \mathbb{N}$ так, что $(\min \mathcal{L})^t > n + m_0$, где m_0 — такая минимальная степень,

что $(\mathbf{P}^{(\eta)})^{m_0}$ имеет все положительные элементы. Из равенства Чепмена-Колмогорова и определения множества \mathcal{L} мгновенно следует, что $p_{\overline{\alpha}\overline{\alpha}}(\ell^t) > 0$ для всех $\ell \in \mathcal{L}$ и, конечно, gcd $(\ell^t \mid \ell \in \mathcal{L}) = 1$. Следовательно, т.к. $\ell^t - n > m_0$, то $p_{\overline{\alpha}\overline{\alpha}}(\ell^t - n) > 0$ для любого $\ell \in \mathcal{L}$. Обозначим $\overline{\mathcal{L}} = \{\ell^t - n \mid \ell \in \mathcal{L}\}$.

Таким образом, существует такое множество $\overline{\mathcal{L}}\subset\mathbb{N},$ что $p_{\overline{\alpha}\overline{\alpha}}(\overline{\ell})>0$ для всех $\overline{\ell}\in\overline{\mathcal{L}}$ и

$$\gcd\left(n + \overline{\ell} \mid \overline{\ell} \in \overline{\mathcal{L}}\right) = 1.$$

Из этого следует (2.1.6), а значит $\gcd\left(\ell\in\mathbb{N}\,|\,p_{\alpha\alpha}^{(\Xi)}(\ell)>0\right)=1.$

Замечание 2.1.1. Из второго пункта Предложения 2.1.1 следует, что при $p_{ij}>0$ для всех $i,j\in\mathbb{S}$, несущественных состояний нет.

Пример 2.1.1. Для того, чтобы показать, как устроены несущественные состояния, приведем следующий пример. Пусть S=3 и все $p_{ij}>0$ кроме p_{23} и p_{33} . В таком случае «входная» ОМЦ $\{\eta_i\}_{i\geqslant 1}$ является эргодической. В то же время, так как при i>0

$$\mathbb{P}\left(\Xi_i = (3, 2, 1)^{\mathrm{T}}\right) = 0,$$

то состояние $(3,2,1)^{\mathrm{T}}$ ОМЦ $\{\Xi_i\}_{i\geqslant 1}$ является несущественным.

Результат Предложения 2.1.3 отличается от результата второго пункта Предложения 2.1.1 лишь возможностью наличия у $\{\Xi_i\}_{i=1}^{\infty}$ нескольких несущественных состояний. Как известно, конечная ОМЦ «покидает» в пределе несущественные состояния. В связи с этим естественно ожидать выполнение аналога Предложения 2.1.2. Как мы увидим, такой аналог, действительно, имеет место. Для того, чтобы в этом убедится, потребуется следующая теорема.

Теорема 2.1.1. Пусть последовательность $\beta_1, \beta_2, \dots, \beta_n, \dots$ является ОМЦ с конечным фазовым пространством X, обладает ровно одним непереодическим эргодическим классом u, быть может, несколькими несущественными состояниями. Для любого $x \in X$ u каждого $n \geqslant 1$ определим

$$\tau_x(n) = \mathbb{I}_x(\beta_1) + \ldots + \mathbb{I}_x(\beta_n).$$

Тогда

1. ОМЦ $\{\beta_n\}_{n\geqslant 1}$ имеет единственное стационарное распределение $\pi=(\pi_x)_{x\in X}$. При этом $\pi_x=0$ тогда и только тогда, когда $x\in X$ является несущественным состоянием.

2. Для любого начального распределения $OM \coprod \{\beta_n\}_{n\geqslant 1}$ имеет место сходимость

$$\mathbb{P}(\beta_n = x \mid \beta_1 = x_0) \to \pi_r$$

для всех $x, x_0 \in X$. Причем существует $\rho \in [0;1)$ и C>0 такое, что для всех $x, x_0 \in X$

$$\left| \mathbb{P}(\beta_n = x \mid \beta_1 = x_0) - \pi_x \right| \leqslant C\rho^n. \tag{2.1.7}$$

3. Для всех $x \in X$ имеет место сходимость

$$\frac{\tau_x(n)}{n} \to \pi_x$$

почти всюду.

Доказательство. Первый пункт следует из [24, Гл. VIII, §6, Теорема 2].

Из [25, Гл. 12, §5, Теорема 1] следует, что произвольного начального распределения ОМЦ $\{\beta_n\}_{n\geqslant 1}$ и для всех $x,x_0\in X$ существуют пределы

$$\lim_{n \to \infty} \mathbb{P}(\beta_n = x \mid \beta_1 = x_0),$$

независящие от начального распределения и состояния x_0 .

Из [24, Гл. VIII, §6, Теорема 1] следует, что эти пределы совпадают с единственным стационарным распределением:

$$\lim_{n \to \infty} \mathbb{P}(\beta_n = x \mid \beta_1 = x_0) = \pi_x$$

для всех $x, x_0 \in X$ и любого начального распределения ОМЦ $\{\beta_n\}_{n\geqslant 1}$.

Для несущественного состояния $x \in X$ (2.1.7) следует из доказательства [25, Гл. 12, §5, Теорема 1]. Для существенных состояний x тот же результат, а также третий пункт Теоремы следует из [26, Гл. 1, §1.9 Пример 1.9.9].

Непосредственное применение Теоремы 2.1.1 к ОМЦ $\{\Xi_i\}_{i\geqslant 1}$ дает следующий результат.

Предложение 2.1.4. В условиях Предложения 2.1.3 у ОМЦ $\{\Xi_n\}_{n\geqslant 1}$ имеется стационарное распределение $(\pi_{\alpha}, \alpha \in \mathfrak{S}_S)$, причем нулевые вероятности соответствуют несущественным состояниям (и только им). Свойства стационарного распределения $(\pi_{\alpha}, \alpha \in \mathfrak{S}_S)$, установленные в пункте 2 Предложения 2.1.2, полностью сохраняются.

Таким образом, найдены условия, накладываемые на «входную» ОМЦ $\{\eta_i\}_{i=1}^{\infty}$, являющиеся достаточными для существования стационарного распределения ОМЦ $\{\Xi_n\}_{n\geqslant 1}$. Для произвольного «Book Stack»-подобного преобразования условия — это положительность всех вероятностей перехода, а для стандартного «Book Stack»-преобразования достаточно более слабого условия — эргодичности цепи.

В дальнейшем стационарное распределение марковской цепи $\{\Xi_n\}_{n\geqslant 1}$ всегда будет обозначаться

$$(\pi_{1,2,\ldots,S},\ldots,\pi_{S,S-1,\ldots,1})$$
. (2.1.8)

2.2. Закон Больших Чисел для частот выходной последовательности

Цель данного раздела заключается в изучении свойств сходимости по вероятности частот «выходной» последовательности $\{\xi_i\}_{i=1}^{\infty}$, введенной в (1.1.2), к неким предельным вероятностям. Как и раньше, предполагаем, что входная последовательность $\{\eta_i\}_{i\geqslant 1}$ образует ОМЦ с матрицей переходных вероятностей $\mathbf{P}^{(\eta)}=(p_{ij})$. Мы предполагаем также, что вектор Ξ_0 и ОМЦ $\{\eta_i\}_{i\geqslant 1}$ независимы.

В предыдущем разделе исследовались различные условия, обеспечивающие существование и единственность стационарного распределения ОМЦ $\{\Xi_n\}_{n\geqslant 1}$, введеной в (1.1.1). В этом разделе доказывается, что в таких же условиях имеет место ЗБЧ для «выходной» последовательности $\{\xi_n\}_{n\geqslant 1}$.

Прежде всего нам потребуется следующая лемма, в которой исследуются марковские свойства последовательности пар $\{(\Xi_n,\eta_{n+1})\}_{n\geqslant 0}$. Как мы увидим, они во многом аналогичны марковским свойствам ОМЦ $\{\Xi_i\}_{i\geqslant 1}$. По-прежнему будем обозначать $\left(\pi^{(0)}_{1,2,\dots,S},\dots,\pi^{(0)}_{S,S-1,\dots,1}\right)$ и $\left(p^{(1)}_1,\dots,p^{(1)}_S\right)$ распределения Ξ_0 и η_1 соответственно. Также будем обозначать $(\pi_{1,2,\dots,S},\dots,\pi_{S,S-1,\dots,1})$ — стационарное распределение ОМЦ $\{\Xi_i\}_{i\geqslant 1}$.

Пемма 2.2.1. 1. Если отображение $f: \mathfrak{S}_S \times \mathbb{S} \to \mathfrak{S}_S$ является инъективным по второй компоненте и конечно-связным, то последовательность пар $\{(\Xi_n, \eta_{n+1})\}_{n \geq 0}$ образует ОМЦ с фазовым пространством $\mathfrak{S}_S \times \mathbb{S}$, начальным распределением, для всех $(\alpha, k) \in \mathfrak{S}_S \times \mathbb{S}$ задаваемым вероятностями

$$\mathbb{P}((\Xi_0, \eta_1) = (\alpha, k)) = \pi_{\alpha}^{(0)} p_k^{(1)},$$

и переходной матрицей $\mathbf{P}^{(\Xi,\eta)} = \left(p_{\alpha i\beta j}^{(\Xi,\eta)}\right)$, где

$$p_{\alpha i\beta j}^{(\Xi,\eta)} = p_{(\alpha,i),(\beta,j)}^{(\Xi,\eta)} = \begin{cases} p_{ij} & npu \ f(\alpha,i) = \beta, \\ 0 & uhaue. \end{cases}$$

$$(2.2.1)$$

- 2. Если в условиях n.1 дополнительно потребовать, чтобы $p_{ij} > 0$ для всех $i, j \in \mathbb{S}$, то ОМЦ $\{(\Xi_n, \eta_{n+1})\}_{n \geqslant 0}$ является эргодической.
- 3. Если отображение $f: \mathfrak{S}_S \times \mathbb{S} \to \mathfrak{S}_S c$ тандартное «Book Stack»-преобразование, определенное в разделе 1.2, а «входная» последовательность образует ЭОМЦ, то последовательность пар $\{(\Xi_n, \eta_{n+1})\}_{n\geqslant 0}$ образует ОМЦ, которая обладает одним непереодическим эргодическим классом и, быть может, несколькими несущественными состояниями.
- 4. В предположении n.2 или 3 стационарное распределение ОМЦ $\{(\Xi_n,\eta_{n+1})\}_{n\geqslant 0}$ задается вероятностями вида

$$\pi_{(\alpha,k)}^{(\Xi,\eta)} = \pi_{\alpha} p_{\mathcal{C}_{\alpha}^{S}k}, \tag{2.2.2}$$

где множество C^S_α введено в (1.1.5), $\alpha \in \mathfrak{S}_S$ и $k \in \mathbb{S}$.

5. В предположении n.2 или 3 для любого начального распределения ОМЦ $\{(\Xi_n, \eta_{n+1})\}_{n\geqslant 0}$ и для любых $\alpha, \beta \in \mathfrak{S}_S$ и всех $k, r \in \mathbb{S}$ при $n \to \infty$

$$\mathbb{P}((\Xi_n, \eta_{n+1}) = (\alpha, k) \mid (\Xi_0, \eta_1) = (\beta, r)) \to \pi_{\alpha} p_{\mathbf{C}_{\alpha}^S k},$$

$$\mathbb{P}((\Xi_n, \eta_{n+1}) = (\alpha, k)) \to \pi_{\alpha} p_{\mathbf{C}_{\alpha}^S k}.$$

Причем существует такое $\rho \in [0,1)$ и C>0, что для любых $\alpha,\beta \in \mathfrak{S}_S$ и всех $k,r \in \mathbb{S}$

$$\left| \mathbb{P} \left((\Xi_n, \eta_{n+1}) = (\alpha, k) \mid (\Xi_0, \eta_1) \right) = (\beta, r) \right) - \pi_\alpha p_{\mathcal{C}_\alpha^S, k} \right| \leqslant C \rho^n.$$

Доказательство. 1. Для любых $n \geqslant 1, \alpha_0, \alpha_1, \dots, \alpha_{n-1} \in \mathfrak{S}_S$ и $k_1, k_2, \dots, k_n \in \mathbb{S}$ рассмотрим вероятность

$$\mathbb{P}((\Xi_0, \eta_1) = (\alpha_0, k_1), (\Xi_1, \eta_2) = (\alpha_1, k_2), \dots, (\Xi_{n-1}, \eta_n) = (\alpha_{n-1}, k_n)).$$

Если найдется такой $i \in 1: (n-1)$, что $f(\alpha_{i-1}, k_i) \neq \alpha_i$ (то есть $k_i \neq C_{\alpha_i}^S$ или $\alpha_{i-1} \notin C_{\alpha_i}^{\mathfrak{S}_S}$),

то эта вероятность равна 0. Рассмотрим оставшийся случай.

$$\mathbb{P}((\Xi_{0}, \eta_{1}) = (\alpha_{0}, k_{1}), (\Xi_{1}, \eta_{2}) = (\alpha_{1}, k_{2}), \dots, (\Xi_{n-1}, \eta_{n}) = (\alpha_{n-1}, k_{n})) =$$

$$= \mathbb{P}((\Xi_{0}, \eta_{1}) = (\alpha_{0}, C_{\alpha_{1}}^{S}), (\Xi_{1}, \eta_{2}) = (\alpha_{1}, C_{\alpha_{2}}^{S}), \dots, (\Xi_{n-1}, \eta_{n}) = (\alpha_{n-1}, k_{n})) =$$

$$= \mathbb{P}(\Xi_{0} = \alpha_{0}, \eta_{1} = C_{\alpha_{1}}^{S}, \eta_{2} = C_{\alpha_{2}}^{S}, \dots, \eta_{n-1} = C_{\alpha_{n-1}}^{S}, \eta_{n} = k_{n}) =$$

$$= \mathbb{P}(\Xi_{0} = \alpha_{0}) \mathbb{P}(\eta_{1} = C_{\alpha_{1}}^{S}, \eta_{2} = C_{\alpha_{2}}^{S}, \dots, \eta_{n-1} = C_{\alpha_{n-1}}^{S}, \eta_{n} = k_{n}) =$$

$$= \pi_{\alpha_{0}}^{(0)} p_{C_{\alpha_{1}}^{S}}^{(1)} p_{C_{\alpha_{1}}^{S} C_{\alpha_{2}}^{S}} \dots p_{C_{\alpha_{n-1}}^{S} k_{n}}.$$

Заметим, что при n=1

$$\mathbb{P}((\Xi_0, \eta_1) = (\alpha_0, k_1)) = \pi_{\alpha_0}^{(0)} p_{k_1}^{(1)}.$$

- 2. Доказательство абсолютно аналогично доказательству второго пункта Предложения 2.1.1.
- 3. Схема доказательства совпадает со схемой доказательства Предложения 2.1.3. Сначала докажем единственность эргодического класса.

Из доказательства Предложения 2.1.3 следует такое утверждение об ОМЦ $\{\Xi_i\}_{i\geqslant 1}$: существует $\gamma\in\mathfrak{S}_S$, достижимая из любой другой перестановки $\alpha\in\mathfrak{S}_S$. Выберем такое число $\ell\in\mathbb{S}$, что $p_{\gamma[1]\ell}>0$. Рассмотрим любое $(\alpha,k)\in\mathfrak{S}_S\times\mathbb{S}$, такое что $p_{\alpha[1]k}>0$. Ясно, что из $f(\alpha,k)\in\mathfrak{S}_S$ достижима перестановка γ . Таким образом, из (α,k) с $p_{\alpha[1]k}>0$ достижимо состояние (γ,ℓ) . Для того, чтобы в этом убедиться, достаточно рассмотреть (2.2.1).

Если же $p_{\alpha[1]k} = 0$, то неравенство

$$\mathbb{P}((\Xi_n, \eta_{n+1}) = (\alpha, k)) > 0$$

возможно только при n=0. Действительно, при n>0

$$\mathbb{P}((\Xi_n, \eta_{n+1}) = (\alpha, k)) \leqslant p_{\alpha[1]k} = 0. \tag{2.2.3}$$

Далее

$$\mathbb{P}\big(\Xi_1 = f(\alpha, k) \mid (\Xi_0, \eta_1) = (\alpha, k)\big) = 1.$$

Следовательно, из любого (α, k) достижимо состояние (γ, ℓ) . Единственность эргодического класса для ОМЦ $\{(\Xi_n, \eta_{n+1})\}_{n\geq 0}$ доказана.

Докажем теперь непериодичность единственного эргодического класса ОМЦ $\{(\Xi_n,\eta_{n+1})\}_{n\geqslant 0}$. Рассмотрим произвольное существенное состояние $(\alpha,k)\in\mathfrak{S}_S\times\mathbb{S}$. Согласно (2.2.3) $p_{\alpha[1]k}>0$. Обозначим $\beta=f(\alpha,k)$. Нужно показать, что

$$\gcd\left(n \mid p_{\alpha k \alpha k}^{(\Xi,\eta)}(n) > 0\right) = 1.$$

Построим траекторию положительной вероятности ОМЦ $\{\Xi_i\}_{i\geqslant 1}$ из состояния α в себя. Для этого сначала построим две вспомогательные траектории положительной вероятности. Первая из этих траекторий «начинается» из состояния β и «заканчивается» в нем же. Траектория задается вектором $X_n = (x_1, x_2, \dots, x_n) \in \mathfrak{S}_S^n$, таким что $x_1 = x_n = \beta$. Вторая траектория «начинается» из состояния β и «заканчивается» в состоянии α . Зафиксируем любое такое $\ell \in \mathbb{N}$, что $p_{\beta\alpha}^{(\Xi)}(\ell) > 0$ и рассмотрим следующий вектор, задающий траекторию: $Y_\ell = (y_1, y_2, \dots, y_\ell) \in \mathfrak{S}_S^\ell$, такой что $y_1 = \beta$ и $y_\ell = \alpha$.

Таким образом, мы имеем траекторию ОМЦ $\{\Xi_n\}_{n\geqslant 1}$ длины $n+\ell$, «начинающуюся» в состоянии α и «заканчивающуюся» в нем же:

$$Z_{n,\ell} = (\alpha, x_1, x_2, \dots, x_{n-1}, y_1, y_2, \dots, y_{\ell-1}, y_{\ell}) = (\alpha, \beta, x_2, \dots, x_{n-1}, \beta, y_2, \dots, y_{\ell-1}, \alpha) \in \mathbb{S}^{n+\ell}.$$

Обозначим $\overline{n}_{\ell}=n+\ell$. Конечно, $Z_{n,\ell}$ — траектория положительной вероятности.

Заметим, что траектории $Z_{n,\ell}$ для ОМЦ $\{\Xi_i\}_{i\geqslant 1}$ однозначно соответствует траектория ОМЦ $\{(\Xi_n,\eta_{n+1})\}_{n\geqslant 0}$, состоящая из последовательности состояний

$$\left[(\alpha, k), (\beta, x_2[1]), (x_2, x_3[1]), \dots, (x_{n-1}, \beta[1]), (\beta, y_2[1]), (y_2, y_3[1]), \dots, (y_{\ell-1}, \alpha[1]), (\alpha, k) \right] \in (\mathfrak{S}_S \times \mathbb{S})^{\ell+n}.$$

При этом вероятности всех переходов по такой траектории положительны по (2.2.1).

Аналогично доказательству Предложения 2.1.3 получаем, что

$$\gcd\left(n+\ell \mid p_{\alpha\alpha}^{(\Xi)}(\ell) > 0, n \in \mathbb{N}\right) = 1.$$

Из этого так же, как и в доказательстве Предложения 2.1.3, заключаем, что

$$\gcd\left(n+\ell \mid p_{\alpha k \alpha k}^{(\Xi,\eta)}(n+\ell) > 0, n \in \mathbb{N}\right) = 1.$$

Следовательно,

$$\gcd\left(n \mid p_{\alpha k \alpha k}^{(\Xi, \eta)}(n) > 0, n \in \mathbb{N}\right) = 1.$$

В силу произвольности выбора существенного состояния (α, k) утверждение полностью доказано.

4. Для любых $\alpha \in \mathfrak{S}_S$ и $k \in \mathbb{S}$, используя Предложение 2.1.2 в рамках п.2 и Предложение 2.1.4 в рамках п.3, получаем

$$\mathbb{P}((\Xi_n, \eta_{n+1}) = (\alpha, k)) = \mathbb{P}(\eta_{n+1} = k \mid \Xi_n = \alpha) \mathbb{P}(\Xi_n = \alpha) =$$

$$= \mathbb{P}(\Xi_{n+1} = f(\alpha, k) \mid \Xi_n = \alpha) \mathbb{P}(\Xi_n = \alpha) \xrightarrow[n \to +\infty]{} p_{C_{\alpha}^{S_k}} \pi_{\alpha}.$$

5. В предположении пункта 2 результат является хорошо известным. В предположении пункта 3 результат следует из Теоремы 2.1.1.

Перейдем к доказательству непосредственно Закона Больших Чисел для частот последовательности $\{\xi_i\}_{i\geqslant 1}$. Для этого обозначим

$$\tau_k = \tau_k(n) = \mathbb{I}_k(\xi_1) + \ldots + \mathbb{I}_k(\xi_n),$$

где \mathbb{I}_A — индикатор множества A и $1\leqslant k\leqslant S$. Кроме того, положим для любого $1\leqslant k\leqslant S$

$$s_k \stackrel{\text{def}}{=} \sum_{j=1}^{S} \sum_{\substack{\alpha \in \mathfrak{S}_S \\ \alpha[k] = i}} \pi_{\alpha} p_{\mathcal{C}_{\alpha}^S, j}. \tag{2.2.4}$$

Теорема 2.2.1. Пусть η_n и Ξ_0 независимы для любого $n \geqslant 1$. Для того, чтобы при $n \to \infty$ для любого $\mathcal{L}(\Xi_0)$ и любого $1 \leqslant k \leqslant S$

$$\mathbb{P}(\xi_i = k) \to s_k, \tag{2.2.5}$$

$$\frac{\tau_k}{n} \stackrel{\mathbb{P}}{\to} s_k, \tag{2.2.6}$$

достаточно выполнения одного из следующих условий:

- 1. f инъективное по второй компоненте и конечно-связное отображение, а переходные вероятности p_{ij} положительны для всех i, j;
- 2. f стандартное «Book Stack»-преобразование, определенное в разделе 1.2, и «входная» последовательность $\{\eta_n\}_{n\geqslant 1}$ ЭОМЦ.

Доказательство. Доказательство при предположениях обоих пунктов абсолютно одинаково, разница лишь в ссылках на разные пункты Леммы 2.2.1. По первому пункту Леммы 2.2.1 для предположений обоих пунктов последовательность $\{(\Xi_i, \eta_{i+1})\}_{i\geqslant 0}$ образует ОМЦ. Фазовое пространство — $\mathfrak{S}_S \times \mathbb{S}$, матрица переходных вероятностей — $\mathbf{P}^{(\Xi,\eta)} = \left(p_{\alpha i\beta j}^{(\Xi,\eta)}\right)$, определенная в (2.2.1).

В случае предположений пункта 1 согласно второму пункту Леммы 2.2.1 ОМЦ $\{(\Xi_i,\eta_{i+1})\}_{i\geqslant 0}$ является эргодической. В случае предположений пункта 2 согласно третьему пункту Леммы 2.2.1 ОМЦ $\{(\Xi_i,\eta_{i+1})\}_{i\geqslant 0}$ обладает одним непериодическим эргодическим классом и, быть может, несколькими несущественными состояниями.

По пункту 4 Леммы 2.2.1 для предположений обоих пунктов стационарное распределение $\{(\Xi_i,\eta_{i+1})\}_{i\geqslant 0}$ задается вероятностями $\pi_{(\alpha,k)}^{(\Xi,\eta)}=\pi_{\alpha}p_{\mathbf{C}_{\alpha}^Sk}$, где $\alpha\in\mathfrak{S}_S$ и $k\in\mathbb{S}$, где множество \mathbf{C}_{α}^S введено в (1.1.5).

По пункту 5 Леммы 2.2.1 для предположений обоих пунктов имеет место геометрическая скорость сходимость к стационарному распределению, а именно для любых $\alpha, \beta \in \mathfrak{S}_S$ и $i, j \in \mathbb{S}$ верно, что

$$\left| p_{\alpha i\beta j}^{(\Xi,\eta)}(n) - \pi_{\alpha} p_{\mathcal{C}_{\alpha}^{S}i} \right| \leqslant c\rho^{n}, \tag{2.2.7}$$

где $0 \leqslant \rho < 1$.

Как всегда, из этого следует, что для любого $k\geqslant 1$

$$\left| \mathbb{P} \left((\Xi_k, \eta_{k+1}) = (\alpha, i) \right) - \pi_\alpha p_{\mathcal{C}_\alpha^{S_i}} \right| \leqslant c \rho^k. \tag{2.2.8}$$

Используя (2.2.7) и (2.2.8), оценим сверху величину

$$\left| \mathbb{P} \left((\Xi_i, \eta_{i+1}) = (\alpha, t), (\Xi_j, \eta_{j+1}) = (\beta, r) \right) - \pi_{\alpha} p_{\mathbf{C}_{\alpha}^{St}} \pi_{\beta} p_{\mathbf{C}_{\alpha}^{St}} \right|$$

для любых $t, r \in \mathfrak{S}_S$ и $1 \leqslant i < j$:

$$\begin{aligned} \left| \mathbb{P} \left((\Xi_{i}, \eta_{i+1}) = (\alpha, t), (\Xi_{j}, \eta_{j+1}) = (\beta, r) \right) - \pi_{\alpha} p_{\mathcal{C}_{\alpha}^{S} t} \pi_{\beta} p_{\mathcal{C}_{\beta}^{S} r} \right| = \\ &= \left| \mathbb{P} \left((\Xi_{i}, \eta_{i+1}) = (\alpha, t) \right) \mathbb{P} \left((\Xi_{j}, \eta_{j+1}) = (\beta, r) \mid (\Xi_{i}, \eta_{i+1}) = (\alpha, t) \right) - \pi_{\alpha} p_{\mathcal{C}_{\alpha}^{S} t} \pi_{\beta} p_{\mathcal{C}_{\beta}^{S} r} \right| = \\ &= \left| \left(\pi_{\alpha} p_{\mathcal{C}_{\alpha}^{S} t} + \mathcal{O}(\rho^{i}) \right) \left(\pi_{\beta} p_{\mathcal{C}_{\beta}^{S} r} + \mathcal{O}(\rho^{j-i}) \right) - \pi_{\alpha} p_{\mathcal{C}_{\alpha}^{S} t} \pi_{\beta} p_{\mathcal{C}_{\beta}^{S} r} \right| = \\ &= \begin{cases} \mathcal{O}(\rho^{i}) & \text{при } 2i \leq j, \\ \mathcal{O}(\rho^{j-i}) & \text{при } 2i > j, \end{cases} \end{aligned}$$
(2.2.9)

причем константа, описывающая $O(\rho)$, не зависит от i, j.

Фиксируем $j \in 1 : S$ и тогда для любого $i \geqslant 2$ получаем

$$\mathbb{P}(\xi_i = j) = \sum_{k,\alpha} \mathbb{P}(\xi_i = j \mid \eta_i = k, \Xi_{i-1} = \alpha) \mathbb{P}(\eta_i = k, \Xi_{i-1} = \alpha).$$

По определению множества \mathcal{F}_0 , введенном в (1.1.7),

$$\mathbb{P}(\xi_i = j \mid \eta_i = k, \Xi_{i-1} = \alpha) = \begin{cases} 1 & \text{при } \alpha \in \mathcal{F}_0(j, k), \\ 0 & \text{иначе.} \end{cases}$$

Таким образом, для фиксированного $j \in 1: S$ и любого $i \geqslant 2$

$$\mathbb{I}_{j}(\xi_{i}) = \sum_{k=1}^{S} \sum_{\substack{\alpha \in \mathfrak{S}_{S} \\ \alpha[j] = k}} \mathbb{I}_{(\alpha,k)}(\Xi_{i-1}, \eta_{i}).$$

Отсюда, переходя к математическим ожиданиям и учитывая (2.2.8),

$$\mathbb{E}\mathbb{I}_{j}(\xi_{i}) = \sum_{k,\alpha} \mathbb{E}\mathbb{I}_{(\alpha,k)}(\Xi_{i-1}, \eta_{i}) = \sum_{k,\alpha} \mathbb{P}(\Xi_{i-1} = \alpha, \eta_{i} = k) =$$

$$= \sum_{k,\alpha} \pi_{\alpha} p_{\mathbf{C}_{\alpha}^{S}, k} + \mathcal{O}\left(\rho^{i-1}\right) \underset{i \to +\infty}{\longrightarrow} s_{j}. \tag{2.2.10}$$

Таким образом, справедливость (2.2.5) установлена.

Покажем, что

$$\mathbb{E}(\tau_k/n - s_k)^2 = \frac{1}{n^2} \mathbb{E}\left(\sum_{i=1}^n (\mathbb{I}_k(\xi_i) - s_k)\right)^2 \to 0,$$
 (2.2.11)

откуда с помощью стандартного неравенства Чебышева будет следовать (2.2.6).

Фиксируем произвольное $k \in 1: S$, тогда

$$\mathbb{E}\left(\sum_{i=1}^{n} (\mathbb{I}_{k}(\xi_{i}) - s_{k})\right)^{2} = \mathbb{E}\left(\sum_{i=1}^{n} (\mathbb{I}_{k}(\xi_{i}) - s_{k})\right) \left(\sum_{j=1}^{n} (\mathbb{I}_{k}(\xi_{j}) - s_{k})\right) =$$

$$= \sum_{i,j=1}^{n} \left(\mathbb{E} \mathbb{I}_{k}(\xi_{i}) \mathbb{I}_{k}(\xi_{j}) - s_{k} \mathbb{E} \mathbb{I}_{k}(\xi_{j}) - s_{k} \mathbb{E} \mathbb{I}_{k}(\xi_{i}) + s_{k}^{2}\right) =$$

$$= \sum_{i,j=1}^{n} \left(\mathbb{E} \mathbb{I}_{k}(\xi_{i}) \mathbb{I}_{k}(\xi_{j}) - s_{k}^{2} + O(\rho^{\min\{i,j\}-1})\right), \tag{2.2.12}$$

где последнее равенство (а также равенство $\mathbb{EI}_k^2(\xi_i) = \mathbb{EI}_k(\xi_i) = s_k + \mathrm{O}(\rho^{i-1})$) следует из (2.2.10).

Заметим, что фактически остается вычислить $\mathbb{E}\mathbb{I}_k(\xi_i)\mathbb{I}_k(\xi_j)$ для i < j. Пусть $2i \leqslant j$,

тогда

$$\mathbb{E}\,\mathbb{I}_{k}(\xi_{i})\mathbb{I}_{k}(\xi_{j}) = \mathbb{E}\left(\sum_{r=1}^{S} \sum_{\substack{\alpha \in \mathfrak{S}_{S} \\ \alpha[k] = r}} \mathbb{I}_{(\alpha,r)}(\Xi_{i-1}, \eta_{i})\right) \left(\sum_{t=1}^{S} \sum_{\substack{\beta \in \mathfrak{S}_{S} \\ \beta[k] = t}} \mathbb{I}_{(\beta,t)}(\Xi_{j-1}, \eta_{j})\right) =$$

$$= \sum_{r,t,\alpha,\beta} \mathbb{E}\,\mathbb{I}_{(\alpha,r)}(\Xi_{i-1}, \eta_{i})\mathbb{I}_{(\beta,t)}(\Xi_{j-1}, \eta_{j}) = \sum_{r,t,\alpha,\beta} \mathbb{P}(\Xi_{i-1} = \alpha, \eta_{i} = r, \Xi_{j-1} = \beta, \eta_{j} = t) =$$

$$= \sum_{r,t,\alpha,\beta} \pi_{\alpha} p_{\mathcal{C}_{\alpha}^{S}r} \pi_{\beta} p_{\mathcal{C}_{\beta}^{S}t} + \mathcal{O}(\rho^{i-1}) = s_{k}^{2} + \mathcal{O}(\rho^{i-1}).$$

$$(2.2.13)$$

В случае i < j < 2i в последней приведенной выкладке произойдет замена $O(\rho^{i-1})$ на $O(\rho^{j-i})$, что мгновенно следует из (2.2.9).

С помощью только что полученных промежуточных результатов продолжим оценивание (2.2.12):

$$\sum_{i,j=1}^{n} \left(\mathbb{E} \, \mathbb{I}_{k}(\xi_{i}) \mathbb{I}_{k}(\xi_{j}) - s_{k}^{2} \right) =$$

$$= n(s_{k} - s_{k}^{2}) + \sum_{i=1}^{n} \mathcal{O}(\rho^{i-1}) + 2 \sum_{2i \leqslant j} \left(\mathcal{O}(\rho^{i-1}) \right) + 2 \sum_{i < j < 2i} \left(\mathcal{O}(\rho^{j-i}) \right), \tag{2.2.14}$$

Покажем, асимптотика правой части в (2.2.14) равна O(n).

$$\left| \sum_{i=1}^{n} O(\rho^{i-1}) \right| \leqslant \rho^{-1} C \sum_{i=1}^{n} \rho^{i} \leqslant \frac{C}{\rho(1-\rho)} = O(1).$$
 (2.2.15)

Из этого мгновенно следует оценка следующего слагаемого:

$$\left| \sum_{2i \leqslant j} \left(\mathcal{O}(\rho^{i-1}) \right) \right| \leqslant \rho^{-1} C \sum_{2i \leqslant j} \rho^{i} = \rho^{-1} C \sum_{j=2}^{n} \sum_{i=1}^{\lfloor j/2 \rfloor} \rho^{i} \leqslant \frac{nC}{\rho(1-\rho)} = \mathcal{O}(n).$$

Осталось разобраться с последним слагаемым в (2.2.14).

$$\left| \sum_{i < j < 2i} \left(\mathcal{O}(\rho^{j-i}) \right) \right| \leqslant \left| \sum_{i < j} \mathcal{O}(\rho^{j-i}) \right| \le C \sum_{i < j} \rho^{j-i} = C \sum_{j=2}^{n} \sum_{i=1}^{j-1} \rho^{j-i} = C \sum_{j=2}^{n} \sum_{i=1}^{j-1} \rho^{i} = C \sum_{j=2}^{n} \sum_{i=1}^{j-1} \rho^{i} = C \left(\frac{\rho^{n} - 1}{(1 - \rho)^{2}} + n \frac{1}{1 - \rho} \right) = \mathcal{O}(n).$$

Это означает, что (2.2.14) перепишется в виде: $\sum_{i,j=1}^{n} \left(\mathbb{E} \, \mathbb{I}_k(\xi_i) \mathbb{I}_k(\xi_j) - s_k^2 \right) = \mathrm{O}(n)$. Применяя последнее равенство к (2.2.12) заключаем, что $\mathbb{E}(\tau_k/n - s_k)^2 = \mathrm{O}(n^{-1}) \to 0$. Ссылка на стандартное неравенство Чебышева завершает доказательство теоремы. \square

2.3. Центральные Предельные Теоремы для частот входной и выходной последовательностей

Как и раньше, предполагаем, что входная последовательность $\{\eta_i\}_{i\geqslant 1}$ образует ОМЦ с матрицей переходных вероятностей $\mathbf{P}^{(\eta)}=(p_{ij})$. Мы предполагаем также, что вектор Ξ_0 и ОМЦ $\{\eta_i\}_{i\geqslant 1}$ независимы.

В разделе 2.1 были сформулированы условия, обеспечивающие существование и единственность стационарного распределения ОМЦ $\{\Xi_n\}_{n\geqslant 1}$, введеной в (1.1.1). В предыдущем разделе исследовались свойства сходимости по вероятности частот «входной» и «выходной» последовательности к соответствующим предельным распределениям в рамках рассматриваемых предположений. Для «входной» последовательности $\{\eta_i\}_{i\geqslant 1}$ такая сходимость является хорошо известной (см., например, [22]), а для «выходной» последовательности $\{\xi_i\}_{i\geqslant 1}$, введенной в (1.1.2), была показана в Теореме 2.2.1. В этом разделе показано, что можно доказать не только ЗБЧ, но и ЦПТ для частот обеих последовательностей.

Рассмотрим отображение $f:\mathfrak{S}_S\times\mathbb{S}\to\mathfrak{S}_S$ и до конца этого раздела предположим, что выполнено одно из следующих условий:

- 1. f инъективное по второй компоненте и конечно-связное отображение, а переходные вероятности p_{ij} положительны для всех i, j;
- 2. f стандартное «Book Stack»-преобразование, определенное в разделе 1.2, и «входная» ОМЦ $\{\eta_n\}_{n\geqslant 1}$ эргодическая.

Обозначим $\mathbf{p}^{(\infty)} = \left(p_1^{(\infty)}, p_2^{(\infty)}, \dots, p_S^{(\infty)}\right)^{\mathrm{T}}$ — стационарное распределение последовательности $\{\eta_n\}_{n\geqslant 1}$.

Для векторов частот «входной» и «выходной» последовательности мы будем использовать обозначения

$$\tau_n^{(\eta)} = \left(\tau_{1,n}^{(\eta)}, \dots \tau_{S,n}^{(\eta)}\right)^{\mathrm{T}}, \quad \tau_n^{(\xi)} = \left(\tau_{1,n}^{(\xi)}, \dots \tau_{S,n}^{(\xi)}\right)^{\mathrm{T}}$$
(2.3.1)

для любого $n \ge 1$, где для каждого $k \in 1 : S$

$$\tau_{k,n}^{(\eta)} = \sum_{i=1}^{n} \mathbb{I}(\eta_i = k), \quad \tau_{k,n}^{(\xi)} = \sum_{i=1}^{n} \mathbb{I}(\xi_i = k).$$

Прежде всего нам потребуется многомерная ЦПТ для марковских цепей с произвольным пространством состояний и дискретным временем. Доказательство этой теоремы приведено в [23, Глава 3, §2].

Теорема 2.3.1. Пусть X — некоторое множество, а F_X — σ -алгебра его подмножеств. Рассмотрим $\zeta_1, \zeta_2, \ldots, \zeta_n, \ldots$ — ОМЦ с множеством состояний X и переходной функцией $p: X \times F_X$. Для любого n > 0 обозначим $p^{(n)}$ — переходную функцию за n шагов. Предположим, что существует $k_0 > 0$

$$\sup_{\substack{x_1, x_2 \in X \\ A \in F_X}} \left| p^{(k_0)}(x_1, A) - p^{(k_0)}(x_2, A) \right| < 1. \tag{2.3.2}$$

Обозначим π — стационарное распределение ОМЦ $\{\zeta_i\}_{i\geqslant 1}$. Рассмотрим d-мерное отображение $h: X \to \mathbb{R}^d$, $h = (h_1, h_2, \dots, h_d)^{\mathrm{T}}$, предполагая, что все координатные функции $h_i - F_X$ -измеримы. Тогда при $n \to \infty$ имеет место следующая сходимость:

$$\mathcal{L}\left(\sqrt{n}\left(\frac{1}{n}\sum_{i=1}^{n}h(\zeta_{i})-\mathbb{E}_{\pi}h(\zeta_{1})\right)\right) \Rightarrow \mathcal{N}(\mathbf{0},\Sigma_{\zeta}),\tag{2.3.3}$$

где Σ_{ζ} — матрица размеров $d \times d$ со следующими компонентами для всех $1 \leqslant i,j \leqslant d$

$$(\Sigma_{\zeta})_{ij} =$$

$$= \mathbb{E}_{\pi} \Big[\Big(h_{i}(\zeta_{1}) - \mathbb{E}_{\pi} h_{i}(\zeta_{1}) \Big) \Big(h_{j}(\zeta_{1}) - \mathbb{E}_{\pi} h_{j}(\zeta_{1}) \Big) \Big] +$$

$$+ \sum_{r=1}^{\infty} \mathbb{E}_{\pi} \Big[\Big(h_{i}(\zeta_{1}) - \mathbb{E}_{\pi} h_{i}(\zeta_{1}) \Big) \Big(h_{j}(\zeta_{r+1}) - \mathbb{E}_{\pi} h_{j}(\zeta_{r+1}) \Big) \Big] +$$

$$+ \sum_{r=1}^{\infty} \mathbb{E}_{\pi} \Big[\Big(h_{j}(\zeta_{1}) - \mathbb{E}_{\pi} h_{j}(\zeta_{1}) \Big) \Big(h_{i}(\zeta_{r+1}) - \mathbb{E}_{\pi} h_{i}(\zeta_{r+1}) \Big) \Big].$$

$$(2.3.4)$$

Следствие 2.3.1. Пусть $\zeta_1, \zeta_2, \ldots, \zeta_n, \ldots$ — ОМЦ с конечным пространством состояний. Тогда для выполнения ЦПТ 2.3.1 достаточно, чтобы $\{\zeta_i\}_{i\geqslant 1}$ обладала одним непериодическим эргодическим классом и, может быть, несколькими несущественными состояниями. В частности, достаточно, чтобы $\{\zeta_i\}_{i\geqslant 1}$ была эргодической.

Перейдем к формулировке и доказательству ЦПТ для частот «входной» последовательности $\{\eta_i\}_{i\geqslant 1}$. Введем вспомогательные обозначения:

$$a_{k,\ell}^{(\eta)} = \begin{cases} p_k^{(\infty)} \left(1 - p_k^{(\infty)} \right) & \text{при } k = \ell, \\ -p_k^{(\infty)} p_\ell^{(\infty)} & \text{при } k \neq \ell. \end{cases}$$
 (2.3.5)

$$b_{k,\ell}^{(\eta)} = \sum_{r=1}^{\infty} \left(p_{k,\ell}(r) - p_{\ell}^{(\infty)} \right) p_k^{(\infty)}. \tag{2.3.6}$$

для всех $k, \ell \in \mathbb{S}$.

Лемма 2.3.1. Величины $b_{k,\ell}^{(\eta)}$ конечны для всех $k,\ell \in \mathbb{S}$. Более того, верна следующая равномерная оценка:

$$|b_{k,\ell}^{(\eta)}| \leqslant \frac{C_{\eta}\rho_{\eta}}{1 - \rho_{\eta}},\tag{2.3.7}$$

где C_{η} , ρ_{η} зависят только от переходных вероятностей $\{p_{ij}\}$ и $C_{\eta} > 0$ и $\rho_{\eta} \in [0;1)$.

Доказательство. Так как $\{\eta_i\}_{i\geqslant 1}$ образует ЭОМЦ, то существуют такие $C_\eta>0$ и $\rho_\eta\in[0;1),$ что

$$\left| p_{k,\ell}(r) - p_{\ell}^{(\infty)} \right| \leqslant C_{\eta} \rho_{\eta}^{r}.$$

Ссылка на формулу суммы геометрической прогрессии завершает доказательство.

Теорема 2.3.2. Для векторов $\tau_n^{(\eta)}$, определенных в (2.3.1), имеет место следующая асимптотическая сходимость

$$\mathcal{L}\left(\sqrt{n}\left(\tau_n^{(\eta)}/n - \mathbf{p}^{(\infty)}\right)\right) \Rightarrow \mathcal{N}\left(0, \Sigma_{\eta}\right), \tag{2.3.8}$$

где матрица Σ_{η} размеров $S \times S$ и имеет компоненты

$$(\Sigma_{\eta})_{k,\ell} = a_{k,\ell}^{(\eta)} + b_{k,\ell}^{(\eta)} + b_{\ell,k}^{(\eta)}. \tag{2.3.9}$$

Более того, равномерно по всем $k, \ell \in \mathbb{S}$ справедлива следующая оценка:

$$a_{k,\ell}^{(\eta)} - \frac{2C_{\eta}\rho_{\eta}}{1 - \rho_{\eta}} \leqslant (\Sigma_{\eta})_{k,\ell} \leqslant a_{k,\ell}^{(\eta)} + \frac{2C_{\eta}\rho_{\eta}}{1 - \rho_{\eta}}.$$
(2.3.10)

для некоторых констант $\rho_{\eta} \in [0;1)$ и $C_{\eta} > 0$, зависящих только от переходных вероятностей $\{p_{ij}\}$.

Доказательство. Для доказательства воспользуемся Теоремой 2.3.1. Вычисления всех математических ожиданий происходят, как это требуется в Теореме 2.3.1, в предположении, что ОМЦ $\{\eta_n\}_{n\geqslant 1}$ является стационарной. Сначала докажем наличие сходимости (2.3.8). Рассмотрим такое $h: \mathbb{S} \to \mathbb{R}^S$, что $h(k) = e_k$ для любого $k \in \mathbb{S}$, где $e_k - k$ -й единичный орт. Тогда сходимость (2.3.8) следует из ЦПТ 2.3.1 с выбором такого h. Действительно, $\sum_{i=1}^n h(\eta_i) = \tau_n^{(\eta)}$, а $\mathbb{E}h(\eta_i) = \mathbf{p}^{(\infty)}$.

Осталось вычислить компоненты ковариационной матрицы Σ_{η} по формулам (2.3.4). Заметим, что $h_k(\eta_i) = \mathbb{I}_k(\eta_i)$ и, следовательно, $\mathbb{E}h_k(\eta_i) = s_k$ для каждого $k \in \mathbb{S}$ и любого $i \geqslant 1$. Начнем с первого слагаемого. Ясно, что для любых $k, \ell \in \mathbb{S}$

$$\mathbb{E}\left[\left(\mathbb{I}_k(\eta_1) - p_k^{(\infty)}\right)\left(\mathbb{I}_\ell(\eta_1) - p_\ell^{(\infty)}\right)\right] = a_{k,\ell}^{(\eta)},\tag{2.3.11}$$

где $a_{k,\ell}^{(\eta)}$ введено в (2.3.5).

Далее для любого $r \geqslant 1$ и любых $k, \ell \in \mathbb{S}$:

$$\mathbb{E}h_{k}(\eta_{1})h_{\ell}(\eta_{r+1}) = \mathbb{P}(\eta_{1} = k)\mathbb{P}(\eta_{r+1} = \ell \mid \eta_{1} = k) =$$

$$= p_{k}^{(\infty)} \left(p_{\ell}^{(\infty)} + p_{k,\ell}(r) - p_{\ell}^{(\infty)}\right) = p_{k}^{(\infty)} p_{\ell}^{(\infty)} + \left(p_{k,\ell}(r) - p_{\ell}^{(\infty)}\right) p_{k}^{(\infty)}.$$

Следовательно,

$$\sum_{r=1}^{\infty} \mathbb{E}\left[\left(h_k(\eta_1) - p_k^{(\infty)}\right) \left(h_\ell(\eta_{r+1}) - p_\ell^{(\infty)}\right)\right] = b_{k,\ell}^{(\eta)}.$$

Оценка (2.3.10) следует из Леммы 2.3.1.

Перейдем к доказательству ЦПТ для частот «выходной» последовательности $\{\xi_i\}_{i\geqslant 1}$. Стационарное распределение ОМЦ $\{\Xi_i\}_{i\geqslant 1}$ обозначим $(\pi_{\alpha})_{\alpha\in\mathfrak{S}_S}$. Для любых $k,\ell\in\mathbb{S}$ введем обозначения:

$$a_{k,\ell}^{(\xi)} = \begin{cases} s_k(1-s_k), & \text{при } k = \ell, \\ -s_k s_\ell, & \text{при } k \neq \ell. \end{cases}$$
 (2.3.12)

$$b_{k,\ell}^{(\xi)} = \sum_{r=1}^{\infty} \sum_{\substack{q,t \in \mathbb{S} \\ \alpha_k = t \\ \beta_\ell = q}} \sum_{\alpha_k \beta \in \mathfrak{S}_S} \pi_{\alpha} p_{\mathcal{C}_{\alpha}^S, t} \left(p_{\alpha t \beta q}^{(\Xi, \eta)}(r) - \pi_{\beta} p_{\mathcal{C}_{\beta}^S, q} \right), \tag{2.3.13}$$

где $p_{\alpha t \beta q}^{(\Xi, \eta)}$ введено в (2.2.1), \mathbf{C}_{α}^S- в (1.1.5) а s_k- в (2.2.4).

Лемма 2.3.2. Пусть выполнены условия пункта 2 или 3 Леммы 2.2.1. Введенные величины $b_{k,\ell}^{(\xi)}$ конечны для всех $k,\ell \in \mathbb{S}$ и, более того, верна следующая равномерная на $k,\ell \in \mathbb{S}$ оценка:

$$|b_{k,\ell}^{(\xi)}| \leqslant \frac{C_{\Xi,\eta}\rho_{\Xi,\eta}S!}{1-\rho_{\Xi,\eta}} \tag{2.3.14}$$

для некоторых констант $C_{\Xi,\eta}, \rho_{\Xi,\eta} \geqslant 0, \ \rho_{\Xi,\eta} < 1 \ u \ C_{\Xi,\eta} \leqslant 1, \ зависящих только от переходных вероятностей <math>\{p_{ij}\}.$

Доказательство. Доказательство аналогично Лемме 2.3.1. Действительно, достаточно сослаться на пункт 5 Леммы 2.2.1. \Box

Обозначим $\mathbf{s}=(s_1,\ldots,s_S)^{\mathrm{T}}$ — вектор предельных вероятностей для «выходной» последовательности $\{\xi_i\}_{i\geqslant 1}$.

Теорема 2.3.3. Имеет место следующая асимптотическая сходимость

$$\mathcal{L}\left(\sqrt{n}\left(\tau_n^{(\xi)}/n - \mathbf{s}\right)\right) \Rightarrow \mathcal{N}\left(0, \Sigma_{\xi}\right), \tag{2.3.15}$$

где матрица Σ_{ξ} размеров $S \times S$ имеет компоненты

$$(\Sigma_{\xi})_{k,\ell} = a_{k,\ell}^{(\xi)} + b_{k,\ell}^{(\xi)} + b_{\ell,k}^{(\xi)}, \tag{2.3.16}$$

а s_k для всех $k \in \mathbb{S}$ введены в (2.2.4). При этом равномерно по всем $k, \ell \in \mathbb{S}$ верна следующая оценка:

$$a_{k,\ell}^{(\xi)} - \frac{2C_{\Xi,\eta}\rho_{\Xi,\eta}S!}{1 - \rho_{\Xi,\eta}} \leqslant (\Sigma_{\xi})_{k,\ell} \leqslant a_{k,\ell}^{(\xi)} + \frac{2C_{\Xi,\eta}\rho_{\Xi,\eta}S!}{1 - \rho_{\Xi,\eta}}$$
(2.3.17)

для некоторых констант $\rho_{\Xi,\eta} \geqslant 0$, $\rho_{\Xi,\eta} < 1$ и $C_{\Xi,\eta} > 0$, зависящих только от переходных вероятностей $\{p_{ij}\}$.

Доказательство. Докажем сначала наличие сходимости (2.3.15). Для этого воспользуемся Теоремой 2.3.1. Заметим, что в рассматриваемых предположениях по Лемме 2.2.1 последовательность $\{\Xi_i,\eta_{i+1}\}_{i\geqslant 0}$ образует ОМЦ с единственным стационарным распределением. Вычисления всех математических ожиданий происходят, как это требуется в Теореме 2.3.1, в предположении, что ОМЦ $\{(\Xi_n,\eta_{n+1})^{\mathrm{T}}\}_{n\geqslant 0}$ является стационарной. Рассмотрим такое $g_1:\mathfrak{S}_S\times\mathbb{S}\to\mathfrak{S}_S$, что $g_1(\alpha,k)$ есть решение уравнения $\alpha[g_1(\alpha,k)]=k$ для всех $\alpha\in\mathfrak{S}_S$ и $k\in\mathbb{S}$. Рассмотрим также такое $g_2:\mathbb{S}\to\mathbb{R}^S$, что $g_2(k)=e_k$ для любого $k\in\mathbb{S}$, где e_k-k -тый единичный орт. Положим такое $h:\mathfrak{S}_S\times\mathbb{S}\to\mathbb{R}^s$, что $h=(h_1,\dots h_S)^{\mathrm{T}}=g_2\circ g_1$. Тогда сходимость (2.3.15) следует из ЦПТ 2.3.1 с выбором h. Действительно, $\sum_{i=1}^n h(\Xi_{i-1},\eta_i)=\tau_n^{(\xi)}$, а $\mathbb{E}h(\Xi_0,\eta_1)=\mathbb{E}g_2(\xi_1)=\mathbf{s}$.

Осталось вычислить компоненты ковариационной матрицы Σ_{ξ} по формулам (2.3.4). Заметим, что $h_k(\Xi_{i-1}, \eta_i) = \mathbb{I}_k(\xi_i)$ и, следовательно, $\mathbb{E}h_k(\Xi_{i-1}, \eta_i) = s_k$ для каждого $k \in \mathbb{S}$ и любого $i \geqslant 1$. Начнем с первого слагаемого. Ясно, что для любых $k, \ell \in \mathbb{S}$

$$\mathbb{E}\left[\left(\mathbb{I}_k(\xi_1) - s_k\right)\left(\mathbb{I}_\ell(\xi_1) - s_\ell\right)\right] = a_{k,\ell}^{(\xi)},\tag{2.3.18}$$

где $a_{k,\ell}^{(\xi)}$ введено в (2.3.12).

Для вычисления второго и третьего слагаемого в правой части (2.3.16) требуется

дополнительная подготовка. Для любых $k, \ell \in \mathbb{S}$ и всех $r \geqslant 1$

$$\mathbb{E}\mathbb{I}_{k}(\xi_{1})\mathbb{I}_{\ell}(\xi_{r+1}) = \mathbb{E}\left(\sum_{t=1}^{S}\mathbb{I}_{t}(\eta_{1})\sum_{\substack{\alpha\in\mathfrak{S}_{S}\\\alpha_{k}=t}}\mathbb{I}_{\alpha}(\Xi_{0})\right)\left(\sum_{q=1}^{S}\mathbb{I}_{q}(\eta_{r+1})\sum_{\substack{\beta\in\mathfrak{S}_{S}\\\beta_{\ell}=q}}\mathbb{I}_{\alpha}(\Xi_{r})\right) =$$

$$=\sum_{q,t,\alpha,\beta}\mathbb{E}\mathbb{I}_{t}(\eta_{1})\mathbb{I}_{\alpha}(\Xi_{0})\mathbb{I}_{q}(\eta_{r+1})\mathbb{I}_{\beta}(\Xi_{r}) =$$

$$=\sum_{q,t,\alpha,\beta}\mathbb{P}(\eta_{r+1}=q,\Xi_{r}=\beta,\eta_{1}=t,\Xi_{0}=\alpha) =$$

$$=\sum_{q,t,\alpha,\beta}\mathbb{P}(\eta_{r+1}=q,\Xi_{r}=\beta\mid\eta_{1}=t,\Xi_{0}=\alpha)\mathbb{P}(\eta_{1}=t,\Xi_{0}=\alpha) =$$

$$=\sum_{q,t,\alpha,\beta}\left[\pi_{\beta}p_{\mathcal{C}_{\beta}^{S}q}+p_{(\alpha t\beta q)}^{(\Xi,\eta)}(r)-\pi_{\beta}p_{\mathcal{C}_{\beta}^{S}q}\right]\pi_{\alpha}p_{\mathcal{C}_{\alpha}^{S}t} =$$

$$=s_{k}s_{\ell}+\sum_{q,t,\alpha,\beta}\left[p_{(\alpha t\beta q)}^{(\Xi,\eta)}(r)-\pi_{\beta}p_{\mathcal{C}_{\beta}^{S}q}\right]\pi_{\alpha}p_{\mathcal{C}_{\alpha}^{S}t}.$$

Следовательно, для любых $k, \ell \in \mathbb{S}$

$$\sum_{r=1}^{\infty} \mathbb{E}\left[\left(\mathbb{I}_k(\xi_1) - s_k\right)\left(\mathbb{I}_\ell(\xi_{r+1}) - s_\ell\right)\right] = b_{k,\ell}^{(\xi)}.$$
(2.3.19)

Заметим, что из (2.3.18) и (2.3.19) следует (2.3.16). Оценка (2.3.17) следует из Леммы 2.3.2.

Таким образом, установлены ЦПТ для частот «входной» и «выходной» последовательностей. Эти ЦПТ можно использовать для доказательства ЦПТ для статистик критериев, вычисляемых по частотам. Сделаем это для статистики критерия χ^2 для проверки гипотезы \mathbb{H}_0 (см. Введениие).

Обозначим

$$\rho_2^2(\eta) = \sum_{k=1}^S \left(p_k^{(\infty)} - 1/S \right)^2, \quad \rho_2^2(\xi) = \sum_{k=1}^S (s_k - 1/S)^2, \tag{2.3.20}$$

где s_k для всех $k \in \mathbb{S}$ введены в (2.2.4). Введем статистики критерия χ^2 для «входной» и «выходной» последовательности:

$$\chi_n^2(\eta) = \sum_{k=1}^S \frac{\left(\tau_{k,n}^{(\eta)} - n/S\right)^2}{n/S}, \quad \chi_n^2(\xi) = \sum_{k=1}^S \frac{\left(\tau_{k,n}^{(\xi)} - n/S\right)^2}{n/S}.$$
 (2.3.21)

Ясно, что при $n \to \infty$

$$\frac{\chi_n^2(\eta)}{Sn} \stackrel{\mathbb{P}}{\to} \rho_2^2(\eta).$$

Из Теоремы 2.2.1 следует, что при $n \to \infty$

$$\frac{\chi_n^2(\xi)}{Sn} \stackrel{\mathbb{P}}{\to} \rho_2^2(\xi).$$

Обозначим

$$\sigma_{\eta}^{2} = 4 \sum_{k=1}^{S} p_{k}^{(\infty)} \left(p_{k}^{(\infty)} - 1/S \right)^{2} - \left(\sum_{k=1}^{S} p_{k}^{(\infty)} \left(p_{k}^{(\infty)} - 1/S \right) \right)^{2} +$$

$$+ \sum_{k \neq \epsilon \leq S} \left(b_{k\ell}^{(\eta)} + b_{\ell k}^{(\eta)} \right) \left(p_{k}^{(\infty)} - 1/S \right) \left(p_{\ell}^{(\infty)} - 1/S \right)$$

$$(2.3.22)$$

И

$$\sigma_{\xi}^{2} = 4 \sum_{k=1}^{S} s_{k} (s_{k} - 1/S)^{2} - \left(\sum_{k=1}^{S} s_{k} (s_{k} - 1/S) \right)^{2} + \sum_{k, \ell \in \mathbb{S}} \left(b_{k\ell}^{(\xi)} + b_{\ell k}^{(\xi)} \right) (s_{k} - 1/S) (s_{\ell} - 1/S),$$

$$(2.3.23)$$

где для всех $k \in \mathbb{S}$ величины s_k введены в (2.2.4), $a_k^{(\eta)}$ — в (2.3.5), $b_k^{(\eta)}$ — в (2.3.6), $a_k^{(\xi)}$ — в (2.3.12), $b_k^{(\xi)}$ — в (2.3.13).

Теорема 2.3.4. Имеют место следующие сходимости при $n \to \infty$

$$\mathcal{L}\left(\sqrt{n}\left(\frac{\chi_{n}^{2}(\eta)}{Sn}-\rho_{2}^{2}(\eta)\right)\right)\Rightarrow\mathcal{N}\left(0,\sigma_{\eta}^{2}\right),\quad \mathcal{L}\left(\sqrt{n}\left(\frac{\chi_{n}^{2}(\xi)}{Sn}-\rho_{2}^{2}(\xi)\right)\right)\Rightarrow\mathcal{N}\left(0,\sigma_{\xi}^{2}\right),$$
 где $\chi_{n}^{2}(\eta)$ и $\chi_{n}^{2}(\xi)$ определены в (2.3.21), $\rho_{2}^{2}(\eta)$ и $\rho_{2}^{2}(\xi)$ — в (2.3.20), σ_{η}^{2} — в (2.3.22) и σ_{ξ}^{2} — в (2.3.23).

Доказательство. Докажем ЦПТ для $\chi_n^2(\eta)$ и вычислим предельную дисперсию σ_η^2 . Доказательство для $\chi_n^2(\xi)$ и вычисление σ_ξ^2 аналогичны. Рассмотрим отображение $g: \mathbb{R}^S \to \mathbb{R}$ такое, что

$$g(x_1, \dots, x_S) = \sum_{k=1}^{S} (x_k - 1/S)^2.$$
 (2.3.24)

Очевидно, отображение g является дифференцируемым в любой точке, причем

$$g(\mathbf{p}) = \rho_2^2(\eta), \quad g\left(\frac{\tau_n^{(\eta)}}{n}\right) = \frac{\chi_n^2(\eta)}{Sn}.$$

По теореме о сохранении асимптотической нормальности при гладком отображении из сходимости в Теореме 2.3.2 следует следующая сходимость

$$\mathcal{L}\left(\sqrt{n}\left(\frac{\chi_n^2(\eta)}{Sn} - \rho_2^2(\eta)\right)\right) \Rightarrow \mathcal{N}\left(0, \nabla_g^{\mathrm{T}}\left(\mathbf{p}^{(\infty)}\right) \Sigma_{\eta} \nabla_g\left(\mathbf{p}^{(\infty)}\right)\right).$$

Осталось вычислить асимптотическую дисперсию. Ясно, что $g'_{x_k}=2(x_k-1/S)$ для любого $k\in\mathbb{S}.$

$$\nabla_g^{\mathrm{T}}(\mathbf{s}) \Sigma_{\eta} \nabla_g(\mathbf{s}) = 4 \sum_{k,\ell} (\Sigma_{\eta})_{k,\ell} \left(p_k^{(\infty)} - 1/S \right) \left(p_\ell^{(\infty)} - 1/S \right).$$

По (2.3.9) для всех $k, \ell \in \mathbb{S}$

$$(\Sigma_{\eta})_{k,\ell} = a_{k,\ell}^{(\eta)} + b_{k,\ell}^{(\eta)} + b_{\ell,k}^{(\eta)}.$$

Отдельно рассмотрим две суммы:

$$\sum_{k,\ell} a_{k,\ell}^{(\eta)} \left(p_k^{(\infty)} - 1/S \right) \left(p_\ell^{(\infty)} - 1/S \right), \quad \sum_{k,\ell} \left(b_{k,\ell}^{(\eta)} + b_{\ell,k}^{(\eta)} \right) \left(p_k^{(\infty)} - 1/S \right) \left(p_\ell^{(\infty)} - 1/S \right).$$

Вторая из этих сумм не поддается упрощению, поэтому сосредоточим внимание на первой сумме.

$$\sum_{k,\ell} a_{k,\ell}^{(\eta)} \left(p_k^{(\infty)} - 1/S \right) \left(p_\ell^{(\infty)} - 1/S \right) =$$

$$= \sum_{k=1}^S p_k^{(\infty)} \left(1 - p_k^{(\infty)} \right) \left(p_k^{(\infty)} - 1/S \right) \left(p_\ell^{(\infty)} - 1/S \right) -$$

$$- \sum_{k \neq \ell} p_k^{(\infty)} p_\ell^{(\infty)} \left(p_k^{(\infty)} - 1/S \right) \left(p_\ell^{(\infty)} - 1/S \right) =$$

$$= \sum_{k=1}^S p_k^{(\infty)} \left(p_k^{(\infty)} - 1/S \right)^2 - \left(\sum_{k=1}^S p_k^{(\infty)} \left(p_k^{(\infty)} - 1/S \right) \right)^2.$$

Утверждение доказано.

Аналогично можно получить ЦПТ и для статистик других критериев.

2.4. Сравнение предельных распределений входной и выходной последовательностей

Цель данного раздела заключается в сравнении при различных предположених предельных распределений «входной» последовательности $\{\eta_i\}_{i\geqslant 1}$ и «выходной» — $\{\xi_i\}_{i\geqslant 1}$, введенной в (1.1.2). Предельные распределения «входной» и «выходной» последовательностей будем обозначать $\mathcal P$ и $\mathcal R$ соответственно. Мы предполагаем, что вектор Ξ_0 и «входная» последовательность $\{\eta_i\}_{i\geqslant 1}$ независимы.

Сравнение распределений для произвольных «Book Stack»-подобных преобразований представляется достаточно затруднительным, поэтому мы сосредоточимся на стандартном «Book Stack»-преобразовании, введенном в разделе 1.2.

Во Введении обсуждалась корректность «Book Stack»-теста, а также сравнение предельных распределений «входной» и «выходной» последовательностей, в случае если последовательность $\{\eta_i\}_{i\geqslant 1}$ является набором независимых и одинаково, но не равномерно распределенных на $\mathbb S$ случайных величин.

Возникает естественный вопрос о сравнении предельных распределений в случае, если «входная» последовательность образует ЭОМЦ. Мы будем рассматривать частный случай, когда «входная» последовательность образует ЭОМЦ со стационарным равномерным распределением. Матрица переходных вероятностей ЭОМЦ $\{\eta_i\}_{i\geqslant 1}$ обозначается $\mathbf{P}^{(\eta)}$.

Теорема 2.4.1. Пусть «входная» последовательность $\{\eta_i\}_{i\geqslant 1}$ — ЭОМЦ с $\mathcal{P}=\mathrm{U}_S$. Тогда предельная вероятность s_1 , введенная в (2.2.4), имеет вид

$$s_1 = \operatorname{tr}\left(\mathbf{P}^{(\eta)}\right)/S.$$

Доказательство. Так как f — стандартное «Book Stack»-преобразование, то α_1 — единственный элемент множества \mathcal{C}^S_{α} , введенного в (1.1.5), для всех перестановок $\alpha \in \mathfrak{S}_S$. Поэтому

$$s_{1} = \sum_{r=1}^{S} \sum_{\alpha_{1}=r} \pi_{\alpha} p_{\alpha_{1}r} = \sum_{r=1}^{S} \sum_{\alpha_{1}=r} \pi_{\alpha} p_{rr} = \sum_{r=1}^{S} p_{rr} \sum_{\alpha_{1}=r} \pi_{\alpha}.$$

Заметим, что для любого $i\geqslant 1$ в стационарной ситуации, т.е. если $\mathcal{L}(\eta_i)=\mathcal{P}=\mathrm{U}_S$ и $\mathcal{L}(\Xi_0)$ совпадает со стационарным распределением ОМЦ $\{\Xi_i\}_{i\geqslant 1},$

$$1/S = \mathbb{P}(\eta_i = r) = \sum_{\substack{\alpha \in \mathfrak{S}_S \\ \alpha_1 = r}} \mathbb{P}(\Xi_i = \alpha) = \sum_{\alpha_1 = r} \pi_{\alpha}.$$

Следовательно, $s_1 = \operatorname{tr}\left(\mathbf{P}^{(\eta)}\right)/S$.

Следствие 2.4.1. Если $\operatorname{tr}\left(\mathbf{P}^{(\eta)}\right) \neq 1$, то $\mathcal{R} \neq \mathrm{U}_S$.

Обсудим полученный результат. Нам понадобится одно элементарное утверждение.

Пемма 2.4.1. Стационарное распределение μ некоторой ОМЦ с конечным фазовым пространством является равномерным тогда и только тогда, когда ее матрица переходных вероятностей **P** является бистохастической.

Доказательство. Утверждение очевидно, так как стационарное распределение ЭОМЦ является решением линейной системы $\mu \mathbf{P} = \mu$.

Пример 2.4.1. Зафиксируем число $\delta \in (0,1)$ и положим $p_{ii} = \delta \in (0,1)$ для всех $i \in 1: S$, а остальные $p_{ij} = (1-\delta)/(S-1)$. Согласно Теореме 2.4.1 $\mathcal{R} \neq U_S$ при $\delta \neq 1/S$. Однако, в этом Примере результат можно уточнить. Так как матрица $\mathbf{P}^{(\eta)}$ является бистохастической, стационарное распределение ОМЦ является равномерным на множестве \mathbb{S} при любом (фиксированном) δ . Заметим, что в таком случае матрица $\mathbf{P}^{(\Xi)}$, определенная в (2.1.2), тоже является бистохастической. Действительно, в каждом ее столбце ровно S ненулевых элементов, среди которых один равен δ , а остальные по $(1-\delta)/(S-1)$. Следовательно, по Лемме 2.4.1 стационарное распределение ОМЦ $\{\Xi_i\}_{i\geqslant 1}$ является равномерным на множестве \mathfrak{S}_S . Далее легко проверить, что формула (2.2.4) принимает вид

$$s_j = \mathbb{P}(\xi_i = j) = \begin{cases} \delta & \text{при } j = 1, \\ (1 - \delta)/(S - 1) & \text{иначе.} \end{cases}$$
 (2.4.1)

Пример 2.4.2. Приведем пример, демонстрирующий, что условие $s_1 = 1/S$ не влечет равенство $\mathcal{R} = U_S$. Пусть S = 3 и

$$\mathbf{P}^{(\eta)} = \frac{1}{15} \begin{pmatrix} 8 & 1 & 6 \\ 3 & 5 & 7 \\ 4 & 9 & 2 \end{pmatrix}.$$

Так как матрица бистохастическая, то по Лемме 2.4.1 $\mathcal{P} = U_S$. По Теореме 2.4.1 $s_1 = 1/S$. Однако, непосредственным вычислением можно показать, что $s_2 \neq 1/S$.

Пример 2.4.3. Покажем, что существует такая бистохастическая матрица $\mathbf{P}^{(\eta)}$, не все компоненты которой равны 1/S, что ОМЦ $\{\eta_i\}_{i\geqslant 1}$ — эргодическая и $\mathcal{P}=\mathcal{R}=\mathrm{U}_S$. Возьмем S=3 и

$$\mathbf{P}^{(\eta)} = \frac{1}{6} \begin{pmatrix} 4 & 0 & 2 \\ 2 & 1 & 3 \\ 0 & 5 & 1 \end{pmatrix}.$$

Так же, как и в предыдущем примере, $\mathcal{P} = U_S$, а также $s_1 = 1/S$. На самом деле непосредственным вычислением можно показать, что и $s_2 = 1/S$.

Таким образом, для «входных» ЭОМЦ с матрицей переходных вероятностей, след которой не равен 1, и стационарным равномерным распределением предельное распределение «выходной» последовательности не является равномерным. Однако, если след соответствующей матрицы равен 1, неравномерность предельного распределения «выходной» последовательности не является обязательной. Эти соображения позволяют в следующем разделе исследовать статистические свойства теста «Book Stack».

2.5. Статистические приложения

Во Введении было дано формальное описание «Book Stack»-теста. Напомним, что проверяется гипотеза \mathbb{H}_0 , заключающаяся в том, что «входная» последовательность $\{\eta_i\}_{i\geqslant 1}$ является последовательностью независимых случайных величин с равномерным на \mathbb{S} распределением. Проверка осуществляется с помощью стандартного критерия χ^2 . Суть теста состоит в том, что критерий χ^2 применяется не к исходным случайным величинам $\{\eta_i\}_{i\geqslant 1}$, а к преобразованным $\{\xi_i\}_{i\geqslant 1}$ с той же степенью свободы.

В [20] и [21] исследовалась альтернативная гипотеза, заключающаяся в том, что «входная» последовательность $\{\eta_i\}_{i\geqslant 1}$ является набором независимых и одинаково, но неравномерно распределенных случайных величин. Для критерия χ^2 (а в [21] и для некоторых других критериев) было показано, что мощность при применении к «входному» потоку, как правило, оказывается асимптотически больше, чем при применении к «выходному» потоку. Более того, в [21] было показано, что для критерия отношения правдоподобия, мощность при применении к «входному» потоку всегда асимптотически строго больше, чем при применении к «входному» потоку. В связи с этим применение «Воок Stack»-теста против такой альтернативы вряд ли является перспективным.

Как уже упоминалось во Введении, в [20, Пример 2.7.5] в результате анализа вычислительного эксперимента было выдвинуто предположение о возможной перспективности изучения альтернатив, связанных с зависимыми $\{\eta_i\}_{i\geqslant 1}$. Теоретические результаты, полученные в данной работе, позволили подвердить это предположение.

Итак, рассмотрим альтернативную гипотезу \mathbb{H}_1 , заключающуюся в том, что «входная» последовательность $\{\eta_i\}_{i\geqslant 1}$ является эргодической однородной марковской цепью

с фазовым пространством \mathbb{S} , стационарным равномерным распределением и матрицей переходных вероятностей $\mathbf{P}^{(\eta)}$, след которой отличен от 1. Оказывается, что против такой альтернативы критерий χ^2 , примененный ко «входному» потоку, является несостоятельным, в то время как такой же критерий, примененный к «выходному» потоку, — состоятельный.

Начнем с результата, касающегося предельного распределения статистики $\chi_n^2(\eta)$, введенной в (2.3.21). Доказательство можно найти в [27].

Теорема 2.5.1. Пусть «входная» последовательность $\{\eta_i\}_{i\geqslant 1}$ является стационарной $\mathcal{O}OM$ Д со стационарным равномерным распределением. Обозначим Σ_{η} — предельную ковариационную матрицу для $\{\eta_i\}_{i\geqslant 1}$ (см. (2.3.9), в качестве стационарного распределения цепи выбрано равномерное). Обозначим $\{\mu_i\}_{i=1}^k$ — ненулевые собственные числа матрицы $S\Sigma_{\eta}$, где $k\leqslant S-1$. Тогда при $n\to\infty$

$$\mathcal{L}\left(\chi_n^2(\eta)\right) \Rightarrow \mathcal{L}\left(\sum_{i=1}^k \mu_i \zeta_i^2\right),$$

еде $\{\zeta_i\}_{i=1}^k$ — набор независимых стандартных нормальных случайных величин.

Замечание 2.5.1. 1. Доказательство теоремы основывается на ЦПТ 2.3.1, которая в рассматриваемых условиях не предполагает стационарности цепи, поэтому это условие в Теореме 2.5.1 можно опустить.

2. Если «входная» последовательность $\{\eta_i\}_{i\geqslant 1}$ является набором независимых и одинаково распределенных случайных величин, то k=S-1 и $\mu_i=1$ для всех $i\in 1$: (S-1), поэтому результат становится стандартным:

$$\mathcal{L}\left(\chi_n^2(\eta)\right) \Rightarrow \chi^2(S-1).$$

Наконец, мы готовы сформулировать общее утверждение о свойствах теста «Book Stack» против рассматриваемой альтернативы.

Теорема 2.5.2. Критерии χ^2 для проверки \mathbb{H}_0 против альтернативы \mathbb{H}_1 , состоящей в том, что «входная» последовательность $\{\eta_i\}_{i\geqslant 1}$ образует ЭОМЦ со стационарным равномерным распределением и матрицей переходных вероятностей, имеющей след отличный от 1, обладают следующими свойствами:

- 1. При применении к «входному» потоку $\{\eta_i\}_{i\geqslant 1}$ критерий несостоятельный.
- 2. При применении к «выходному» потоку $\{\xi_i\}_{i\geqslant 1}$ критерий состоятельный.

Доказательство. 1. Следует из Теоремы 2.5.1. Действительно, из этой Теоремы следует, что $\chi_n^2(\eta) \not\to \infty$, где $\chi_n^2(\eta)$ введено в (2.3.21). А, значит, мощность критерия не стремится по вероятности к 1.

2. Как уже отмечалось, из Теоремы 2.2.1 следует, что при $n \to \infty$

$$\frac{\chi_n^2(\xi)}{Sn} \stackrel{\mathbb{P}}{\to} \rho_2^2(\xi),$$

где $\chi_n^2(\xi)$ введено в (2.3.21), а $\rho_2^2(\xi)$ — в (2.3.20). По Следствию 2.4.1 $\rho_2^2(\xi) \neq 0$. Следовательно, $\chi_n^2(\xi) \stackrel{\mathbb{P}}{\to} \infty$.

Замечание 2.5.2. Обсудим результат доказанной Теоремы. Пункт 1 верен и без предположения, что $\operatorname{tr}\left(\mathbf{P}^{(\eta)}\right) \neq 1$. Второй же пункт без такого предположения выполняться не обязан. Если окажется, как в Примере 2.4.3, что предельные распределение «выходного» потока является равномерным, причем у матрицы $\mathbf{P}^{(\eta)}$ не все элементы равны 1/S, то критерий χ^2 , примененный к $\{\xi_i\}_{i\geqslant 1}$ не обязан быть состоятельным. Действительно, в таком случае $\rho_2^2(\xi) = 0$ и, вообще говоря, нельзя сделать вывод, что $\chi_n^2(\xi) \stackrel{\mathbb{P}}{\to} \infty$ при $n \to \infty$.

Продемонстрируем результат Теоремы 2.5.2 с помощью моделирования.

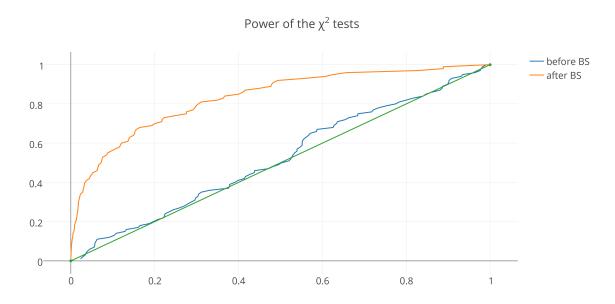


Рис. 2.1. Эмпирические оценки мощности одномерных критериев χ^2 с S-1 степенью свободы до/после «Book Stack». Иллюстрация к Примерам 2.4.1 и 2.5.1. Для критерия χ^2 «до» преобразования P-значение критерия Колмогорова при сравнении с равномерным распределением равно 0.48, «после» — меньше, чем $2.2 \cdot 10^{-16}$.

Пример 2.5.1. Рассмотрим модель из Примера 2.4.1. Пусть начальное распределение цепи $\{\eta_i\}_{i\geqslant 1}$ является равномерным. Будем сравнивать критерий χ^2 с S-1 степенью свободы для проверки нулевой гипотезы, примененный к «входной» последовательности $\{\eta_i\}_{i\geqslant 1}$ и такой же критерий, примененный к «выходной» последовательности $\{\xi_i\}_{i\geqslant 1}$. Промоделируем m повторных независимых выборок объема n из ОМЦ с матрицей переходных вероятностей $\mathbf{P}^{(\eta)}$. В результате получаем m P-значений, график эмпирической функции распределений которых есть график (приближенной) зависимости мощности критерия от его уровня. Результаты моделирования с $S=3, n=10^4, m=100$ и $\delta=1/S+0.01$ представлены на рисунке 2.1. На этом рисунке видно, что более мощным оказался критерий χ^2 , примененный к «выходному» потоку $\{\xi_i\}_{i\geqslant 1}$.

Пример 2.5.2. Рассмотрим модель из Примера 2.4.2 и пусть начальное распределение цепи $\{\eta_i\}_{i\geqslant 1}$ является равномерным. Моделирование проводится точно так же, как в Примере 2.5.1. Результаты моделирования с $S=3, n=10^3, m=100$ представлены на рисунке 2.2. Выводы те же, что и в Примере 2.5.1.

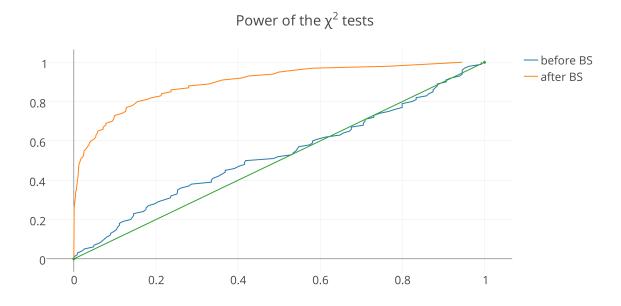


Рис. 2.2. Эмпирические оценки мощности одномерных критериев χ^2 с S-1 степенью свободы до/после «Book Stack». Иллюстрация к Примерам 2.4.2 и 2.5.2. Для критерия χ^2 «до» преобразования P-значение критерия Колмогорова при сравнении с равномерным распределением равно 0.256, «после» — меньше, чем $2.2 \cdot 10^{-16}$.

Пример 2.5.3. Рассмотрим модель из Примера 2.4.3 и пусть начальное распределение цепи $\{\eta_i\}_{i\geqslant 1}$ является равномерным. Моделирование проводится точно так же, как в

Примере 2.5.1. Результаты моделирования с $S=3,\ n=10^3,\ m=100$ представлены на рисунке 2.3. Выводы те же, что и в Примерах 2.5.1 и 2.5.2. Заметим, что согласно Замечанию 2.5.2 критерий, примененный к «выходному» потоку, не обязан быть состоятельным.

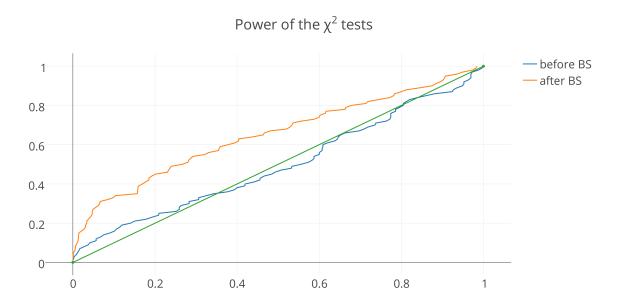


Рис. 2.3. Эмпирические оценки мощности одномерных критериев χ^2 с S-1 степенью свободы до/после «Book Stack». Иллюстрация к Примерам 2.4.3 и 2.5.3. Для критерия χ^2 «до» преобразования P-значение критерия Колмогорова при сравнении с равномерным распределением равно 0.64, «после» — $5.1 \cdot 10^{-6}$.

Теорема 2.5.2 позволяет сделать вывод о перспективности дальнейшего исследования свойств «Book Stack»-теста против альтернативы \mathbb{H}_1 , а также других альтернатив, связанных с зависимыми $\{\eta_i\}_{i\geqslant 1}$.

Глава 3

«Order»-преобразование и «Order»-тест

3.1. Описание преобразования

Приведем сначала неформальное описание «Order»-преобразования, лежащего в основе одноименного теста. Рассмотрим целое S>1 и множество $\mathbb{S} \stackrel{\mathrm{def}}{=} \{1,2,\ldots,S\}$. Из этого множества некоторым образом последовательно выбираются n чисел $\eta_1,\eta_2\ldots,\eta_n$ (возможно, с повторениями). На i-м шаге (для всех $i\in 1:n$) вычисляется набор частот (без нормировки) $\Xi_1,\ldots\Xi_S$ для первых выбранных i-1 чисел. Само преобразование заключается в том, что для очередного выбранного числа η_i вычисляется номер ξ_i его частоты в упорядоченном по невозрастанию списке всех частот (при совпадающих частотах выбирается минимальный из их номеров). Таким образом, если обозначить упорядоченный по невозрастанию набор частот $\Theta_1,\ldots\Theta_S$, то ξ_i — минимальный такой номер, что $\Theta_{\xi_i}=\Xi_{\eta_i}$. Далее происходит обновление массива частот с учетом η_i и процедура повторяется с заменой η_i на η_{i+1} . Результат n-кратного «Order»-преобразования — это «выходная» последовательность $\xi_1,\ldots\xi_n$, которая определяется «входной» последовательностью η_1,\ldots,η_n .

Сформулируем общее алгоритмическое описание «Order»-процедуры.

Общее алгоритмическое описание «Order» процедуры

Входные данные: $n, S, (\eta_1, \eta_2 \dots, \eta_n)$. Результат: $(\xi_1, \xi_2 \dots, \xi_n)$.

- **1.** (Инициализация массива частот) $(\Xi_1, \ldots, \Xi_S) \leftarrow (0, 0, \ldots, 0)$.
- **2.** (Цикл по шагам Order преобразования) For i = 1 to n do
 - (Инициализация) $j \leftarrow 1$;
 - (Сортировка массива частот) $(\Theta_1, \ldots, \Theta_S) \leftarrow \text{Sort}(\Xi_1, \ldots, \Xi_S);$
 - (Вычисление ξ_i) While $(\Theta_j \neq \Xi_{\eta_i})$ do $(j \leftarrow j+1); \xi_i \leftarrow j;$
 - (Обновление массива частот) $\Xi_{\eta_i} \leftarrow \Xi_{\eta_i} + 1$.
- **2.** (Завершение работы) STOP.

Дадим формальное описание Order-преобразования в удобных для дальнейшего терминах. Пусть $\mathbb{N}_0 = \mathbb{N} \cup \{0\}$. Введем последовательность векторов $\{\Xi^{(i)} \in \mathbb{N}_0^S\}_{i\geqslant 0}$ так, что для $i\geqslant 1$ и всех $j\in \mathbb{S}$

$$\Xi^{(i)} = \left(\Xi_1^{(i)}, \Xi_2^{(i)}, \dots, \Xi_S^{(i)}\right)^{\mathrm{T}}, \quad \Xi_j^{(i)} = \sum_{k=1}^i \mathbb{1}(\eta_k = j), \tag{3.1.1}$$

а $\Xi^{(0)}$ — нулевой вектор. Ясно, что для каждого $i\geqslant 1$ компоненты вектора $\Xi^{(i)}$ — это частоты значений последовательности случайных величин η_1,\dots,η_i .

Введем последовательность векторов

$$\{\Theta^{(i)} \in \mathbb{N}_0^S\}_{i \geqslant 0} \tag{3.1.2}$$

так, что для $i\geqslant 0$ компоненты вектора $\Theta^{(i)}$ являются упорядоченными по невозрастанию компонентами вектора $\Xi^{(i)}$.

Наконец, определим последовательность $\{\xi_i\}_{i\geqslant 1}$, где $\xi_i\in\mathbb{S}$ задается следующим образом

$$\xi_i = \min \left\{ k \in \mathbb{S} \mid \Theta^{(i-1)}[k] = \Xi^{(i-1)}[\eta_i] \right\}. \tag{3.1.3}$$

Заметим, что ξ_i существует (и единственно) для любого $i \geqslant 1$.

Связь между $\{\Theta^{(i)}\}$ и $\{\xi_i\}$ раскрывает следующее утверждение.

Лемма 3.1.1. Для всех $i \geqslant 1$ и любого $j \in \mathbb{S}$

$$\Theta_j^{(i)} = \sum_{k=1}^i \mathbb{1}(\xi_k = j).$$

Доказательство. Доказательство ведем индукцией по i. База индукции при i=1 очевидна, поскольку $\Theta^{(1)}=(1,0,0,\dots,0)^{\mathrm{T}}$. При этом, конечно, $\xi_1=1$. Пусть теперь утверждение верно для i. По определению последовательности $\Xi^{(i)}$ для всех $i\geqslant 0$ и каждого $k\in\mathbb{S}$

$$\Xi_k^{(i+1)} = \Xi_k^{(i)} + \mathbb{1} (k = \eta_{i+1}).$$

Из этого и определения ξ_i легко заметить, что для всех $i\geqslant 0$ и каждого $k\in\mathbb{S}$

$$\Theta_k^{(i+1)} = \Theta_k^{(i)} + \mathbb{1} (k = \xi_{i+1}),$$

откуда следует доказываемое утверждение.

Таким образом, $\Theta^{(i)}$ образует вектор частот последовательности ξ_1, \dots, ξ_i .

3.2. Свойства «Order»-теста

Во введении было дано формальное описание «Order» теста. Напомним, что проверяется гипотеза \mathbb{H}_0 , заключающаяся в том, что «входная» последовательность $\{\eta_i\}_{i\geqslant 1}$ является последовательностью независимых случайных величин, причем $\mathbb{P}(\eta_i=k)=1/S$ при $1\leqslant k\leqslant S$. Проверка осуществляется с помощью стандартного критерия χ^2 . Суть теста состоит в том, что критерий χ^2 применяется не к исходным случайным величинам $\{\eta_i\}_{i\geqslant 1}$, а к преобразованным $\{\xi_i\}_{i\geqslant 1}$ с той же степенью свободы.

Лемма 3.1.1 позволяет сформулировать следующий результат про «Order»-тест.

Предложение 3.2.1. Рассмотрим некоторую функцию $t_n : \mathbb{S}^n \to \mathbb{R}$. Предположим, что значение t_n в точке $(x_1, x_2, \dots, x_n)^{\mathrm{T}}$ определяется лишь частотами $\sum_{i=1}^n \mathbb{I}_k(x_i)$ для всех $k \in \mathbb{S}$ и инвариантно относительно перестановки этих частот. Тогда

$$t_n(\eta_1,\ldots,\eta_n)=t_n(\xi_1,\ldots,\xi_n),$$

 $r \partial e \xi_i$ введено в (3.1.3).

Доказательство. Следует из Леммы 3.1.1 и определения векторов $\Xi^{(i)}$, введенных в (3.1.1), и $\Theta^{(i)}$, введенных в (3.1.2).

Следствие 3.2.1. Утверждение Предложения 3.2.1 верно, в частности, для статистики критерия χ^2 .

3.3. Связь между предельными свойствами входной и выходной последовательностей

Лемма 3.1.1 позволяет сформулировать следующий результат про связь предельных распределений частот последовательностей η_n и ξ_n . Отметим, что никаких предварительных предположений о совместном распределении $\{\eta_i\}_{i\geqslant 1}$ не делается.

Теорема 3.3.1. Рассмотрим некоторое распределение $\mathcal{P} = \{p_k\}_{k=1}^S$ на множестве \mathbb{S} . Обозначим $\{p_{[i]}\}$ — набор $\{p_i\}$ после упорядочивания по неубыванию: $p_{[1]} \geqslant p_{[2]} \ldots \geqslant p_{[S]}$. Предположим, что

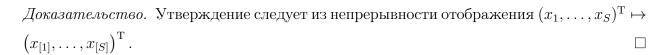
$$\frac{\Xi_n[k]}{n} \stackrel{\mathbb{P}}{\to} p_k$$

для всех $k \in \mathbb{S}$, где Ξ_i введено в (3.1.1).

Tог ∂a

$$\frac{\Theta_n[k]}{n} \stackrel{\mathbb{P}}{\to} p_{[k]}$$

для всех $k \in \mathbb{S}$, где Θ_i введено в (3.1.2).



Следствие 3.3.1. Для выполнения утверждения Теоремы 3.3.1 достаточно, чтобы случайные величины $\{\eta_n\}_{n\geqslant 1}$ образовывали однородную марковскую цепь с одним эргодическим классом и, может быть, несколькими несущественными состояниями.

Замечание 3.3.1. Конечно, для выполнения утверждения Теоремы 3.3.1, в частности, достаточно, чтобы случайные величины $\{\eta_n\}_{n\geqslant 1}$ являлись независимыми и одинаково распределенными с распределением $\mathcal{P}=\{p_k\}_{k=1}^S$.

Смысл Предложения 3.2.1 и Теоремы 3.3.1 заключается в том, что совершенно безразлично, применять статистический критерий для проверки гипотезы \mathbb{H}_0 к «входной» последовательности случайных величин η_1, \ldots, η_n или же к «выходной» — ξ_1, \ldots, ξ_n . В связи с этим применение «Order»-теста вряд ли является целесообразным.

Заключение

В работе рассмотрены статистические тесты «Book Stack» и «Order» для проверки нулевой гипотезы о независимости и равномерной распределенности некоторого набора дискретных случайных величин, имеющих одинаковый носитель. В основе этих тестов лежат соответственно «Book Stack»- и «Order»-преобразования. На вход преобразованиям подается набор дискретных случайных величин $\{\eta_i\}_{i\geqslant 1}$, принимающих значения на множестве $\{1,2,\ldots,S\}$. Результатом применения преобразований является набор дискретных случайных величин $\{\xi_i\}_{i\geqslant 1}$. Нулевая гипотеза заключается в проверке независимости и равномерной распределенности набора дискретных случайных величин $\{\eta_i\}_{i\geqslant 1}$. Согласно описанию тестов, основанных на преобразованиях, критерий χ^2 применяется не к исходному набору $\{\eta_i\}_{i\geqslant 1}$, а к $\{\xi_i\}_{i\geqslant 1}$.

В работе теоретически показано, что при выборе альтернативной гипотезы, заключающейся в том, что входная последовательность $\{\eta_i\}_{i\geqslant 1}$ образует эргодическую однородную марковскую цепь, выходная последовательность, полученная с помощью «Book Stack»-преобразования, $\{\xi_i\}_{i\geqslant 1}$ тоже имеет некоторое стационарное распределение, сходимость к которому обеспечена Законом Больших Чисел. Более того, показано, что в таких предположениях выполняется и Центральная Предельная Теорема для частот.

В работе получено обобщение «Book Stack» преобразования. Для такого обобщения те же теоретико-вероятностные результаты получены в предположении положительности всех вероятностей перехода «входной» однородной марковской цепи $\{\eta_i\}_{i\geqslant 1}$.

Для стандартного «Book Stack» преобразования в рамках той же альтернативы произведено сравнение предельных распределений «входной» и «выходной» последовательности. Показано, что в случае, если стационарное распределение «входной» ЭОМЦ является равномерным, то для очень широкого класса входных ЭОМЦ стационарное распределение «выходной» последовательности будет отличным от равномерного.

Именно поэтому при выборе в качестве альтернативной гипотезы, состоящей в том, что «входные» случайные величины $\{\eta_i\}_{i\geqslant 1}$ образуют эргодическую однородную марковскую цепь со стационарным равномерным распределением и матрицей переходных вероятностей, след которой отличен от 1, применение «Book Stack»-теста оказывается оправданным. Более того, применение этого теста может быть целесообразно и в рамках других альтернатив, связанных с зависимостью $\{\eta_i\}_{i\geqslant 1}$.

В работе также теоретически показано, что для «Order»-преобразования статистики любого статистического критерия для проверки гипотезы \mathbb{H}_0 , которые определяются только частотами выборки и инвариантны относительно их перестановок, посчитанные по «входной» последовательности $\{\eta_i\}_{i=1}^n$ и «выходной» $\{\xi_i\}_{i=1}^n$ совпадают. Именно поэтому применение «Order»-теста вряд ли является целесообразным.

Таким образом, наиболее продуктивным представляется дальнейшее изучение поведения «Book Stack»-теста (и различных его обобщений) против различных альтернатив, связанных с зависимостью «входной» последовательности $\{\eta_i\}_{i\geqslant 1}$.

Список литературы

- Rukhin A., Solo J., Nechvatal J. et al. A Statistical Test Suite for Random and Pseudorandom Number Generators for Cryptographic Applications. — National Institute of Standards and Technology, 2010.
- 2. Marsaglia G. Diehard battery of tests of randomness. 1995.
- 3. L'Ecuyer P., Simard R. TestU01: A C Library for Empirical Testing of Random Number Generators // ACM Trans. Math. Softw. 2007. aug. Vol. 33, no. 4.
- 4. Ryabko B., Pestunov A. "Book stack" as a new statistical test for random numbers. // Probl. Inf. Transm. 2004. Vol. 40, no. 1. P. 66—71.
- 5. Рябко Б. Я. Сжатие информации с помощью стопки книг // Проблемы передачи информации. 1980. Т. 16. С. 16–21.
- 6. A Locally Adaptive Data Compression Scheme / Jon Louis Bentley, Daniel D. Sleator, Robert E. Tarjan, Victor K. Wei // Commun. ACM. 1986. apr. Vol. 29, no. 4.
- 7. Seward J. bzip2 and libbzip2, version 1.0.5: A program and library for datacompression, 2007. Accessed: 17.05.2017. URL: http://www.bzip.org/1.0.5/bzip2-manual-1.0.5.pdf.
- 8. Doroshenko S., Fionov A., Lubkin A. On ZK-crypt, Book Stack, and Statistical Tests // IACR Cryptology ePrint Archive. 2006.
- 9. Doroshenko S., Ryabko B. The experimental distinguishing attack on RC4. -2006.
- 10. Ryabko B. Y., Monarev V. A. Using information theory approach to randomness testing // Statistical Planning and Inference. 2005. Vol. 133. P. 95–110.
- 11. Монарев В. А., Рябко Б. Я. Экспериментальный анализ генераторов псевдослучайных чисел при помощи нового статистического теста // ЖВМ и МФ. 2004. Т. 44, № 5. С. 812–816.
- Ryabko B., Monarev V., Shokin Y. A new test for randomness and its application to some cryptographic problems // Statistical Planning and Inference. — 2004. — Vol. 123, no. 2. — P. 365–376.
- 13. Рябко Б. Я., Монарев В. А., Шохин Ю. И. Новый класс статистических тестов для случайных чисел и его применение в задачах криптографии. 2005. С. 211–220.
- 14. Рябко Б. Я., Пестунов А. И. «Стопка книг» как новый статистический тест для случайных чисел // Проблемы передачи иформации. 2004. Т. 40, № 1. С. 73–78.

- 15. Монарев В. А., Рябко Б. Я. Экспериментальный анализ генераторов псевдослучайных чисел при помощи нового статистического теста // Журнал вычислительной математики и математической физики. 2004. Vol. 44, no. 5. Р. 812–816.
- 16. L'Ecuyer P. Tables of linear congruential generators of different sizes and good lattice structure // Mathematics of Computation. 1999. Vol. 68. P. 249–260.
- 17. Кнут Д. Э. Искусство программирования. Издат. дом «Вилиамс», 2001. Т. 2. Получисленные алгоритмы. 832 с.
- Using Universal Coding Approach to Randomness Testing / Ed. by B. Ryabko,
 V. Monarev, Yu. Shokin. International Symposium on Information Theory, 2004.
- 19. Matsumoto M., Nishimura T. Mersenne twister: A 623-dimensionally equidistributed uniform pseudo-random number generator // ACM Trans. Model. Comput. Simul. 1998. jan. Vol. 8, no. 1. P. 3–30.
- 20. Бзикадзе А. В. Некоторые Свойства Статистического Теста Book Stack : Бакалаврская Выпускная Квалификационная Работа / А. В. Бзикадзе ; Санкт-Петербургский Государственный Университет. 2015.
- 21. Bzikadze A. V., Nekrutkin V. V. On some statistical properties of the "book stack" transformation // Vestnik St. Petersburg University: Mathematics. 2016. Vol. 49, no. 4. P. 305–312. URL: http://dx.doi.org/10.3103/S106345411604004X.
- 22. Ширяев А. Вероятность-1. Изд-во МЦНМО, 2011. ISBN: 9785940577522.
- 23. Сираждинов С., Форманов Ш. Предельные теоремы для сумм случайных векторов, связанных в цепь Маркова. Изд-во «Фан» Узбекской ССР, 1979.
- 24. Ширяев А. Вероятность-2. Изд-во МЦНМО, 2011.
- 25. Боровков А. Теория вероятностей. Изд-во «Наука», 1986.
- Кельберт М. Я., Сухов Ю. М. Вероятность и статистика в задачах. МЦНМО, 2009. — Т. 2, Марковские цепи как отправная точка теории случайных процессов и их приложения.
- 27. Tavare S., Altham P. Serial dependence of observations leading to contingency tables, and correctionts to chi-squared statistics // Biometrika. 1983. Vol. 70, no. 1. P. 139–44.