САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

Игнатова Маргарита Валерьевна

Минералогия марганцевых руд проявления Надэйяхинское, Пай-Хой

Магистерская диссертация

«К ЗАЩИТЕ»

Научный руководитель: д г.-м. н, проф. А. И. Брусницын

<u>« »</u> 2017

Заведующий кафедрой: к. г.-м. н, доцент А. А. Антонов

<u>«</u> » 2017

Санкт-Петербург 2017

оглавление

Введение	3
Глава 1. Геологическое положение проявления Надэйяхинское	5
1.1. Позиция в структурах региона	5
1. 2. Рудовмещающие толщи	8
1.3. Условия залегания марганценосных пород	11
1.4. Краткие выводы	12
Глава 2. Петрографическое описание пород проявления Надэйяхинское	13
2.1. Вмещающие породы	13
2.2. Марганцевые породы	14
2.3. Краткие выводы	18
Глава 3. Особенности химического состава пород проявления Надэйяхинское	19
3.1. Петрогенные элементы	20
3.3. Краткие выводы	23
Глава 4. Минералогия пород проявления Надэйяхинское	26
4.1. Минералогический состав пород	26
4.2. Характеристика минералов	29
Глава 5. Обсуждение результатов	50
Заключение	54
Литература	55
Приложения	58

введение

Проявление марганцевых пород Надэйяхинское расположено на югозападном Пай-Хое, в 150 км к северу от г. Воркута, в среднем течении реки Силова-яха. Проявление было открыло в 2010 году сотрудниками геологического факультета Санкт-Петербургского государственного университета (А.И.Брусницын, Е.В.Старикова).

Интерес к этому проявлению и актуальность данной работы обусловлены тем, что в пределах Уральского складчатого пояса подавляющее большинство месторождений приурочено вулканогенно-осадочным марганца к комплексам восточного, палеоокеанического сектора. Среди осадочных формаций западного, палеоконтинентального сектора, такие объекты редки, и поэтому каждый из них заслуживает внимания. Надэйяхинское является третьим на Пай-Хое проявлением марганцевых пород. Ранее здесь были изучены проявления Силоваяхинское и Надэйяхинское-2 (Старикова, 2011, 2012; Брусницын, Игнатова, 2014).

Цель данной работы – изучение минералогии марганцевых пород проявления Надэйяхинское.

Задачами исследований являлись:

1. Изучение геологических условий залегания марганцевых пород.

2. Диагностика главных, второстепенных и акцессорных минералов марганцевых пород.

3. Описание главных петрографических типов марганцевых пород.

4. Изучение особенностей морфологии, физических свойств и химического состава минералов.

5. Обобщение и генетическая интерпретация полученных данных.

Материалом для исследования служили 15 представительных образцов марганцевых пород, часть из которых была предоставлена научным руководителем, а часть отобрана автором работы на проявлении Надэйяхинское во время полевых работ в 2016 году.

В методы исследований включали в себя визуальную диагностику минералов, рентгенофазовый порошковый анализ, электронную микроскопию, рентгеноспектральный флюоресцентный анализ.

Предварительная визуальная диагностика проводилась как непосредственно на проявлении, так и на кафедре минералогии СПбГУ.

Рентгенофазовый порошковый анализ проводился в ресурсном центре СПбГУ «Рентгенодифракционные методы исследования» в Василеостровском учебно-научном комплексе. Исследования проводились на приборе Rigaku «MiniFlex II». Обработка

3

результатов съемки происходила при помощи программы PDXL с использованием базы данных «Powder Diffraction File» (PDF-2). Данные базы – 2011г.

Анализ с помощью электронной микроскопии проводился в ресурсных центрах СПбГУ «Микроскопии и микроанализа» на настольном растровом электронном микроскопе-микроанализаторе HITACHI TM 3000 (аналитики Брусницын А. И., Игнатова М. В.). В качестве исследуемого материала использовались аншлифы и прозрачные полированные шлифы с углеродным напылением.

Анализ химического состава пород был проведен в центральной химической лаборатории ВСЕГЕИ рентгеноспектральным флюоресцентным методом на спектрометре ARL–9800 (Швейцария) (аналитик Цимошенко Б.А.).

Автор хочет выразить благодарность за помощь в проведении работы Платоновой Н. В. за помощь в проведении рентгенофазового анализа, Янсон С. Ю. за помощь в проведении микрозондового анализа, Цимошенко Б.А. за проведение рентгеноспектрального флюоресцентнтного анализа, Стариковой Е. В. за консультации по особенностям проявления, Никитиной М. В. за подготовку материала для анализов, Савельеву С. О. за помощь в обработке данных, а также Легеньковой А. М. и сотрудникам АО «Северо-западное ПГО» за предоставленную возможность полевых исследований.

Работы проведены с использованием аналитических возможностей ресурсных центров СПбГУ «Рентгенодифракционные методы исследования», «Микроскопии и микроанализа».

ГЛАВА 1

ГЕОЛОГИЧЕСКОЕ ПОЛОЖЕНИЕ ПРОЯВЛЕНИЯ

1.1. Позиция в структурах региона

Проявление Надэйяхинское расположено в западной части Уральского складчатого пояса, на юго-востоке его северной оконечности - Пай-Хоя. В плане геодинамических реконструкций западный сегмент Урала представляет собой фрагменты пассивной палеоконтиненетальной окраины, сложенной палеозойскими осадочными породами.

В этих отложениях выделяются две структурно-формационные зоны – западная, Елецкая, представленная в основном карбонатными осадками мелководного шельфа, и восточная, Лемвинская, образованная карбонатно-кремнисто-глинистыми отложениями глубоководного шельфа и континентального склона. В современном эрозионном срезе эти структурно-формационные зоны участвуют в строении надвиговой структуры восточного падения: восточные глубоководные фаций надвинуты на западные мелководные карбонатные отложения. Таким образом, принято говорить о Лемвинских фациях Пайхойского аллохтона и Елецких фациях параавтохтона, который, в свою очередь, сместился к юго-западу. Лемвинские фации обнажаются в Пайхойском аллохтоне Пайхойского шарьяж-антиклинория, формирующего осевую часть Пайхойского кряжа. Шарьяж-антиклинорий ограничен с севера Северо-Пайхойским надвигом, с юга – Главным Пайхойским надвигом.

Марганцевая минерализация приурочена к глубоководным отложениям Лемвинской зоны (Старикова, Завилейский, 2010). Надэйяхинское проявление находится в северной части Кара-Силовской площади, которая является южным окончанием Пайхойского аллохтона, в среднем течении р. Силова-Яха в верховьях ручья Надэйяха, ее правого притока, рядом с его устьем. Исследователями (Старикова, 2014) здесь был выделен участок Нижнесиловский-2, включающий группу рудопроявлений бассейна р. Силова-Яха, от ручья Мадахаяха на юго-западе до ручья Надеяха на северо-востоке. Эта территория имеет очень сложное складчато-надвиговое строение из-за своего положения в районе замыкания осевой зоны Пайхойского шарьяж-антиклинория (рис. 1, 2).

район проявления Надэйяхинское.

(По Стариковой и др., 2010).

1 — недислоцированные платформенные осадки; 2 — коптогенные комплексы (К-Е) структур космического происхождения; 3–5 — дислоцированные комплексы уралид: 3 — орогенные флишевые и молассовые формации (Р-Т), 4 глубоководные комплексы (€₃-С) континентального склона и подножья (Лемвинская СФЗ), 5 — шельфовые терригенно-карбонатные комплексы (О-С) (Елецкая СФЗ); 6 — вулканогенные и осадочные комплексы (R₃-V) активной континентальной окраины (байкалиды); 7 — Байдарацкая сутура; 8 — Нижнесиловский район.

Главные структуры: І – Восточно-Европейская платформа (Печорская синеклиза); ІІ–ІІІ – Уральская складчатая система: ІІ – Вайгачско-Пайхойский шарьяж-антиклинорий Новоземельско-Пайхойской складчато-надвиговой области (ІІ₁ – Пайхойский аллохтон, ІІ₂ – Вайгачско-Пайхойский карбонатный параавтохтон), ІІІ – Западно-Уральская структурная зона (ІІІ₁ – Байдарацкий аллохтон, ІІІ₂ – Верхнекарский автохтон); ІV – Предуральский краевой прогиб (ІV₁ – Карская впадина, IV₂ – Коротаихинская впадина, IV₃ – поднятие Чернова); V – структуры космического происхождения (Карская (V₁) и Усть-Карская (V₂) астроблемы).

Региональные надвиги: ГПН – Главный Пайхойский, СПН – Северо-Пайхойский, ЮПН – Южно-Пайхойский, ГЗУН – Главный Западно-Уральский, ФН – Фронтальный.

1. 2. Рудовмещающие толщи

Породы Надэйяхинского проявления относятся к марганценосной формации фаменского яруса верхнего девона.

Фаменская марганценосная формация выделяется на границе громашорской (D_3gr) и силоваяхинской (D_3 - C_1sl) свит (рис. 3). Мощность формации составляет 35-50 м, протяженность свыше 100 км. Громашорская свита сложена преимущественно кремнистыми и глинисто-карбонатно-кремнистыми сланцами с прослоями силицитов, фтанитов, известняков. Ее примерная мощность составляет 250 м. Силоваяхинская свита представлена ритмичным переслаиванием фтанитов, черных сланцев, силицитов и кремнистых, углеродисто-кремнистых известняков. Мощность пород около 200 м. На границе выделяется рудовмещающий горизонт кремнистых пород мощностью от 4 до 18-20 м, представленных красноцветными полосчатыми либо массивными яшмами с прослоями кремнистых известняков и карбонатно-кремнистых сланцев. Предыдущими исследователями (Старикова, Завилейский, 2010) в качестве одного из характерных признаков яшм отмечались повышенные концентрации в них марганца и железа (до 7 и 15 масс. % MnO и Fe₂O₃ соответственно). Однако, минеральные формы накопления металлов не были установлены. Согласно утверждениям исследователей (Старикова, 2014), эти отложения осаждались в условиях континентального подножия.

На Надэйяхинском проявлении рудовмещающими являются карбонатнокремнистые отложения громашорской свиты (Рис. 5). На участке они представлены серыми мусковит-кварцевыми и карбонатно-кварцевыми сланцами коричневато-черного цвета с пиритовой вкрапленностью. Важно отметить, что в разрезе осадочной толщи проявление расположено примерно на 200 м стратиграфически ниже всех других марганцевых проявлений Пай-Хоя. До сих пор на этом стратиграфическом уровне марганценосные отложения на Пай-Хое не были известны.

	_						_					
система	orgen	ярус	нолярус	конодонтовая зона	CBIITA	колонка	MOUTH	M	литологическая характеристка	палеонтологическая характеристка		
			верхн.	praesulcata expansa postera	Kan DC.sl		0	30-40	силициты и фтаниты с прослоями кремнистых известияков и кутнагоритовых руд	Siphonodella praesulcata Sand., Bispathodus stabilis (Br. et M.) Bispathodus stabilis (Br. et M.), Mashkovia tamarae Kon. et Paz. Palmatolepis perlobata postera Zieg		
				trachytera	RXHHC		00-2	15	силициты с прослоями кремнистых известняков	Polygnathus semicostatus Br. et M., Polygnathus semicostatus Br. et M.,		
					CILIOBAD		C4	15-20	кремнистые известняки с прослоями силицитов и кутнагоритовых руд	Palmatolepis marginifera marginifera Helms, Pa. marginifera granulosa Dr. Polygnathus perplexus Tomas	(
		юкий	cpennii					20-25	маркирующий горизонт яшмоилов с прослоями кремнистых ивестняков и кутнагоритовых руд	Palmatolepis marginifera Helms. Pa quadrantinodosa quadrantinodosa Zeig., Pa. distorta Br. et M.		
		pamer			Palmatolepis marginifera		11 × 11 × 11 ~ 11 × 11 × 11 × 11 × 11		15	глинисто-карбонатно- кремнистые сланцы	Palmatolepis quadrantinodosa Br. et M., Pa. ex gr. glabra Ulr. et M.	· ·
						$\begin{array}{cccccccccccccccccccccccccccccccccccc$		36	глинисто-карбонатные силициты и глинисто- кремнистые известняки	Palmatolepis stoppeli Sand B. et Zieg., Pa. inflexoidea Zeig., Pa. marginifera Helms., Pa. minuta minuta Br. et M.		
онская	рхний			Palmatolepis rhomboidea				24	переслаивание известня- ков, силицитов, глинис- то-кремнистных сланцев	Palmatolepis rhomboidea Sann., Pa glabra Zeig. et Huddle, Pa. glabra pectinata Zeig.		
JCH.	BC		IUMINUM	Palmatolepis crepida),gr		0	25	известняки, фтаниты, карбонатные силициты, глинисто-кремнистые сланцы	Palmatolepis quadrantinodosalobata Sann, Pa-subperlobata Br. et M., Pa- minuta subtilis Chal. et Tsch., Pa- minuta loba Helms		
			=	Palmatolepis triangularis	шорская Г		240-27	30	силициты с прослоями кремнистых известияков	Palmatolepis triangularis Sann., Pa. subperlobata Sann., Pa. delicatula delicatula Br. et Mehl, Pa. delicatula clarei Zeng., Polygnathus brevilaminus Br. et M.		
					powa				глинисто-кремнистые сланцы с прослоями	Palmatolepis triangularis Sann.		
		й	нерхний	Plinguiformis Palmatolepis gigas	-	$\begin{array}{c} \begin{array}{c} 1 \\ \hline \\ 1 \\ 1$	силицитов, фтанитов, линзами и конкрециями кремнистых известняков	Palmatolepis subrecta Mill, et Young., Pa. gigas Mill, et Young., Pa. Johacea Young., Pa. hassi Müll, et Müll.				
		ICKH				11 11 11 11		.25	силициты с линзами и конкрециями	Конодонты юны Palmatolepis gigas	-	
		nxde	nun	Anevroanathur				20	известняков	конодонты зоны Ancyrognathus triangularis		
		þ	-cbc	triangularis					фтаниты и углеродистые сланцы с редкими	Конодонты зоны Ancyrognathus triangularis		
			mui.	Mesotaxis				30-4	прослоями, линзами и конкрециями	Конодонты региональной зоны Polygnathus timanicus	5	
		HIDK	asymmetricas					кремнистых известняков	Конодонты зоны A. rotundiloba	:		

Рис.3. Стратиграфическая колонка карбонатно-кремнистого типа разреза громашорской

и нижней части силоваяхинской свиты

(Старикова Е. В., Журавлев А. В., 2013)

Рис. 4. Схема строения Надэйяхинского проявления

(составлено Стариковой Е. В., 2010)

1.3. Условия залегания марганценосных пород

На проявлении Надэйяхинское марганцевая минерализация обнаруживается в скальном выступе вдоль правого борта р. Силова-Яха высотой около 20 м и протяженностью 50 м (Рис. 4, 5). Минерализация прослеживается в нижней прибрежной части склона в коренном выходе пологозалегающей толщи до высоты около 2 м и протяженности около 10 м. Минерализация развита в виде небольших по мощности (20–40 см) и не выдержанных по простиранию прослоев и линз, согласно залегающих в сланцах (Рис. 6). Сланцы, в свою очередь, имеют наклонное залегание, а также иногда смяты в складки различного типа.

Рис. 5. Район проявления Надэйяхинское, среднее течение р. Силова-Яха. В правой нижней части кадра видно обнажение рудовмещающих карбонатнокварцевых сланцев громашорской свиты. Фото автора.

Рис. 6. Проявление Надэйяхинское. Белыми штрихами отмечены линзовидные выходы кварц-карбонатных марганцевых пород в антиклинальной складке. Фото автора.

1. 4. Краткие выводы

Район проявления Надэйяхинское приурочен к морским осадочным толщам пассивной континентальной окраины. Вмещающими являются глубоководные отложения Лемвинской структурно-формационной зоны. Непосредственно марганцевая минерализация локализована в мусковит-кварцевых сланцах. Залежи марганцевых пород образуют линзовидные, пластообразные тела небольшого размера, согласно залегающие во вмещающих сланцах, что указывает на сингенетичное образование рудных тел.

ГЛАВА 2

ПЕТРОГРАФИЧЕСКОЕ ОПИСАНИЕ ПОРОД ПРОЯВЛЕНИЯ НАДЭЙЯХИНСКОЕ

2.1. Вмещающие породы

Вмещающими для марганцевых пород проявления являются мусковит-кварцевые сланцы, в которых, наряду с марганцевыми разновидностями, содержатся линзы и прослои карбонатно-кварцевых пород.

Рис. 7. Вмещающие породы проявления Надэйяхинского. 1 – мусковит-кварцевые сланцы, 2 – карбонатно-кварцевые линзы и прослои в мусковит-кварцевых сланцах. Вид в обнажении. Фото автора.

Мусковит-кварцевые сланцы. В районе проявления мусковит-кварцевые сланцы распространены повсеместно. Сланцы довольно однородны по структуре и текстуре в обнажении. Это мелкозернистые породы с ясно-полосчатой слоистой текстурой. Полосчатость породы выражается в чередовании темно-серых и серовато-белых прослоев толщиной до 2 мм. Прослои в образце обнаруживают небольшую волнистость (рис. 7).

Главными минералами сланцев являются кварц и мусковит, слагающие основную массу породы, к второстепенным относятся доломит, кальцит, шамозит, клинохлор,

стильпномелан, к акцессорным –рутил, ильменит, пирит и вторичные – монтмориллонит и каолинит.

Чередование прослоев по цвету большей частью вызвано содержанием в них примесей карбонатов (кальцита и доломита) и глинистого вещества. Эти прослои чаще окрашены в светлые цвета. Окраска темных прослоев вызвана частичной заменой мусковита на хлориты и стильпномелан.

Также в сланцах отмечаются линзовидные зоны и прослои интенсивной пиритизации.

При изучении сланцев в электронном микроскопе отмечалась четкая ориентировка чешуек слюды в одном направлении (рис. 8), чего нельзя отметить в стильпномеланкварцевых прослоях.

Карбонатно-кварцевые сланцы. Карбонатно-кварцевые линзы и прослои встречаются повсеместно в районе проявления. В обнажении они хорошо узнаются по характерной сильной волнистости и занозистости, а также светло-коричневой окраске (рис. 7). Толщина линз и прослоев этих пород составляет около 20 см.

Главными минералами, слагающими породу, являются кварц, доломит, кальцит, и стильпномелан, второстепенными – шамозит, клинохлор, сидерит, акцессорными – пирит, халькопирит, и вторичные – ярозит, каолинит. Это мелкозернистая, волнисто-полосчатая, линзовидно-слоистая порода. Полосчатость представлена чередованием серо-черных, серых и беловато-серых слойков и линз толщиной до 1 см. Так же, как и в мусковит-кварцевых сланцах, полосчатость объясняется сменой минерального состава. Так, более светлые слойки имеют преимущественно карбонатно-кварцевый состав, а более темные – стильпномелан-кварцевый. Но, в отличие от мусковит-кварцевых сланцев, в этих породах снижена доля кварцевого вещества, а карбонатного – повышена. Также, слюда здесь имеет второстепенное значение.

В этих породах, как и в сланцах, отмечались зоны интенсивной пиритизации, окисление которых и вызывает светло-коричневую окраску этих пород (рис. 8).

2.2. Марганцевые породы

На Надэйяхинском проявлении отмечается два типа марганцевых пород: кварцкарбонатные и карбонатно-силикатные. Первые согласно сменяют вмещающие в разрезе, образуя протяженные слои, в которых обнаруживаются линзы карбонатно-силикатных пород.

14

Кварц-карбонатные марганцевые породы. Наиболее распространенными марганцевыми породами на проявлении являются кварц-карбонатные породы. В обнажении они отличаются по сине-черным пленкам оксидов марганца. По минеральному составу они представляют собой породы, сложенные кутногоритом, родохрозитом, кальцитом, доломитом, стильпномеланом и кварцем с примесью флогопита, мусковита, клинохлора, сидерита, пироксмангита и ортоклаза. Среди акцессорных в них содержатся пирит, халькопирит, кобальтин и другие рудные минералы, а также вторичные – пиролюзит, гетит, каолинит.

В образцах эти породы мелкозернистые, полосчатые, линзовидно-полосчатые, представляют собой чередование белых, серых, зеленовато-черных, красновато-черных, черно-серых полос и линз толщиной до 1 см (рис. 9, 10, 11). Светлый цвет полос обусловлен кварц-карбонатным составом, темные оттенки – содержанием в породе хлоритов, флогопита, стильпномелана. Красноватый цвет может быть объяснен примесью пироксмангита и развитием гетитовых корок по пириту.

Помимо ярко выраженной слоистости породы, в ней также наблюдается микрослоистость. Она выражена в темных макрослоях и представляет собой чередование тонких, до 2 мм, слойков разных оттенков, обычно более темных и более светлых, в зависимости от цветовой гаммы макрослоя. Здесь слоистость определяется распределением карбонатного вещества: в более светлых слоях его больше, чем в более темных (рис. 9, 10).

Породы секут трещины и кварц-карбонатные жилы, обычно расположенные под углом к прослоям.

Рис. 8. Вмещающие мусковит-кварцевые сланцы. Фото в обратно-отраженных электронах. А – общий вид породы; Б – участок с интенсивной пиритизацией. (Ms – мусковит, Qz – кварц, Ру – пирит, Cal – кальцит).

Рис. 9. Кварц-карбонатные марганцевые породы. А – общий вид породы в образце;

Б – общий вид породы в обратно-отраженных электронах.

(Cb – карбонаты; Qz – кварц).

Рис. 10. Кварц-карбонатные марганцевые породы. А – общий вид породы в образце; Б – общий вид породы в обратно-отраженных электронах.

(Cb – карбонаты; Qz – кварц).

Рис. 11. Кварц-карбонатные марганцевые породы. А – общий вид породы в образце; Б –стильпномелановые агрегаты на фоне основной массы в обратно-отраженных электронах. (Stp – стильпномелан; Qz – кварц).

Рис. 12. Карбонатно-силикатные марганцевые породы. А – общий вид породы в образце; Б – общий вид породы в обратно-отраженных электронах.

(Qz – кварц, Тер – тефроит, Son – сонолит, Рхт – пироксмангит, Cb – карбонаты, Stp – стильпномелан, Chl – хлорит, Phl – флогопит).

Карбонатно-силикатные марганцевые породы. Эти породы являются редкими для проявления и наблюдались на небольшом по протяженности участке. Они хорошо узнаются по интенсивной малиновой окраске, а также по сине-черным пленкам оксидов марганца. Минералами, слагающими эту породу, являются тефроит, фриделит, сонолит, родохрозит, доломит и кварц. К второстепенным относятся пироксмангит, тефроит, кариопилит, доломит, хлориты, к акцессорным – пирофанит и алабандин.

Это тонкозернистые породы с выраженной ясно-полосчатой и линзовиднополосчатой текстурой (рис. 12). Прослои, образующие полосы, имеют различные окраски: белые, коричневые, малиновые, черно-зеленые, красновато-бурые, серо-черные и розовые. Толщина прослоев и линз составляет около 1 см.

Цветовая дифференциация породы хорошо отражает ее состав: белые прослои сложены кварцем и карбонатами, коричневые – тефроитом, малиновые и розовые – пироксмангитом, сонолитом и кварцем, черные и серые – клинохлором, флогопитом, тефроитом и карбонатами.

Породу секут карбонатно-кварцевые жилы толщиной до 1 см, а также на поверхности образцов наблюдаются дендриты марганца.

2.3. Краткие выводы

Таким образом, нами было выделено четыре разновидности пород проявления: две из них представляют собой вмещающие породы, и еще две – марганцевые. Эти разновидности представлены мусковит-кварцевыми сланцами, карбонатно-кварцевыми линзами и прослоями в мусковит-кварцевых сланцах, марганцевыми кварц-карбонатными карбонатно-силикатными породами. Отличие этих типов пород выражено в различном соотношении главных минералов: кварца, карбонатов и марганцевых силикатов. Таким образом, в разрезе нарастает количество карбонатов, причем они постепенно приобретают марганцевый состав и в дальнейшем частично сменяются на силикаты марганца, проявленные на небольших площадях и которые, наряду со стильпномеланом, являются свидетельством метаморфизма низких степеней.

Минеральный состав пород на фоне кремнистого разреза, их мелко- и тонкозернистые структуры и волнисто-полосчатые текстуры, а также их согласное залегание в разрезе пород громашорской свиты указывает на то, что образование этих пород происходило в спокойных условиях отложения осадков в глубоководной части морского дна с последующим кратковременным поступлением марганца. Также происходил дальнейший метаморфизм осадка.

ГЛАВА 3

ОСОБЕННОСТИ ХИМИЧЕСКОГО СОСТАВА ПОРОД ПРОЯВЛЕНИЯ НАДЭЙЯХИНСКОЕ

3.1. Петрогенные элементы

Породы Надэйяхинского месторождения можно разделить на четыре группы: вмещающие мусковит-кварцевые и карбонатно-кварцевые породы, кварц-карбонатные марганцевые породы и карбонатно-силикатные марганцевые линзы в кварц-карбонатных породах. Стоит отдельно рассмотреть химические особенности пород каждого типа. Мусковит-кварцевые и карбонатно-кварцевые сланцы рассмотрены в этой главе как один тип: вмещающие породы.

Вмещающие породы характеризуются высоким содержанием кремнезема - от 62 до 92 SiO₂ масс. % и, соответственно низкими содержаниями алюминия: его количество в породах колеблется в целом от 2 до 6 Al₂O₃ масс. % (табл. 1). Интересными представляются также значительно повышенные относительно кларковых содержания марганца и магния во вмещающих породах, до 2.52 и 3.57 масс. % MnO и MgO соответственно (табл. 1).

В плане соотношения компонентов очень показательно положение вмещающих пород на графике Si - Al, где все отметки вмещающих пород находятся выше соотношения 10 к 1 соответственно (рис. 13а), что позволяет отнести их к высококремнистым породам. Также стоит отметить расположение отметок вмещающих пород на графике (Al+Ti) – (Fe+Mn), на котором хорошо видно, что вмещающие породы относятся к «нормальным» осадкам, в составе которого преобладает литогенный материал (рис. 13, а). По данным тройных диаграмм (рис. 14 а, б, в) вмещающие породы имеют железистую специализацию, не обладая высокими значениями кальция и марганца.

Кварц-карбонатные марганцевые породы обладают в общем значительно меньшим, чем во вмещающих породах, содержанием кремнезема – от 9.69 до 79.35 SiO₂ масс. %. и схожими содержаниями алюминия, в среднем колеблющимися в районе двух процентов (от 0.59 до 3.69 Al₂O₃ масс. %). Значительно вырастают содержания железа и марганца – средние значения поднимаются примерно до 14 Fe₂O₃ масс. % и 18 MnO масс. %. Повышается относительно вмещающих пород и содержание магния – в среднем до 5 MgO масс. %. Также, данные породы отличаются высокими содержаниями кальция, колеблющимися от 4.96 до 22.23 CaO масс. % и значительными содержаниями п.п.п.,

достигающими 20.86 масс. % (табл. 1). За счет значительно упавших содержаний кремния кварц-карбонатные марганцевые породы по соотношению Si-Al располагаются ниже вмещающих, но основная часть анализов по-прежнему находится в зоне соотношения Si-Al 10 к 1 (рис. 13 а). Также данные породы относятся к металлоносным гидротермальноосадочным с железо-марганцевой специализацией, поскольку содержания Fe и Mn повышены относительно содержания алюминия (рис. 13 б). Относительно вмещающих пород наблюдается смещение специализации разреза от фонового кремнистого осадка к гидротермально-осадочному железо-марганцевому. По относительному содержанию компонентов по диаграммам стоит отметить плавное повышение доли карбонатного вещества и марганца и снижение доли железа, постепенный переход от вмещающих пород к кварц-карбонатным (рис. 14 а, б, в).

Карбонатно-силикатные марганцевые породы обладают наиболее низкими содержаниями кремнезема – в среднем около 25 SiO₂ масс. % (с колебаниями в анализах от 14.38 до 37.00 SiO₂ масс. %) и высокими содержаниями марганца – от 49.45 до 63.97 MnO масс. %. При этом содержание железа значительно падает относительно кварц-карбонатных марганцевых пород и является схожим с вмещающими породами – в колебаниях от 1.09 до $2.12 \text{ Fe}_2\text{O}_3$ масс. %. Содержание же алюминия по-прежнему низкое – до $1.17 \text{ Al}_2\text{O}_3$ масс. %. Незначительно повышается содержание магния –до 7.53 MgO масс. %. Средние значения количества кальция примерно в два раза ниже, чем у кварц-карбонатных марганцевых пород – около 3 CaO масс. %, но стоит отметить значительный диапазон значений – от 1.40 до 9.55 CaO масс. % в отдельных анализах. П.п.п. хоть и ниже, чем в кварц-карбонатных разновидностях, но по-прежнему достаточно высоки – 11 масс. % в среднем.

Вышеперечисленные особенности также можно проследить на диаграммах соотношений компонентов – карбонатно-силикатные породы имеют ярко выраженную марганцевую специфику (рис. 14 а, б, в), а также отмечается по-прежнему плавный переход от одного типа пород к другим, в данном случае от кварц-карбонатных к карбонатно-силиканым. По соотношению Si – Al карбонатно-силикатные породы также, как и предыдущие, являются нормальным членом разреза осадочной глубоководной толщи, удаленной от источников сноса (рис. 13 а). По соотношению (Al+Ti) – (Fe+Mn) карбонатно-силикатные породы относятся к гидротермально-осадочным породам с резким преобладанием рудного материала (рис. 13 б).

Рис. 13. Графики соотношения индикаторных петрогенных элементов в породах Надэйяхинского проявления. Цифрами на б отмечены поля осадочных пород с различными соотношениями литогенных (Al+Ti) и рудных (Fe+Mn) компонентов: 1 – осадочные породы с примесью рудного материала; 2 – гидротермально-осадочные породы, «металлоносные осадки»; 3 – гидротермально-осадочные породы с резким преобладанием рудного материала, «рудоносные осадки». Границы полей составлены в соответствии с работой Брусницына А. И., 2015.

Обозначения: квадраты – вмещающие породы, кружки – карбонатно-кварцевые марганцевые породы, треугольники – силикатные марганцевые породы.

б

а

Рис. 14. Диаграммы соотношения индикаторных петрогенных элементов в породах Надэйяхинского проявления.

Обозначения: квадраты – вмещающие породы, кружки – карбонатно-кварцевые марганцевые породы, треугольники – силикатные марганцевые породы.

3.3. Краткие выводы

В целом, говоря о химическом составе пород Надэйяхинского месторождения, следует обратить внимание на плавные переходы между типами пород, выраженную в смене химического состава, а именно в переходах от железистой специализации к железомарганцевой и далее к чисто марганцевой, что позволяет сделать предположения относительно гидротермально-осадочного источника поступления железа и марганца, о чем также свидетельствует положение марганцевых разновидностей пород на графике отношения литогенных (Al) и рудных (Fe+Mn) компонентов в поле гидротермальноосадочных пород. Плавная смена составов пород также указывает на то, что не происходило перерывов в накоплении фонового вещества. Характерной особенностью изученных пород является то, что накопление рудных компонентов происходило при невысоком, но постоянном поступлении магния. Все изученные нами породы проявления относятся к высококремнистым, что свидетельствует о том, что накопление осадка происходило в глубоководных условиях, удаленных от источников терригенного сноса.

	Разновидности пород													
Компонент	Мусков	ит-кварцевы	е и карбонатн	ю-кварцевые	сланцы	Марганцевые кварц-карбонатные								
	4300/50	4300/52	4300/53	4300/100	4300/101	4300/1	4300/2	4300/4	4300/5	4300/6	4300/7	4300/8		
SiO ₂	92.53	83.75	89.45	65.33	62.02	39.52	23.63	17.11	39.64	75.52	28.99	46.93		
TiO ₂	0.03	0.30	0.15	0.14	0.09	0.05	0.07	0.11	0.06	0.03	0.12	0.04		
Al ₂ O ₃	2.18	6.11	2.51	3.65	2.54	1.73	1.91	1.94	1.67	0.59	3.69	1.16		
Fe ₂ O ₃	3.84	3.87	3.22	2.97	3.40	21.61	14.22	9.27	7.17	4.47	23.72	15.52		
MnO	0.17	0.28	1.03	2.16	2.52	14.93	17.53	22.71	23.21	7.99	17.15	12.31		
MgO	0.04	2.30	1.07	3.20	3.77	2.80	7.22	10.25	3.36	1.36	4.51	2.56		
CaO	0.16	0.41	0.85	9.54	10.78	7.10	21.42	22.23	10.72	4.96	8.43	11.07		
Na ₂ O	< 0.05	< 0.05	< 0.05	0.38	0.30	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05		
K ₂ O	0.17	2.06	0.81	1.39	1.03	0.16	0.29	0.38	0.49	0.23	0.33	0.23		
P_2O_5	0.04	0.07	0.05	< 0.05	< 0.05	0.16	0.06	0.04	0.06	0.05	0.06	0.01		
ППП	0.86	0.80	0.87	11.60	14.00	11.96	13.69	15.93	13.64	4.85	12.95	10.15		
Сумма	100.00	99.95	100.01	100.41	100.50	100.02	99.97	99.97	100.03	100.04	99.95	99.98		

Таблица 1. Химический состав пород (масс. %)

Примечание. Химический состав пород проанализирован в центральной химической лаборатории ВСЕГЕИ рентгеноспектральным флюоресцентным методом на спектрометре ARL–9800 (Швейцария), аналитик Б.А.Цимошенко.

	Разновидности пород													
Компонент		Марганце	зые кварц-кај	рбонатные		Марганцевые карбонатно-силикатные								
	4300/9	4300/40	4300/41	4300/42	4300/51	4300/106	4300/12	4300/14	4300/17	4300/18	4300/19	4300/30		
SiO ₂	32.34	33.67	29.93	9.69	79.35	14.38	19.93	22.41	20.87	17.14	37.00	30.74		
TiO ₂	0.05	0.10	0.10	0.09	0.05	0.08	0.05	0.03	0.04	0.05	0.03	0.06		
Al ₂ O ₃	1.42	2.22	1.69	2.20	1.66	1.85	1.07	0.69	0.84	1.08	0.62	1.17		
Fe ₂ O ₃	8.52	16.01	9.31	17.08	12.75	3.91	2.12	2.12	1.19	1.58	1.09	1.49		
MnO	19.22	17.92	24.20	29.36	0.66	45.06	55.76	56.79	63.97	57.68	49.45	51.15		
MgO	6.22	4.04	5.29	6.56	0.86	7.53	5.14	3.32	4.08	5.57	3.29	4.93		
CaO	19.51	12.10	16.05	13.36	0.93	9.55	5.11	3.84	2.08	4.63	1.40	2.31		
Na ₂ O	< 0.05	< 0.05	< 0.05	0.10	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05		
K ₂ O	0.17	0.49	0.21	0.70	0.03	0.70	0.08	0.15	0.05	0.16	0.11	0.15		
P_2O_5	0.04	0.05	0.03	0.04	0.03	0.05	0.03	0.02	0.04	0.03	0.03	0.06		
ППП	12.47	13.43	13.15	20.85	3.63	16.87	10.73	10.67	6.88	12.04	6.99	7.97		
Сумма	99.95	100.03	99.97	100.03	99.96	99.98	100.03	100.05	100.03	99.96	100.01	100.04		

Таблица 1 (продолжение). Химический состав пород (масс. %)

ГЛАВА 4

МИНЕРАЛОГИЯ ПОРОД ПРОЯВЛЕНИЯ НАДЭЙЯХИНСКОЕ

4.1. Минералогический состав пород

В рамках исследования состава пород удалось обнаружить довольно большое разнообразие минералов, как среди породообразующих, так и среди второстепенных и акцессорных.

Всего в составе изученных пород диагностировано 39 минералов (табл. 2). Главными минералами являются кварц, тефроит, пироксмангит, сонолит, стильпномелан, доломит, родохрозит, кутногорит, сидерит. Остальные относятся к второстепенным и акцессорным.

По набору главных минералов марганцевые породы делятся на две разновидности. Первая, самая распространенная на проявлении, сложена кварцем, стильпномеланом и карбонатами. Вторая, более редкая для нашего проявления – кварцем, тефроитом, сонолитом, пироксмангитом, карбонатами и стильпномеланом. Вмещающие породы также можно разделить на два типа: мусковит-кварцевые и карбонатно-кварцевые сланцы. Для мусковит-кварцевых сланцев главными минералами являются мусковит и кварц; для карбонатно-кварцевых – доломит, кальцит и кварц.

№	Минерал	Формула	Методы диагностики						
			ВД	РФА	ЭМ				
		Сульфиды							
1	Пирит	FeS ₂	+		+				
2	Халькопирит	CuFeS ₂			+				
3	Стибнит	Sb ₂ S ₃			+				
4	Алабандин	MnS			+				
5	Сфалерит	ZnS			+				
6	Кобальтин	CoAsS			+				
7	Герсдорфит	NiAsS			+				
8	Молибденит	MoS ₂			+				
	Оксиды и гидроксиды								
9	Кварц	SiO ₂	+	+	+				
10	Рутил	TiO ₂			+				

Таблица 2. Минералы марганцевых пород проявления Надэйяхинское

Таблица 2 (продолжение). Минералы марганцевых руд проявления Надэйяхинское

11	тт				
11	ильменит		_		+
12	Магнетит	FeFe ₂ O ₄			+
13	Пиролюзит	MnO ₂	_	+	
14	Ферберит	FeWO ₄			+
15	Пирофанит	MnTiO ₃			+
16	Гетит	FeOOH	+		+
		Силикаты			
17	Тефроит	Mn ₂ (SiO ₄)	+	+	+
18	Сонолит	Mn ₉ [SiO ₄] ₄ (OH) ₂		+	+
19	Циркон	Zr[SiO ₄]			+
20	Пироксмангит	Mn ₇ [Si ₇ O ₂₁]		+	+
21	Кариопилит	Mn ₅ [Si ₄ O ₁₀](OH) ₆		+	+
22	Фриделит	Mn ₈ [Si ₆ O ₁₅](OH,Cl) ₁₀		+	+
23	Стильпномелан	KFe8[AlSi11O28](OH)8*2H2O		+	+
24	Флогопит	KMg ₃ [AlSi ₃ O ₁₀](OH) ₂		+	+
25	Мусковит	KAl ₂ [AlSi ₃ O ₁₀](OH) ₂	+	+	+
26	Шамозит	$(Fe_5Al)[AlSi_3O_{10}](OH)_8$		+	+
27	Клинохлор	(Mg ₅ Al)[AlSi ₃ O ₁₀](OH) ₈		+	+
28	Каолинит	Al ₂ [Si ₂ O ₅](OH) ₄			+
29	Монтмориллонит	$(Na_{0,33}*nH_2O)(Al_{1,67}Mg_{0,33})[Si_4O_{10}](OH)_2$		+	
30	Ортоклаз	K[AlSi ₃ O ₈]		+	+
		Карбонаты			
31	Доломит	CaMg(CO ₃) ₂		+	+
32	Кальцит	Ca(CO ₃)		+	+
33	Кутногорит	CaMn(CO ₃) ₂		+	+
34	Родохрозит	Mn(CO ₃)		+	+
35	Сидерит	Fe(CO ₃)		+	+
		Фосфаты			
36	Апатит	Ca ₅ (PO ₄) ₃ (OH,F)			+
37	Монацит-(Се)	Ce(PO ₄)			+
		Сульфаты			
38	Барит	Ba(SO ₄)			+
39	Ярозит	KFe ₃ (SO ₄) ₂ (OH) ₆			+
·	•			•	•

Примечания. Методы диагностики минералов: ВД – визуальная диагностика, РФА – рентгенофазовый анализ, ЭМ – электронная микроскопия. В таблице приведены идеальные формулы минералов. Жирным шрифтом выделены главные минералы, обычным – второстепенные и акцессорные. Курсивом выделены гипергенные минералы.

Главные минералы кварц-карбонатных марганцевых пород представлены кварцем, карбонатами: кальцитом, родохрозитом, доломитом, кутногоритом. В некоторых прослоях в качестве главного также выделяется стильпномелан. Следует отметить, что в связи с тонкой полосчатостью породы могут изменяться и главные минералы в зависимости от каждого конкретного прослоя. В нашем случае эти изменения отмечены в наличии или отсутствии кварца в качестве основного минерала и в смене одного породообразующего карбоната другими, а также наличии стильпномелано-карбонатных прослоев.

Второстепенными в кварц-карбонатных слоях являются все представленные выше карбонаты и сидерит, флогопит, мусковит, клинохлор, пироксмангит, ортоклаз, в зависимости от прослоя.

Помимо анализа кварц-карбонатных пород, изучение которых является основным в настоящей работе, был проведен анализ марганцевых карбонатно-силикатных пород, образующих линзы в кварц-карбонатных породах. Главными минералами в них являются тефроит, пироксмангит, фриделит, сонолит, родохрозит, доломит и кварц. Второстепенными –тефроит, пироксмангит, кариопилит, доломит, хлорит (вариации минералов здесь также зависят от конкретного прослоя).

Акцессорные минералы отличаются большим разнообразием, в большинстве представлены различными сульфидами и оксидами, в том числе и гипергенными. Количество обнаруженных акцессориев составляет 23. Среди них отмечены: самый распространенный – пирит, значительно реже встречаются халькопирит, стибнит, алабандин, кобальтин, герсдорфит, сфалерит, рутил, ильменит, магнетит, ферберит, циркон, шамозит, апатит, монацит, барит, молибденит, пирофанит.

Гипергенные минералы представлены пиролюзитом, гётитом, каолинитом, монтмориллонитом и ярозитом.

Ниже мы приводим описание минералов в порядке их распространенности в изученных породах.

28

4.2. Характеристика минералов

ГЛАВНЫЕ МИНЕРАЛЫ

Кварц. Диагностировался в образцах по внешнему виду, а также в электронном микроскопе и рентгенофазовой съемке. В большинстве случаев он имеет ксеноморфные кристаллы, плотно заполняющие все пространство между остальными минералами, но иногда, особенно в чистых мусковит-кварцевых прослоях, хорошо видны грани и вершины его кристаллов. Размер кристаллов достигает 50 мкм, средний размер – около 30 мкм. Образует ассоциации со всеми минералами, представленными в породе: карбонатами, слюдами, стильпномеланом и др.

В рентгенофазовом порошковом анализе кварц диагностируется по всем основным пикам с незначительными отклонениями, не превышающими сотые доли ангстрем, в качестве породообразующего (приложения 1-12, 14, 17, 18, 26, 34, 35).

Карбонаты. Карбонаты в марганцевых породах Надэйяхинского проявления отличает значительное разнообразие, наличие различных схем изоморфизма с участием как конечных членов изоморфных рядов, так и промежуточных. Набор карбонатов Надэйяхинского представлен родохрозитом, кутногоритом, доломитом, сидеритом и кальцитом. Наиболее распространены родохрозит, кутногорит и доломит, сидерит и кальцит – распространенные второстепенные минералы в породах проявления.

Особый интерес представляют изоморфные ряды карбонатов в представленных породах. Здесь отмечается наличие полного изоморфного ряда между кальцитом и родохрозитом и между родохрозитом и сидеритом. Также отмечается хорошая заменимость магния на марганец в ряде доломит-кутногорит.

Ряд кальцит-родохрозит содержит практически все члены, включая Са-Мп карбонат, который здесь и далее назван кутногоритом в соответствии с его химическим составом. Эти минералы распространены только в кварц-карбонатных марганцевых породах. Как хорошо видно из графиков (рис. 15), присутствуют конечные члены родохрозит и кальцит с содержаниями Мп и Са до 95 масс.% и 86 МпО и СаО масс.% соответственно. В морфологии взаимоотношений зерен кальцита, кутногорита и родохрозита отмечаются как четкие срастания с прослеживающимися границами зерен, так и плавные плохо заметные изменения, вызванные малыми изменениями в составах кристаллов (рис. 16 а-г, 17а). Также, в некоторых образцах отмечаются сплошные пылеватые смеси карбонатов с

размерами зерен в первые мкм, что, конечно, затрудняет диагностику состава подобных образцов.

Рис 15. Схемы изоморфных рядов в карбонатах из карбонатно-кварцевых пород проявления Надэйяхинское.

Кружки – анализы карбонатов из марганцевых пород, треугольники – карбонаты из вмещающих карбонатно-кварцевых пород. Все анализы пересчитаны на коэффициенты формул карбонатов на 1 катион. Хорошо выражен промежуточный член ряда Ca(CO3) – Mn(CO3) – кутногорит, который также выполняет схему изоморфизма с доломитом CaMg(CO3) – CaMn(CO3) (рис. 15).

Здесь наблюдаются четкие временные взаимодействия этих двух минералов. При исследовании образцов карбонатно-кварцевых марганцевых пород в электронном микроскопе регулярно отмечались необычные зерна, в которых в центре наблюдалось идиоморфное зерно доломита, обрастающее каймой кальций-марганцевого карбоната, чаще всего кутногорита (рис. 17 в). Из вышесказанного можно сделать вывод, что доломит по отношению к кутногориту первичен в наблюдаемых породах, а привнесение марганца – более поздний процесс, чем образование доломита. При этом, нельзя однозначно сказать, происходило ли замещение магния на марганец в доломите, или кутногорит просто нарастал на его зерна.

Как видно из треугольных диаграмм (рис. 15), основное распределение элементов в карбонатах отмечается как раз между Mg и Mn в ряде доломит – кутногорит. Это указывает на то, что такое явление отмечалось в большинстве прослоев карбонатно-кварцевых марганцевых пород, что свидетельствует о повсеместном более позднем привносе марганца в эти породы.

Следующая распространенная схема изоморфизма – ряд Fe(CO3) – Mn(CO3). Здесь наблюдается не достаточно равномерное распределение вещества, основной массив карбонатов отмечается в промежутке между значениями 0,2 и 0,6 формульных коэффициентов Mn и Fe (рис. 15). Это может быть вызвано как недостатком данных, чтобы заполнить пустые места на графике, так и просто отсутствием недостающих членов в ряду сидерит – родохрозит в кварц-карбонатных марганцевых породах. Как видно из треугольной диаграммы (рис. 15), основное количество Fe-Mn карбонатов представлено железистыми родохрозитом и кутногоритом с примесью магния. Тогда как в поле сидерита попадает гораздо меньшее количество анализов, причем основное их количество обладает высокими содержаниями примесей магния и марганца.

Влияние состава карбонатов ряда сидерит-родохрозит на морфологию кристаллов проявилось лишь в том, что наиболее чистый сидерит (содержание FeO около 76 масс. %) имеет характерную игольчатую форму зерен. Кристаллы сидерита с более низким содержанием Fe (около 50 масс. % FeO) визуально ничем не отличаются от зерен родохрозита и чаще имеют ксеноморфные выделения (17 д, е, 18 в).

31

Карбонатно-кварцевые прослои во вмещающих подстилающих мусковит-кварцевых сланцах имеют несколько иной состав карбонатов. Как отмечено на диаграммах (рис. 15), здесь не наблюдается изоморфных рядов, а основное количество карбонатов имеет состав кальцита с примесями Fe, Mn, Mg. На треугольных диаграммах (рис. 15) видно, что подавляющее большинство кальцита в этих прослоях содержит в качестве примеси большее количество магния, и меньшее – железа и марганца, что указывает на его близость к доломиту по составу, присутствие которого также отмечается в этих прослоях.

Таким образом, вариации состава карбонатов могут указывать на последовательное распределение элементов в породе, а также на относительный временной период поступления марганца.

Родохрозит. Минерал был обнаружен как при микрозондовом анализе, так и при рентгенофазовой съемке (приложения 10, 11, 15-17, 20-22, 25), и диагностирован во многих прослоях в качестве породообразующего, в некоторых – в качестве второстепенного. Морфология выделений различная, от хорошо ограненных кристаллов до агрегатов из обломков зерен и округлых бесформенных выделений. Средний размер зерен около 20 мкм. Ассоциирует с прочими карбонатами, кварцем, слюдами и остальными минералами (16 д, е, 17 а, 18 б-е, 19 а-в).

Кристаллохимическая эмпирическая средняя формула родохрозита (рассчитана по 30 анализам на 1 катион):

 $(Mn_{0,75}Ca_{0,09}Fe_{0,09}Mg_{0,06})_{1,00}(CO_3)$

Кутногорит. Так же, как и родохрозит, часто наблюдается в виде как главного, так и второстепенного (приложения 5, 10, 11, 13-19). Форма его выделений не отличается от других карбонатов, но в некоторых случаях кутногорит на краях зерен сменяется на марганцевый кальцит. Наблюдается в ассоциации почти со всеми минералами, представленными в породе.

Кристаллохимическая эмпирическая формула кутногорита имеет вид (рассчитана по 25 анализам на 2 катиона):

 $(Ca_{0,95}Mn_{0,05})_{1,00}(Mn_{0,60}Mg_{0,23}Fe_{0,17})_{1,00}(CO_3)_2$

Из формулы видно, что недостаток марганца компенсируется магнием и железом.

Доломит. Доломит является главным минералом для некоторых прослоев в кварцкарбонатных и карбонатно-силикатных марганцевых породах, иногда второстепенным (приложения 12, 13, 20, 27). В отличие от других карбонатов, его зерна практически всегда огранены и имеют ромбическую форму. В некоторых прослоях его выделения интересны тем, что образуют ядра для обрастания их другим карбонатом, чаще всего марганцевыми разновидностями: кутногоритом, марганцевым кальцитом.

Кристаллохимическая эмпирическая средняя формула доломита (рассчитана на 2 катиона на 19 анализов):

 $(Ca_{0,96}Mn_{0,04})_{1,00}(Mg_{0,63}Mn_{0,19}Fe_{0,18})_{1,00}(CO_3)_2$

Как видно, количество магния в доломите приблизительно равно значению марганца в кутногорите. Значения остальных элементов также близки.

Кальцит. Был диагностирован как в электронном микроскопе, так и в рентгенографии (приложения 1, 5). Форма зерен варьирует от идиоморфной, с хорошо выраженными гранями ромбических кристаллов, до ксеноморфных выделений. Средний размер кристаллов достигает 20 мкм (рис. 17 в, 19 г). Кальцит образует тесные срастания с родохрозитом, доломитом, кварцем, слюдами. В нем часты значительные примеси марганца, железа, магния. Кальцит образует изоморфные ряды с кутногоритом и родохрозитом.

Рентгенофазовый анализ продемонстрировал наличие кальцита в качестве второстепенного во многих прослоях. Тем не менее, кальцит по микрозондовому анализу является породообразующим для карбонатно-кварцевых прослоев во вмещающих подстилающих мусковит-кремнистых сланцах. Среди примесей здесь преобладает магний, но, его все же недостаточно для того, чтобы кальцит можно было называть доломитом.

Ниже приведена кристаллохимическая эмпирическая средняя формула кальцита из вмещающего подрудного слоя, рассчитанная на 1 катион по 36 анализам:

 $(Ca_{0,70}Mg_{0,16}Mn_{0,07}Fe_{0,06})_{1,00}(CO_3)$

В марганценосном слое наиболее часто встречается кальцит с преобладающей марганцевой примесью. Ниже приведена кристаллохимическая эмпирическая средняя формула кальцита в рудном слое, рассчитанная на 1 катион по 30 анализам:

 $(Ca_{0,52}Mn_{0,28}Mg_{0,15}Fe_{0,05})_{1,00}(CO_3)$

Видно, что в кальците из марганценосного слоя значительно больше марганца, и меньше кальция, количества магния и железа сопоставимы.

33

Сидерит. Обнаружен в качестве второстепенного во вмещающих породах как при помощи рентгенофазового (приложение 8), так и при помощи микрозондового анализов, в электронном микроскопе также отмечается его наличие в качестве второстепенного в кварц-карбонатных марганцевых породах наряду с другими карбонатами. Форма кристаллов чаще всего игольчатая, нитчатая, зерна образуют как бы сети, сосуществуя с кристаллами кварца. Средний размер кристаллов по длинной оси достигает 10 мкм (рис. 17 б, д, е, 18 а).

Кристаллохимическая эмпирическая средняя формула сидерита приведена ниже (рассчитана на 1 катион по 30 анализам):

 $(Fe_{0,60}Mn_{0,23}Mg_{0,14}Ca_{0,04})_{1,00}(CO_3)$

По составу примесей сидерит содержит примерно пополам магния и марганца, с небольшим преобладанием марганца. Примесь кальция довольно незначительна. Количество железа составляет больше половины.

Рентгенофазовый порошковый анализ проб продемонстрировал относительную точность в определении карбонатов разного состава. Наличие этих минералов обнаружилось во всех образцах из кварц-карбонатных марганцевых пород, и, чаще всего, эти минералы являлись главными в количественном соотношении, кроме кальцита, который выделялся как второстепенный в некоторых прослоях, а так же сидерита, который оказался второстепенным во вмещающих карбонатно-кварцевых сланцах.

Все карбонаты диагностировались по главным линиям, с расхождениями по эталонам в десятые доли ангстрем. Интенсивности пиков часто завышены из-за наложения друг на друга некоторых фаз, но так же иногда занижены из-за невысоких содержаний некоторых карбонатов относительно прочих. Сложность определения карбонатов рентгенофазовой съемкой заключалась в том, что рентгенограммы карбонатных фаз довольно близки по расположению и интенсивности пиков, что затрудняло их диагностику. Общая картина расположения карбонатных пиков позволяет назвать все карбонаты с относительной точностью, особенно, при наличии двух и более карбонатов в пробе.

Стильпномелан. Общее количество стильпномелана в породе достигает примерно 10 масс. % в отдельных слоях. Его диагностика производилась с помощью электронного микроскопа и рентгенофазового анализа (приложения 2, 3, 12, 13), в результате чего было обнаружено, что этот минерал присутствует в качестве главного в отдельных слойках в кварц-карбонатных марганцевых породах. Также, стильпномелан хорошо узнавался по пластинчатой удлиненной форме зерен. Средний размер зерен – около 30 мкм. Его кристаллы образуют радиальные звездчатые агрегаты и часто концентрируются неравномерными скоплениями, срастаясь с карбонатами, кварцем и слюдами (рис. 18 а, б).

Рентгенографический анализ показал хорошее соответствие пиков с эталонными по межплоскостным расстояниям, при этом их интенсивности относительно эталонных несколько занижены.

Кристаллохимическая эмпирическая формула стильпномелана из ассоциации с кварцем имеет вид (n=7):

 $K_{0,32}(Fe_{6,01}Mg_{1,18}Al_{0,78})_{7,97}[(Si1_{1,31}Al_{0,69})_{12,00}O_{28}](OH)_8*2H_2O$

По химическому составу формула стильпномелана в целом приближена к идеальной, но отмечен значительный недостаток по калию, что является нормальным для этого минерала. В позицию железа добавляется алюминий, и в некоторых случаях, при ассоциации стильпномелана с марганцевыми карбонатами – марганец.

Кристаллохимическая эмпирическая формула стильпномелана из ассоциации с марганцевыми карбонатами имеет вид (n=3):

 $K_{0,42}(Fe_{5,71}Mg_{1,18}Al_{0,70}Mn_{0,31})_{7,90}[(Si_{11,31}Al_{0,92})_{12,00}O_{28}](OH)_8*2H_2O$

Нормированный на 100 % химический состав и коэффициенты в кристаллохимических формулах стильпномелана приведены в таблице 3.

Тефроит. Количество в породе составляет около 7 масс. %. Диагностировался в образцах по красновато-коричневому цвету. При изучении в электронном микроскопе отмечался в виде ограненных ромбических и ксеноморфных кристаллов (рис. 19 б).

При изучении проб рентгенофазовым анализом, тефроит был обнаружен в качестве главного во многих слойках силикатных марганцевых пород (приложения 23-25, 27, 28, 30-32). Здесь отмечалось высокое соответствие межплоскостных расстояний пиков в образце с эталонными данными. Среднее соотношение оксидов в тефроите составляет: SiO2 – 30,10 масс. %, MnO – 66,90 масс. %, MgO – 2,65 масс. %. Во всех полученных анализах наблюдается примесь магния около 1-2 масс. %.

Средняя кристаллохимическая эмпирическая формула тефроита, рассчитанная кислородным способом, имеет вид (n=5):

 $(Mn_{1,86}Mg_{0,13})_{1,99}[Si_{1,00}O_4]$

Компоненты	Номера анализов									
	1	2	3	4	5	6	7	8	9	
SiO ₂	54,07	55,32	55,76	55,63	52,42	55,21	53,99	53,31	52,70	
Al_2O_3	5,96	5,82	5,42	5,26	7,23	6,22	6,34	6,42	7,17	
FeO ^{общ.}	35,66	34,50	34,26	34,71	35,78	33,73	31,79	32,84	33,93	
MnO	0,00	0,00	0,00	0,00	0,00	0,00	2,53	1,80	0,99	
MgO	3,21	3,15	3,35	3,09	3,41	3,50	3,74	3,85	3,81	
K ₂ O	1,10	1,20	1,20	1,31	1,16	1,33	1,61	1,78	1,41	
Сумма	100,00	100,00	100,00	100,00	100,00	100,00	100,00	100,00	100,00	
		1	K	оэффициен	гы рассчита	ны на 64 зар	ояда			
Si	11,24	11,40	11,47	11,48	10,94	11,34	11,18	11,09	10,96	
Al	0,76	0,60	0,53	0,52	1,06	0,66	0,82	0,91	1,04	
Сумма R _{IV}	12,00	12,00	12,00	12,00	12,00	12,00	12,00	12,00	12,00	
Al	0,71	0,82	0,79	0,76	0,72	0,85	0,73	0,66	0,72	
Fe	6,20	5,95	5,90	5,99	6,24	5,80	5,51	5,71	5,90	
Mn	0,00	0,00	0,00	0,00	0,00	0,00	0,44	0,32	0,17	
Mg	0,99	0,97	1,03	0,95	1,06	1,07	1,15	1,19	1,18	
Сумма R _{VI}	7,90	7,74	7,71	7,70	8,02	7,72	7,83	7,88	7,98	
K	0,29	0,32	0,32	0,35	0,31	0,35	0,43	0,47	0,37	

Таблица 3. Нормированный на 100 % химический состав (масс. %) и коэффициенты в кристаллохимических формулах стильпномелана
Сонолит. Диагностировался рентгенофазовым анализом в качестве главного в отдельных прослоях силикатных пород по наиболее интенсивным пикам и с незначительными отклонениями в межплоскостном расстоянии (приложения 24, 28, 29, 33). В электронном микроскопе его диагностика была затруднена высокой схожестью состава и свойств с тефроитом (рис. 18 г).

Кристаллохимическая эмпирическая средняя формула сонолита имеет вид (n=5):

 $(Mn_{8,79}Mg_{0,28})_{9,07}[Si_{3,96}O_{16}](OH)_2$

Пироксмангит. Приблизительное содержание в породе составляет около 5 масс. %. Точно диагностирован рентгенофазовым анализом как главный минерал по основным диагностическим линиям с небольшими отклонениями по межплоскостным расстояниям и интенсивностям (приложения 11, 22, 23, 26, 30, 32).

Кристаллохимическая эмпирическая средняя формула пироксмангита имеет вид (n=5):

 $(Mn_{6,43}Mg_{0,43})_{6,86}[Si_{7,05}O_{21}]$

Пироксмангит трудноотличим от родонита по составу и рентгенограмме, но, тем не менее, его наличие в породе в большом количестве не представляется сомнительным, поскольку во всех рентгенограммах отсутствует характерный для родонита пик 2.76 ангстрем, при том, что количество пироксмангита нельзя назвать малым, так как он входит в число главных минералов проявления (рис. 18 д, е, 19 а).

Фриделит. По рентгенофазовому анализу фриделит является главным минералом в отдельных слойках силикатных пород. Он диагностировался по наиболее интенсивным пикам и их межплоскостные расстояния незначительно отличаются от эталонных, а интенсивности немного занижены из-за большого количества фаз (приложения 23, 25). Также, фриделит был обнаружен при микрозондовом анализе. Его зерна ксеноморфные, без четких граней, образуют плотные срастания друг с другом и с кварцем (рис. 18 д). Средний размер зерен около 20 мкм. Среднее соотношение компонентов во фриделите составляет: SiO2 – 34,27 масс. %, MnO – 52.17, MgO – 1.23 масс. %, Cl – 2.42 масс. %.

Кристаллохимическая эмпирическая формула фриделита имеет вид (n=5):

 $(Mn_{7,70}Mg_{0,32})_{8,02}[Si_{5,99}Al_{0,36}]_{6,35}(Cl)_{0.74}$

Тефроит, сонолит, пироксмангит, фриделит обнаружены в основном в линзах карбонатно-силикатных марганцевых пород, также изученых предшественниками [Старикова, 2011, 2014].

Мусковит. Этот минерал визуально диагностировался во вмещающих мусковиткварцевых сланцах, точность полевой диагностики подтвердили результаты рентгенофазового (приложения 4, 6) и микрозондового анализов, в которых мусковит обнаружен в качестве второстепенного минерала. Количество мусковита во вмещающих породах составляет около 8 масс. %. Также, этот минерал легко определить по характерной морфологии: удлиненным чешуйкам и пластинкам. Их средний размер составляет около 25 мкм.

В рентгенофазовом анализе пики мусковита довольно сильно накладываются на кварцевые, тем не менее, пик в начальной области съемки, на 9.99 ангстрем, наряду с массивом остальных диагностических линий, позволил определить данный минерал как принадлежащий к группе слюд. Интенсивности пиков также сильно снижены относительно эталонных.

Особенностью химического состава мусковита является присутствие примесей магния, железа, марганца и кальция в октаэдрической позиции алюминия, наибольшее содержание, около 0,3 формульных коэффициентов, наблюдается у магния и железа. Также, во всех анализах отмечается повышенное содержание калия. Превышение по калию составляет около 0,2 формульных коэффициентов, при этом в позицию калия иногда добавляется кальций (табл. 4). Подобное распределение элементов может быть вызвано отсутствием достаточной точности микрозондового анализа.

Средняя кристаллохимическая эмпирическая формула мусковита имеет вид:

 $(K_{1,21}Ca_{0,01})_{1,23}(Al_{1,41}Fe_{0,28}Mg_{0,26}Ca_{0,03}Mn_{0,02})_{2,00}[(Si_{3,41}Al_{0,59})_{4,00}O_{10}](OH)_{2}$

ВТОРОСТЕПЕННЫЕ МИНЕРАЛЫ

Кариопилит. Кариопилит был обнаружен при рентгенофазовой съемке в одном прослое из карбонатно-силикатных марганцевых пород в качестве второстепенного (приложение 24). Он определен по нескольким самым интенсивным пикам. Они совпадают с эталонными по межплоскостному расстоянию с незначительными отклонениями.

Флогопит. Во вмещающих мусковит-кварцевых сланцах и кварц-карбонатных марганцевых породах он является второстепенным минералом. Количество флогопита в марганцевых породах составляет около 3 масс. %. Морфология флогопита довольно характерна: он образует удлиненные пластинки и чешуйки различной формы (рис. 19 а, в).

При рентгенофазовой съемке использовались эталонные данные биотита (приложения 12, 16, 22), но дальнейший анализ микрозондовых данных и расчет формул показал, что по химическому составу минерал ближе всего к флогопиту. Минерал диагностирован по наиболее интенсивным линиям с незначительными отклонениями.

По химическому составу флогопит близок к идеальному, наблюдается недостаток калия в октаэдрической позиции, который в редких случаях дополняется кальцием. В позиции магния к нему добавляются марганец, железо, титан, кальций и алюминий (табл.5).

Кристаллохимическая эмпирическая формула флогопита имеет вид:

 $K_{0,72}(Mg_{1,80}Fe_{0,62}Ca_{0,21}Al_{0,11}Ti_{0,09}Mn_{0,07})_{2,91}[(Si_{3,16}Al_{0,85})_{4,00}O_{10}](OH)_{2}$

Компоненты	Тф	Сон	Пи	Фр
	1	2	3	4
SiO ₂	30.10	36.69	46.96	34.27
Al ₂ O ₃	0.00	0.00	0.00	0.00
FeO ^{общ}	0.00	0.00	0.00	0.00
MnO	66.90	69.91	51.47	52.17
MgO	2.65	1.27	1.89	1.23
Cl	0.00	0.00	0.00	2.42
Сумма	99.95	97.88	100.32	90.09
$O = Cl_2$	0.00	0.00	0.00	0.55
Сумма	99.95	97.88	100.32	89.54
«O»	4	17	21	20
	Коэф	фициенты		•
Si	1.00	3.96	7.05	5.99
Al	0.00	0.00	0.00	0.00
Fe	0.00	0.00	0.00	0.00
Mn	1.86	8.79	6.43	7.70
Mg	0.13	0.28	0.43	0.32
Cl	0.00	0.00	0.00	0.74

Таблица 4. Средний химический состав (масс. %) и коэффициенты в кристаллохимических формулах марганцевых силикатов

Примечание. Минералы: Тф – тефроит, Сон – сонолит, Пи – пироксмангит, Фр – фриделит, «О» – количество атомов кислорода, на которое рассчитаны коэффициенты в кристаллохимических формулах.

Компоненты		Номера анализов							
	1	2	3	4	5	6	7	8	
SiO ₂	55,32	53,69	52,81	52,56	54,27	54,18	54,67	57,39	
TiO ₄	0,63	0,00	0,00	0,00	0,00	0,00	0,00	0,00	
Al_2O_3	27,97	26,90	26,68	26,97	26,90	26,39	27,87	25,63	
FeO ^{общ.}	2,24	5,86	6,50	6,69	5,41	5,91	5,28	4,56	
MnO	0,00	0,00	0,77	0,90	0,00	0,61	0,00	0,00	
MgO	3,21	3,18	2,58	3,19	2,95	2,57	2,39	2,51	
CaO	0,00	1,17	0,00	0,81	0,00	0,00	0,00	0,00	
K ₂ O	10,34	9,20	10,66	8,91	10,47	10,35	9,80	9,92	
Сумма	100,00	100,00	100,00	100,00	100,00	100,00	100,00	100,00	
			Коэф	фициенты р	ассчитаны	на 22 заряда	l		
Si	3,42	3,38	3,36	3,33	3,41	3,42	3,42	3,56	
Al	0,58	0,62	0,64	0,67	0,59	0,58	0,58	0,44	
Сумма R _{IV}	4,00	4,00	4,00	4,00	4,00	4,00	4,00	4,00	
Ti	0,03	0,00	0,00	0,00	0,00	0,00	0,00	0,00	
Al	1,46	1,38	1,36	1,35	1,40	1,38	1,47	1,44	
Fe	0,12	0,31	0,35	0,36	0,28	0,31	0,28	0,24	
Mn	0,00	0,00	0,04	0,05	0,00	0,03	0,00	0,00	
Mg	0,30	0,30	0,24	0,30	0,28	0,24	0,22	0,23	
Ca	0,00	0,08	0,00	0,05	0,00	0,00	0,00	0,00	
Сумма R _{VI}	1,90	2,07	1,99	2,11	1,96	1,97	1,97	1,91	
K	1,24	1,12	1,31	1,10	1,28	1,27	1,19	1,19	
Ca	0,00	0,07	0,00	0,11	0,00	0,00	0,00	0,00	
Сумма R _{VIII}	1,24	1,19	1,31	1,21	1,28	1,27	1,19	1,19	

Таблица 5. Нормированный на 100 % химический состав (масс. %) и коэффициенты в кристаллохимических формулах мусковита

Компоненты		Номера анализов							
	1	2	3	4	5	6	7	8	
SiO ₂	45,63	45,97	49,75	48,54	46,05	41,93	45,38	43,38	
TiO ₄	0,76	0,75	0,67	0,64	0,61	5,11	0,96	4,59	
Al_2O_3	11,94	12,10	13,46	15,16	12,18	9,81	10,22	9,76	
FeO ^{общ.}	11,35	10,55	8,04	7,75	11,08	10,21	15,81	10,96	
MnO	1,68	1,72	1,41	1,10	1,19	0,00	2,67	0,00	
MgO	18,44	18,67	17,33	18,11	19,52	17,52	13,41	17,35	
CaO	1,28	1,87	1,24	0,79	0,93	8,67	1,71	6,45	
K ₂ O	8,92	8,38	8,09	7,92	8,43	6,76	9,85	7,51	
Сумма	100,00	100,00	100,00	100,00	100,00	100,00	100,00	100,00	
			Коэф	фициенты р	ассчитаны	на 22 заряда			
Si	3,16	3,16	3,33	3,23	3,16	2,93	3,24	3,03	
Al	0,84	0,84	0,67	0,77	0,84	0,81	0,75	0,80	
Сумма R _{IV}	4,00	4,00	4,00	4,00	4,00	3,74	4,00	3,83	
Ti	0,04	0,04	0,03	0,03	0,03	0,27	0,05	0,24	
Al	0,13	0,14	0,39	0,42	0,15	0,00	0,11	0,00	
Fe	0,66	0,61	0,45	0,43	0,64	0,60	0,95	0,64	
Mn	0,10	0,10	0,08	0,06	0,07	0,00	0,16	0,00	
Mg	1,90	1,91	1,73	1,80	2,00	1,83	1,43	1,80	
Ca	0,09	0,14	0,09	0,06	0,07	0,35	0,13	0,31	
Сумма R _{VI}	2,92	2,94	2,77	2,80	2,95	3,00	2,83	3,00	
K	0,79	0,74	0,69	0,67	0,74	0,60	0,90	0,67	
Ca	0,00	0,00	0,00	0,00	0,00	0,35	0,00	0,17	
Сумма R _{VIII}	0,79	0,74	0,69	0,67	0,74	0,95	0,90	0,84	

Таблица 6. Нормированный на 100 % химический состав (масс. %) и коэффициенты в кристаллохимических формулах флогопита

Минералы группы хлорита. Группа хлорита представлена двумя минералами: клинохлором и шамозитом. Эти минералы распространены как второстепенные во всех типах пород проявления, от вмещающих до карбонатно-силикатных марганцевых. Их количество в породе составляет примерно 5 масс. %. У этих минералов наблюдается морфология, характерная для слоистых минералов: вытянутые чешуйки и пластинки, средний размер которых составляет около 10 мкм (рис. 17 б, д).

Рентгенофазовый анализ показал наличие хлоритов во многих прослоях пород в качестве второстепенных (приложения 8, 11, 21, 22, 25, 27-30, 32, 33), они диагностировались по пику на 7 ангстрем (в некоторых случаях присутствовал пик на 14 ангстрем), и нескольким наиболее интенсивным пикам. Интенсивности пиков снижены относительно эталонных. В качестве эталонных использовались данные по хлориту.

В клинохлоре в позицию магния и алюминия добавляются железо, марганец и алюминий, также наблюдается немного повышенное содержание кремния (табл. 6). Таким образом, средняя кристаллохимическая эмпирическая формула клинохлора имеет вид:

 $(Mg_{4,13}Mn_{0,59}Al_{0,08}Fe_{0,02})_{4,82}Al_{1,00}[(Si_{3,26}Al_{0,74})_{4,00}O_{10}](OH)_{8}$

В отличие от клинохлора, в шамозите отсутствует примесь марганца, в позицию железа добавляются только магний и алюминий, также наблюдается завышение кремния, что может быть вызвано некоторой неточностью анализа. Средний химический состав шамозита содержит SiO₂ – 37, 29 масс. %, Al₂O₃ – 19,49 масс. %, FeO – 39,03 масс. %, MgO – 4,19 масс. %. Средняя кристаллохимическая эмпирическая формула имеет вид (n=3):

(Fe_{3,10} Al_{0,68}Mg_{0,59})_{4,37}Al_{1,00}[(Si_{3,52}Al_{0,50})_{4,02}O₁₀](OH)₈

Ортоклаз. Ортоклаз был отмечен в качестве второстепенного минерала в единичном прослое кварц-карбонатных марганцевых пород по рентгенофазовому анализу (приложение 15), а также иногда встречался при анализе на электронном микроскопе. Его морфология представляет собой мелкие гипидиоморфные кристаллы с отдельными гранями, около 7 мкм. Общее содержание в породе составляет около 1 масс. %. Его состав вполне отвечает идеальной формуле K[AlSi3O8].

АКЦЕССОРНЫЕ МИНЕРАЛЫ

Пирит. Пирит обнаруживался невооруженным глазом, его кристаллы достигают 3 мм. Также пирит хорошо прослеживался в электронном микроскопе во всех типах пород

Компоненты		Номера анализов							
	1	2	3	4	5	6	7	8	9
SiO ₂	40,08	41,01	38,94	39,07	39,89	40,20	38,28	38,94	37,53
Al_2O_3	19,19	17,63	18,93	19,12	16,659	18,91	19,87	18,14	18,72
FeO ^{общ.}	0,00	0,00	0,00	0,00	0,00	0,00	0,00	1,51	1,39
MnO	8,09	8,53	6,85	8,46	9,40	7,51	7,36	9,34	10,18
MgO	32,64	32,84	35,28	33,35	34,05	33,38	34,50	32,07	32,18
Сумма	100,00	100,00	100,00	100,00	100,00	100,00	100,00	100,00	100,00
			Коэф	фициенты р	ассчитаны н	а 28 зарядов	В		
Si	3,31	3,39	3,21	3,24	3,32	3,31	3,16	3,27	3,17
Al	0,69	0,61	0,79	0,76	0,68	0,69	0,84	0,73	0,83
Сумма R _{IV}	4,00	4,00	4,00	4,00	4,00	4,00	4,00	4,00	4,00
AÌ	1,00	1,00	1,00	1,00	0,96	1,00	1,00	1,00	1,00
A 1	0.19	0.11	0.05	0.11	0.00	0.15	0.10	0.06	0.02
	0,18	0,11	0,05	0,11	0,00	0,15	0,10	0,00	0,03
Fe	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,11	0,10
Mn	0,57	0,60	0,48	0,59	0,66	0,52	0,52	0,66	0,73
Mg	4,02	4,05	4,34	4,12	4,23	4,10	4,25	4,01	4,05
Сумма R _{vi}	4,77	4,76	4,87	4,82	4,89	4,77	4,87	4,84	4,90

Таблица 7. Нормированный на 100 % химический состав (масс. %) и коэффициенты в кристаллохимических формулах клинохлора

проявления (рис. 19 д). Его распространение характеризуется зональностью, т. е. наблюдаются зоны с повышенным содержанием пирита, и зоны с пониженным содержанием. Особенно это характерно для вмещающих мусковит-кварцевых сланцев.

Апатит. Апатит регулярно встречался в породе при съемке микрозондовым анализом. Это один из наиболее распространенный акцессорных минералов, он встречается я во всех разновидностях пород проявления. Его зерна представляют собой изометричные ограненные кристаллы размером до 20 мкм (рис. 16 б). Основная разновидность апатита, представленного в породе – фтор-апатит.

Циркон. Циркон представлен в породе в виде мелких (около 5 мкм) частично ограненных зерен. Он был обнаружен в качестве акцессорного во всех типах пород, наиболее распространен он в карбонатно-кварцевых марганцевых породах.

Монацит. Монацит встречался в отдельных прослоях марганцевых и вмещающих пород. Монацит хорошо выделяется ореолами радиоактивного распада вокруг зерен. Сами зерна ксеноморфные (рис. 19 б). Он относится к цериевой разновидности, его средний состав составляет P₂O₅ - 41,74 масс. %, Ce₂O₃ - 40,80 масс. %, La₂O₃ - 14,86 масс. %, Nd₂O₃ - 2,59 масс. %.

Рутил. Рутил наиболее распространен во вмещающих породах, его зерна имеют размер до 10 мкм, часто удлинены и не имеют четких граней, часто образуют структуры распада.

Барит. Барит распространен в породах проявления повсеместно. Он имеет различные формы выделения, как ксеноморфные, так и ограненные. Он встречается как в общей массе породы, так и заполняет прожилки.

Кобальтин. Распространен в кварц-карбонатных марганцевых породах. Образует изометричные зерна, как ксеноморфные, так и с четкие шестигранники (рис. 19 в). Размер его зерен составляет около 15 мкм.

Герсдорфит. Наиболее часто встречается рядом с кобальтином, и также распространен в кварц-карбонатных марганцевых породах. Его выделения чаще не имеют четкой формы и ксеноморфны, их размер достигает 10 мкм.

Ильменит. Ильменит встречается во вмещающих мусковит-кварцевых сланцах, в линзах карбонатно-кремнистых пород во вмещающих породах и в кварц-карбонатных марганцевых слоях. Наиболее распространен он во вмещающих породах. Этот минерал не имеет четких граней и образует ксеноморфные зерна размерами до 15 мкм.

Алабандин. Алабандин – распространенный акцессорный минерал в карбонатносиликатных марганцевых породах. Его зерна имеют гипидиоморфную форму, а их размер составляет около 10 мкм.

Пирофанит. Этот минерал изредка встречался в марганцевых карбонатносиликатных породах (рис. 19 а). Его зерна имеют удлиненную или изометричную форму, а их размер составляет около 5 мкм.

Халькопирит. У этого минерала отмечались единичные часто зональные зерна в зонах, обогащенных пиритом (рис. 19 г). Зональность вызвана соотношением железа и меди. В нашем случае, зерно в центре имело состав, более обогащенный медью, а к краям количество меди уменьшалось и возрастало количество железа. Зерна обычно имеют ксеноморфную форму, их размер достигает 30 мкм.

Магнетит. Магнетит имеет распространение во вмещающих мусковит-кварцевых сланцах. Его зерна имеют форму ограненных прямоугольников размерами до 10 мкм.

Стибнит, сфалерит, молибденит, ферберит. Эти акцессорные минералы были обнаружены в виде единичных зерен в кварц-карбонатных марганцевых породах. Их зерна довольно мелкие, и не превышают 7 мкм. Выделения ксеноморфны, лишь некоторые минералы имеют отдельные грани.

АКЦЕССОРНЫЕ ГИПЕРГЕННЫЕ МИНЕРАЛЫ

Помимо вышеперечисленных минералов пород проявления, при диагностике наблюдались минералы, образованные вторичными процессами выветривания.

Пиролюзит. Пиролюзит был обнаружен рентгенофазовым анализом в одном из прослоев кварц-карбонатных марганцевых пород (приложение 21). Его наличие в пробе объясняется местом отбора анализа – скорее всего в пробу попала часть оксидной пленки, покрывающей образец. У пиролюзита обнаружилось всего 2 пика: на 2.12 и 1.63 ангстрем. Они слабоинтенсивны, поэтому диагностика пиролюзита является немного условной.

Монтмориллонит. Этот минерал был обнаружен рентгенофазовым анализом в одном из прослоев карбонатно-кварцевой линзы во вмещающих породах (приложение 1). Он диагностировался по трем пикам, особенно по первому пику на 12.50 ангстрем.

Гетит. Гетит отмечался визуально в виде бурых пленок на породах, а также хорошо был заметен в электронном микроскопе также в виде тонких пленок вокруг железистых минералов, в основном пирита.

Каолинит. Каолинит обнаружился при анализе в электронном микроскопе. Помимо характерного состава, он диагностировался как глинистый минерал по характерной форме выделения – он заполняет каверны в породе порошковидными массами (рис. 19 е). Каолинит наблюдался во вмещающих мусковит-кварцевых породах.

Ярозит. Ярозит отмечался в качестве единичных изометричных ограненых зерен в кварц-карбонатных марганцевых породах. Размер его зерен не превышает 10 мкм.

Рис. 16. Минералы марганцевых кварц-карбонатных пород.
Фотографии аншлифов в обратно-отраженных электронах: *a* – зерно кутногорита в кварце, *б* – зерна кутногорита и апатита с кварцем, *в* – идиоморфное зерно кутногорита, ксеноморфное зерно родохрозита, пластинчатое зерно флогопита в кварц-карбонатной матрице, *г* – зональное распределение выделений родохрозита и кутногорита. *Минералы:* Qz – кварц, Kut – кутногорит, Ap – апатит, Phl – флогопит, Rds – родохрозит.

Рис. 17. Минералы марганцевых кварц-карбонатных пород. Фотографии аншлифов в обратно-отраженных электронах: *a* – зональное распределение выделений родохрозита и кутногорита, *б* – сросток удлиненных кристаллов сидерита и шамозита в кварце, *в* – ромбический кристалл доломита с кутногоритовой каймой в кальците, *г* – сферический кутногоритовый агрегат, *д* – срастание зерен кутногорита, доломита, сидерита кварца и шамозита, *е* – срастание зерен кутногорита в кварце. *Минералы:* Qz – кварц,

Kut – кутногорит, Rds – родохрозит, Chm – шамозит, Sd – сидерит, Dol – доломит, Cal – кальцит.

Рис. 18. Минералы марганцевых пород.

Фотографии аншлифов в обратно-отраженных электронах. Кварц-карбонатные породы: *a* – удлиненные кристаллы стильпномелана и сидерита в кварце, *б* – ассоциация стильпномелана с родохрозитом и кутногоритом, *в* – зональное срастание родохрозита и сидерита; карбонатносиликатные породы: *г* – ксеноморфные выделения родохрозита и сонолита, *д* – решетчатые срастания пироксмангита с фриделитом и родохрозитом, *e* – граница сплошной массы пироксмангита и ксеноморфных зерен родохрозита. *Минералы:* Qz – кварц, Sd – сидерит, Stp – стильпномелан, Kut – кутногорит, Rds – родохрозит, Cal – кальцит, Son – сонолит, Pxm – пироксмангит, Frd – фриделит.

Рис. 19. Минералы пород проявления Надэйяхинское.

Фотографии аншлифов в обратно-отраженных электронах. Карбонатно-силикатные породы: *a* – срастание сплошных масс родохрозита и пироксмангита, зерна флогопита и пирофанита. Кварц-карбонатные породы: *б* – ксеноморфное зерно монацита в ассоциации кальцита, тефроита и родохрозита, *в* – гексагональное зерно кобальтина в родохрозитовой массе. Карбонатно-кварцевые сланцы: *г* – зональное зерно халькопирита в кальцит-кварцевой массе. Мусковит-кварцевые сланцы: *д* – зерно пирита в кварце, *е* – выделение каолинита в кварце. *Минералы:* Qz – кварц, Rds – родохрозит, Рхт – пироксмангит, Pph – пирофанит, Phl – флогопит, Cal – кальцит, Tep – тефроит, Mnz – монацит, Cob – кобальтин, Ccp – халькопирит, Cb – карбонаты, Kln –

каолинит, Ру – пирит.

ГЛАВА 5

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Условия залегания и петрография изученных пород указывают на их образования путем метаморфизма металлоносных отложений.

Проявление Надэйяхинское приурочено к морским осадочным толщам пассивной континентальной окраины. Рудовмещающими являются глубоководные отложения Лемвинской структурно-формационной зоны. Марганцевая минерализация локализована в карбонатно-кремнистых сланцах громашорской свиты в виде пластов и линз, согласно залегающих во вмещающих породах. Появление в осадочном разрезе пласта марганцевых пород не нарушает общей стратиграфической последовательности кремнистых толщ. Марганцевые породы имеют типичные для осадочных образований текстуры: слоистые, линзовидно-полосчатые.

Таким образом, геологические условия залегания и петрография марганцевых пород указывают на то, что они являются нормальным членом осадочного разреза и образуются сингенетично с вмещающими их кремнистыми сланцами. Источники марганца при образовании осадочных толщ в принципе могут быть разными. Марганец мог привноситься гидротермальными растворами (любой природы) или речным стоком, выщелачиваться из морских осадков в ходе диагенеза или гальмиролиза и т.п. Имеющиеся у нас сейчас данные по проявлению Надэйяхинское не позволяют отдать однозначное предпочтение какомулибо одному из них. Традиционно считается, что девонские марганцевые породы Полярного Урала и Пай-Хоя имеют гидротермально-осадочный генезис [Старикова, 2014]. Эти представления вполне применимы и к проявлению Надэйяхинское. Образование в пределах однородной осадочной толщи небольшого пласта, резко обогащенного марганцем, удобнее всего объяснить локальным проявлением гидротермальных процессов.

Важно отметить, что в разрезе осадочной толщи проявление расположено примерно на 200 м стратиграфически ниже всех других марганцевых проявлений Пай-Хоя. До сих пор на этом стратиграфическом уровне марганценосные отложения на Пай-Хое не были известны. Это новый для Пай-Хоя уровень марганценосных отложений.

В металлоносных осадках современного океана марганец накапливается преимущественно в форме оксидов и гидроксидов Mn³⁺ и Mn⁴⁺ (вернадита, тодорокита, бернессита и др.). Последующие геологические процессы существенно преобразовали минеральный состав марганценосных осадков. Минеральный состав изученных нами пород

сформировался в процессе захоронения и регионального метаморфизма металлоносных отложений.

По результатам проведенных нами исследований в породах проявления Надэйяхинское было диагностировано 39 минералов. Из них выделено 9 главных, 14 второстепенных, 20 акцессорных. Главными минералами являются кварц, тефроит, пироксмангит, сонолит, стильпномелан, доломит, родохрозит, кутногорит, сидерит; второстепенными - кальцит, родохрозит, доломит, кутногорит, сидерит, флогопит, мусковит, клинохлор, пироксмангит, ортоклаз, пироксмангит, тефроит, кариопилит, доломит; акцессорными - халькопирит, стибнит, алабандин, кобальтин, герсдорфит, сфалерит, рутил, ильменит, магнетит, ферберит, циркон, шамозит, апатит, монацит, барит, молибденит, пирофанит и гипергенные – пиролюзит, гётит, каолинит, монтмориллонит и ярозит.

Наиболее интересными для изучения являются карбонаты, представленные изоморфными практически полными рядами: доломит – кутногорит, сидерит – родохрозит и родохрозит – кальцит. Как правило, образование марганцевых карбонатов происходит на стадии диа- или катагенеза и обусловлено наличием в осадке органического вещества (OB). В ходе окисления OB в осадках создавалась восстановительная анаэробная среда с высокими концентрациями углекислоты. Одним из наиболее сильных окислителей OB являются оксиды марганца. Реакция оксидов и гидроксидов Mn^{3+} и Mn^{4+} с органическим веществом приводила к восстановлению марганца до Mn^{2+} и одновременному окислению OB до HCO_3^- . Взаимодействие этих компонентов друг с другом в конечном итоге давало началу родохрозиту. Все эти процессы хорошо изучены в физико-химическом, биогеохимическом и минералогическом отношениях (Логвиненко, Орлова, 1987). Схематично их можно представить в виде уравнений:

 $CH_2O + 2MnO_2 + H_2O \rightarrow 2Mn^{2+} + HCO_3^- + 3OH^ Mn^{2+} + 2HCO_3^- \rightarrow MnCO_3 + H_2O + CO_2$

Многочисленные силикаты кристаллизуются в марганцевых отложениях при повышении температуры и давления. Например:

MnCO ₃ +	$SiO_2 \rightarrow$	MnS	SiO3	+	CO_2
родохрозит	кварц і	пирокс	манги	Г	
MnCO ₃ +	MnSiO ₃	\rightarrow	Mn ₂ S	SiO	$0_4 + \mathrm{CO}_2$
родохрозит п	ироксмангит		тефр	оит	

Степень метаморфизма осадочных пород региона не превышает уровня зеленосланцевой фации (Старикова, Завилейский, 2010). На невысокие температуры метаморфизма указывают присутствие в изученных породах стильпномелана и фриделита (Брусницын, 2013, 2015; Брусницын и др., 2016). Характерно также присутствие в породе пироксмангита. При P = 2 кбар этот минерал устойчив при температуре не выше 400 °C, выше которой он замещается своим полиморфным аналогом – родонитом (рис. 20), (Angel, 1984, Брусницын, 2013).

Рис. 20. Положение линии равновесия пироксмангит–родонит для бескальциевого соединения MnSiO3 (Maresh, Mottana, 1976).

Буквами обозначены фации регионального метаморфизма (Liou et al., 1985): Цл – цеолитовая, ППм – пренит-пумпеллиитовая, ПА – пренит-актинолитовая, ПмА – пумпеллиит-актинолитовая, ЗС – зеленосланцевая, ЭАм – эпидот-амфиболи¬товая, Ам – амфиболитовая, ГС – голубосланцевая.

Необходимо также отметить следующее. По содержанию марганца, преобладающему минеральному типу его накопления (карбонаты), текстурам пород с более или менее четким разделением марганцевых (карбонатных) и кварцевых слоев изученных породы соответствуют критериям для «марганцевых руд» (Методические рекомендации, 2005). Оценка запасов марганца на проявлении Надэйяхинское не входило в задачу наших

исследований. Тем не менее проведенные минералогические исследования заставляют обратить на этот объект внимание, как на потенциальное рудопроявление.

ЗАКЛЮЧЕНИЕ

В качестве результатов проведенных нами исследований, а также из приведенных в настоящей работе сведений можно сделать следующие выводы:

Определено 39 минералов. Из них выделено 9 главных, 14 второстепенных,
 23 акцессорных.

 Карбонаты представлены изоморфными рядами: доломит – кутногорит, сидерит – родохрозит и родохрозит – кальцит.

 По соотношению минералов выделено четыре типа пород: вмещающие мусковит-кварцевые и карбонатно-кварцевые сланцы, марганцевые кварц-карбонатные и карбонатно-силикатные породы.

4) Геологические условия залегания и петрография марганцевых пород указывают на то, что они являются нормальным членом осадочного разреза и образуются сингенетично с вмещающими их кремнистыми сланцами.

5) Степень метаморфизма осадочных пород региона не превышает уровня зеленосланцевой фации.

6) На данном этапе изучения внезапное обогащение области седиментации марганцем удобнее всего объясняется образованием гидротермального источника.

7) По содержанию марганца, преобладающему минеральному типу его накопления в виде карбонатов, текстурам пород с более или менее четким разделением марганцевых (карбонатных) и кварцевых слоев изученные породы являются потенциальным рудопроявлением, которое требует дальнейшего изучения.

Работы проведены с использованием аналитических возможностей ресурсных центров СПбГУ «Рентгенодифракционные методы исследования», «Микроскопии и микроанализа».

54

ЛИТЕРАТУРА

Монографии:

1. Брусницын А. И. Родонитовые месторождения Среднего Урала (минералогия и генезис). СПб.: Изд-во С.-Петерб. ун-та, 2000. – 200 с.

2. Брусницын А. И. Минералогия марганцевоносных метаосадков Южного Урала. СПб.: Изд-во С.-Петерб. ун-та, 2013. – 160 с.

3. Брусницын А. И. Парнокское марганцевое месторождение, Полярный Урал: минералогия, геохимия и генезис руд. СПб.: Изд-во С.-Петерб. ун-та, 2015. – 116 с.

Статьи в сборниках:

1. Брусницын А. И., Игнатова М. В. Надэйяхинское-2 – новое проявление родонитовых пород на Пай-Хое. Металлогения древних и современных океанов 2014. Двадцать лет на передовых рубежах геологии месторождений полезных ископаемых. Научное издание. Миасс: Институт минералогии УрО РАН, 2014. 254 с.

2. Старикова Е. В., Журавлев А. В. Стратиграфическое положение и генезис марганцевых пород Надэйяхинского проявления, Пай-Хой. Осадочные бассейны, седиментационные и постседиментационные процессы в геологической истории. Материалы VII Всероссийского литологического совещания. (Новосибирск, 28-31 октября 2013 г.) В 3 т. Новосибирск: ИНГГ СО РАН, 2013. – Т. III. – 144- 148 с.

3. Старикова Е. В. Новое проявление силикатных марганцевых пород на Пай-Хое. Металлогения древних и современных океанов – 2012. Гидротермальные поля и руды. Миасс: ИМин УрО РАН, 2012. 90-93 с.

Статьи в журналах:

1. Кулешов В.Н., Брусницын А.И., Старикова Е.В. Месторождения марганца на Северо-Востоке Европейской части России и Урала: геохимия изотопов, генезис, эволюция рудогенеза // Геология рудных месторождений, 2014. № 5. С. 423–439.

2. Старикова Е. В., Завилейский Д. И. Геологическая позиция и вещественный состав фаменских марганцевых руд лемвинской зоны Пай-Хоя (на примере рудопроявлений нижнесиловской группы). Литология и полезные ископаемые, 2010, № 4, с. 383-400.

3. Старикова Е. В. Минералогия родонитовых пород Силоваяхинского проявления, Пай-Хой. Записки Российского Минералогического общества, 2011, Ч. 140, № 5, с. 75-91. 4. Старикова Е. В. Фаменская марганценосная формация Пай-Хоя. Литосфера, 2014, № 1, с. 58-80.

5. Angel R. J. The experimental determination of the johannsenite/bustamite equilibrium inversion boundary // Contrib. Mineral. Petrol. 1984. Vol. 85. P. 272–278.

6. Liou J. G., Maruyama S., Cho M. Phase equilibria and mineral parageneses of metabasites in low-grade metamorphism // Miner. Mag. 1985. Vol. 49. P. 321 – 333.

7. Maresch W. V., Mottana A. The pyroxmangite-rhodonite transformation for the MnSiO3 composition // Contrib. Miner. Petrol. 1976. Vol. 55. P. 69–79.

Рентгенограмма образца 1-1. Вмещающие породы, белый прослой

N пика	20 CuKa,	d, Å	Минерал	I/I _o	Эталон
	град				(JCPDD)
1	7.07	12.498	Монтмориллонит	1	12-0204
2	20.69	4.288	Кварц, монтмолориллонит	23	46-1045, 12-0204
3	23.08	3.851	Кальцит	7	24-0027
5	26.49	3.361	Кварц	100	46-1045
6	29.51	3.024	Кальцит	56	24-0027
7	36.10	2.486	Кальцит	<1	24-0027
8	36.46	2.463	Кварц	12	46-1045
9	39.38	2.286	Кальцит	7	24-0027
10	39.74	2.266	Монтмориллонит	2	12-0204, 17-0467
11	40.22	2.241	Кварц	3	46-1045
12	42.36	2.132	Кварц	3	46-1045
13	43.35	2.086	Кальцит	5	24-0027
14	45.69	1.984	Кварц	1	46-1045
16	47.73	1.904	Кальцит	8	24-0027
17	48.11	1.890	Монтмориллонит	<1	12-0204
18	48.70	1.868	Кальцит	4	24-0027
21	50.04	1.821	Кварц	5	46-1045
22	54.76	1.675	Кварц	1	46-1045

Результаты расчета рентгенограммы образца 1-1. Вмещающие породы, белый прослой

Продолжение приложения 1

23	55.19	1.663	Кварц	1	46-1045
24	57.66	1.597	Кальцит	2	24-0027
25	59.83	1.545	Кварц	3	46-1045
26	63.92	1.455	Кварц	<1	46-1045
28	67.60	1.385	Кварц	1	46-1045
29	67.99	1.378	Кварц	3	46-1045

2theta(deg) (CuKa)

Рентгенограмма образца 1-2. Вмещающие породы, серый прослой

N пика	20 CuKa,	d, Å	Минерал	I/I _o	Эталон
	град				(JCPDD)
1	7.31	12.081	Стильпномелан	8	71-6217
2	14.65	6.041	Стильпномелан	<1	71-6217
3	16.20	5.467	Стильпномелан	<1	71-6217
4	20.86	4.255	Кварц, стильпномелан	20	46-1045, 71-6217
5	22.00	4.037	Стильпномелан	1	71-6217
6	23.26	3.822	Стильпномелан	2	71-6217
7	23.85	3.728	Стильпномелан	<1	71-6217
8	24.62	3.612	Стильпномелан	<1	71-6217
9	26.30	3.386	Стильпномелан	2	71-6217
10	26.65	3.342	Кварц, стильпномелан	100	46-1045, 71-6217
11	29.75	3.001	Стильпномелан	27	71-6217
12	30.72	2.909	Стильпномелан	6	71-6217
13	32.01	2.794	Стильпномелан	1	71-6217
14	32.94	2.717	Стильпномелан	<1	71-6217

Результаты расчета рентгенограммы образца 1-2. Вмещающий слой, серый прослой

Продолжение приложения 2

15	34.92	2.568	Стильпномелан	1	71-6217
16	36.58	2.454	Кварц, стильпномелан	9	46-1045, 71-6217
17	37.12	2.420	Стильпномелан	<1	71-6217
18	38.28	2.350	Стильпномелан	<1	71-6217
19	39.49	2.280	Кварц, стильпномелан	6	46-1045, 71-6217
20	39.87	2.259	Стильпномелан	<1	71-6217
21	40.35	2.234	Кварц, стильпномелан	3	46-1045, 71-6217
22	40.85	2.207	Стильпномелан	<1	71-6217
23	42.51	2.125	Кварц, стильпномелан	3	46-1045, 71-6217
24	43.59	2.075	Стильпномелан	2	71-6217
25	44.03	2.055	Стильпномелан	<1	71-6217
26	44.68	2.026	Стильпномелан	<1	71-6217
27	45.84	1.978	Кварц, стильпномелан	1	46-1045, 71-6217
28	48.11	1.890	Стильпномелан	6	71-6217
29	49.11	1.854	Стильпномелан	<1	71-6217
30	50.18	1.817	Кварц, стильпномелан	7	46-1045, 71-6217
31	50.70	1.799	Кварц, стильпномелан	<1	46-1045, 71-6217
32	53.01	1.726	Стильпномелан	<1	71-6217
33	54.90	1.671	Кварц, стильпномелан	1	46-1045, 71-6217
34	55.35	1.659	Кварц, стильпномелан	<1	46-1045, 71-6217
35	57.91	1.591	Кварц, стильпномелан	3	46-1045, 71-6217
36	59.98	1.541	Кварц, стильпномелан	4	46-1045, 71-6217
37	60.14	1.537	Стильпномелан	<1	71-6217
38	64.04	1.453	Кварц, стильпномелан	<1	46-1045, 71-6217
39	67.74	1.382	Кварц, стильпномелан	2	46-1045, 71-6217
40	68.16	1.375	Кварц, стильпномелан	2	46-1045, 71-6217
41	68.31	1.372	Кварц, стильпномелан	1	46-1045, 71-6217
1	1	1		1	1

2theta(deg) (CuKa)

Рентгенограмма образца 1-3. Вмещающие породы, черный прослой

N пика	20 CuKa,	d, Å	Минерал	I/I _o	Эталон
	град				(JCPDD)
1	7.17	12.311	Стильпномелан	35	71-6217
2	18.60	4.766	Стильпномелан	<1	71-6217
3	20.26	4.379	Стильпномелан	<1	71-6217
4	20.73	4.281	Кварц	24	46-1045
5	21.88	4.058	Стильпномелан	5	71-6217
6	24.78	3.590	Стильпномелан	3	71-6217
7	26.53	3.357	Кварц, стильпномелан	100	46-1045, 71-62177
8	27.95	3.190	Стильпномелан	1	71-6217
9	29.42	3.034	Стильпномелан	1	71-6217
10	30.54	2.925	Стильпномелан	3	71-6217
11	31.94	2.800	Стильпномелан	3	71-6217
12	32.17	2.780	Стильпномелан	<1	71-6217
13	32.89	2.721	Стильпномелан	1	71-6217
14	34.81	2.575	Стильпномелан	4	71-6217
15	36.46	2.462	Кварц	5	46-1045
16	38.18	2.356	Стильпномелан	1	71-6217
17	38.36	2.345	Стильпномелан	<1	71-6217
18	39.40	2.285	Кварц	3	46-1045
19	40.21	2.241	Кварц	1	46-1045
20	40.28	2.237	Стильпномелан	<1	71-6217
21	42.37	2.131	Кварц	4	46-1045
22	42.70	2.116	Стильпномелан	<1	71-6217

Результаты расчета рентгенограммы образца 1-3. Вмещающие породь	, черный прослой

Продолжение приложения 3

23	45.71	1.983	Кварц	2	46-1045
24	48.19	1.887	Стильпномелан	<1	71-6217
25	50.06	1.821	Кварц	8	46-1045
26	54.37	1.686	Стильпномелан	<1	71-6217
27	54.77	1.675	Кварц	1	46-1045
28	55.25	1.661	Кварц	<1	46-1045
29	58.00	1.589	Стильпномелан	<1	71-6217
30	58.50	1.577	Стильпномелан	2	71-6217
31	59.85	1.544	Кварц	4	46-1045
32	64.07	1.452	Стильпномелан	<1	71-6217
33	67.66	1.384	Кварц	1	46-1045
34	68.09	1.376	Кварц	5	46-1045
35	68.24	1.373	Кварц, стильпномелан	1	71-6217

Рентгенограмма образца 2. Вмещающие породы, серый слой

N пика	20 CuKa,	d, Å	Минерал І/Іо		Эталон
	град				(JCPDD)
1	8.90	9.928	Мусковит 2		82-0576
2	17.83	4.971	Мусковит	<1	82-0576
3	19.75	4.492	Мусковит	1	82-0576
4	20.88	4.251	Кварц	20	46-1045
5	22.86	3.888	Мусковит	2	82-0576
6	23.77	3.741	Мусковит	<1	82-0576
7	25.51	3.489	Мусковит <1		82-0576
8	26.67	3.339	Кварц, мусковит	100	46-1045, 82-0576
9	27.89	3.196	Мусковит	1	82-0576
10	29.88	2.988	Мусковит	<1	82-0576
11	31.29	2.856	Мусковит	<1	82-0576
12	32.16	2.781	Мусковит	<1	82-0576
13	34.48	2.599	Мусковит	1	82-0576
14	34.89	2.570	Мусковит	<1	82-0576
15	36.61	2.453	Кварц, мусковит	6	46-1045, 82-0576
16	37.55	2.393	Мусковит	<1	82-0576
17	39.54	2.277	Кварц, мусковит	5	46-1045, 82-0576
18	40.36	2.233	Кварц, мусковит	2	46-1045, 82-0576

Результаты расчета рентгенограммы образца 2. Вмещающие породы, серый слой

Продолжение приложения 4

10	12.52	2.124		4	16 1045 82 0576
19	42.55	2.124	Кварц, мусковит	4	40-1045, 82-0576
20	45.00	1.983	Кварц	2 1	40-1043
21	45.87	1.977	Мусковит	1	82-05/6
22	50.20	1.816	Кварц	9	46-1045
23	54.93	1.670	Кварц	2	46-1045
24	55.34	1.659	Кварц, мусковит	1	46-1045, 82-0576
25	55.54	1.653	Мусковит	<1	82-0576
26	57.27	1.607	Кварц	<1	46-1045
27	59.99	1.541	Кварц	5	46-1045
28	60.12	1.538	_	<1	
29	61.43	1.508	Мусковит	<1	82-0576
30	64.07	1.452	Кварц, мусковит	<1	46-1045, 82-0576
31	64.23	1.449	Мусковит	<1	82-0576
32	65.81	1.418	Кварц, мусковит	<1	46-1045, 82-0576
33	66.06	1.413	Мусковит	<1	82-0576
34	67.78	1.382	Кварц	3	46-1045
35	68.18	1.374	Кварц, мусковит	3	46-1045, 82-0576
36	68.34	1.371	Мусковит	2	82-0576
37	68.50	1.369	Мусковит	<1	82-0576
38	69.60	1.350	Мусковит	<1	82-0576
39	72.43	1.304	Мусковит	<1	82-0576
40	73.50	1.287	Кварц, мусковит	<1	46-1045, 82-0576
41	73.73	1.284	Мусковит	<1	82-0576
42	75.69	1.256	Кварц, мусковит	1	46-1045, 82-0576
43	75.94	1.252	Мусковит	<1	82-0576
44	77.70	1.228	Кварц, мусковит	<1	46-1045, 82-0576
45	77.97	1.224	Мусковит	<1	82-0576
46	79.90	1.200	Кварц, мусковит	1	46-1045, 82-0576

Zuleu(ueg) (Cultu)

Рентгенограмма образца 3-1. Вмещающие карбонатно-кварцевые породы, черный прослой

Результаты расчета рентгенограммы образца 3-1. Вмещающие карбонатно-кварцевые породы, черный прослой

N пика	20 CuKa,	d, Å	Минерал	I/I _o	Эталон
	град				(JCPDD)
1	20.86	4.254	Кварц	4	46-1045
2	22.01	4.035	Кутногорит	1	11-0345
3	23.15	3.839	Кальцит	2	24-0027
4	23.91	3.719	Кутногорит	9	11-0345
5	26.66	3.341	Кварц	20	46-1045
6	29.67	3.009	Кальцит	11	24-0027
7	30.75	2.905	Кутногорит	100	11-0345
8	33.31	2.688	Кутногорит	1	11-0345
9	34.96	2.565	Кутногорит	<1	11-0345
10	36.55	2.456	Кварц	<1	46-1045
11	37.15	2.418	Кутногорит	8	11-0345
12	39.45	2.282	Кварц, кальцит	2	46-1045, 24-0027
13	41.04	2.197	Кутногорит	14	11-0345
14	42.50	2.125	Кварц	<1	46-1045
15	44.72	2.025	Кутногорит	8	11-0345

Продолжение приложения 5

16	45.84	1.978	Кварц	<1	46-1045
17	49.13	1.853	Кутногорит, кальцит	1	11-0345, 24-0027
18	50.20	1.816	Кутногорит, кварц	27	11-0345, 46-1045

2theta(deg) (CuKa)

Рентгенограмма образца 3-2. Вмещающие карбонатно-кварцевые породы, серая масса

Результаты расчета рентгенограммы образца 3-2. Вмещающие карбонатно-кварцевые породы, се	ерая
масса	

N пика	20 CuKa,	d, Å	Минерал	I/I _o	Эталон
	град				(JCPDD)
1	8.84	9.996	Мусковит	1	82-0675
2	17.78	4.984	Мусковит	<1	82-0675
3	19.66	4.511	Мусковит	<1	82-0675
4	20.82	4.264	Кварц	20	46-1045
5	22.80	3.898	Мусковит	<1	82-0675
6	23.84	3.730	Мусковит	<1	82-0675
7	26.61	3.347	Кварц, мусковит	100	46-1045, 82-0675
8	27.84	3.202	Мусковит	<1	82-0675
9	29.53	3.023	Мусковит	5	82-0675
10	30.75	2.905	Мусковит	8	82-0675
11	34.44	2.602	Мусковит	<1	82-0675
12	34.87	2.571	Мусковит	<1	82-0675
13	36.19	2.480	Мусковит	<1	82-0675
14	36.55	2.457	Кварц, мусковит	5	46-1045, 82-0675
15	37.13	2.420	Мусковит	2	82-0675

Продолжение приложения 6

16	37.34	2.407	Мусковит	<1	82-0675
17	39.49	2.280	Кварц, мусковит	5	46-1045, 82-0675
18	40.30	2.236	Кварц, мусковит	2	46-1045, 82-0675
19	40.88	2.206	Мусковит	1	82-0675
20	41.02	2.199	Мусковит	<1	82-0675
21	42.47	2.127	Кварц, мусковит	4	46-1046, 82-0675
22	45.80	1.980	Кварц, мусковит	3	46-1045, 82-0675
23	47.95	1.895	Мусковит	<1	82-0675
24	48.82	1.864	Мусковит	<1	82-0675
25	50.14	1.818	Кварц	8	46-1045
26	50.41	1.809	Кварц, мусковит	5	46-1045, 82-0675
27	50.76	1.797	Мусковит	<1	82-0675
28	54.86	1.672	Кварц, мусковит	2	46-1045, 82-0675
29	55.02	1.668	Мусковит	<1	82-0675
30	55.30	1.660	Кварц, мусковит	1	46-1045, 82-0675
31	55.46	1.656	Мусковит	<1	82-0675
32	59.94	1.542	Кварц, мусковит	6	46-1045, 82-0675
33	61.45	1.508	Мусковит	<1	82-0675
34	64.01	1.453	Кварц	1	46-1045
35	64.20	1.450	Мусковит	<1	82-0675
36	65.77	1.419	Кварц, мусковит	<1	46-1045, 82-0675
37	67.72	1.382	Кварц, мусковит	3	46-1045, 82-0675
38	67.92	1.379	Мусковит	<1	82-0675
39	68.12	1.375	Кварц, мусковит	3	46-1045, 82-0675
40	68.48	1.369	Мусковит	<1	82-0675
41	69.74	1.347	Мусковит	<1	82-0675
42	73.45	1.288	Кварц, мусковит	1	46-1045, 82-0675
43	73.69	1.285	Мусковит	<1	82-0675
44	75.64	1.256	Кварц, мусковит	1	46-1045, 82-0675
45	75.87	1.253	Мусковит	<1	82-0675
46	77.64	1.229	Кварц, мусковит	<1	46-1045, 82-0675
47	77.92	1.225	Мусковит	<1	82-0675
48	79.86	1.200	Кварц, мусковит	2	46-1045, 82-0675
49	81.16	1.184	Мусковит	1	82-0675
50	81.46	1.181	Кварц, мусковит	1	46-1045, 82-0675
51	83.81	1.153	Мусковит	<1	82-0675
	-	-		-	

2theta(deg) (CuKa)

Рентгенограмма образца 3-3. Вмещающие породы, серо-черные полоски

N пика	20 CuKa,	d, Å	Минерал	I/I _o	Эталон
	град				(JCPDD)
1	8.89	9.941	Мусковит	2	82-0675
2	17.82	4.973	Мусковит	<1	82-0675
3	19.64	4.516	Мусковит	1	82-0675
4	20.86	4.255	Кварц	21	46-1045
5	22.89	3.881	Мусковит	<1	82-0675
6	23.55	3.774	Мусковит	<1	82-0675
7	26.65	3.342	Кварц, мусковит	100 4 5	46-1045, 82-0675
8	27.92	3.193	Мусковит		82-0675
9	29.63	3.012	Мусковит		82-0675
10	31.30	2.856	Мусковит	<1	82-0675
11	33.04	2.709	Мусковит	<1	82-0675
12	34.55	2.594	Мусковит	<1	82-0675
13	34.94	2.566	Мусковит	<1	82-0675
14	36.22	2.478	Мусковит	<1	82-0675
15	36.59	2.454	Кварц	6	46-1045
16	37.07	2.423	Мусковит	<1	82-0675
17	39.53	2.278	Кварц, мусковит	4	46-1045, 82-0675
18	40.34	2.234	Кварц	2	46-1045
19	40.68	2.216	Мусковит	<1	82-0675

Результаты расчета рентгенограммы образца 3-3. Вмещающие породы, серо-черные полоски

Продолжение приложения 7

20	42.50	2.126	Кварц, мусковит	4	46-1045, 82-0675
21	45.83	1.978	Кварц, мусковит	3	46-1045, 82-0675
22	50.18	1.817	Кварц	9	46-1045
23	54.90	1.671	Кварц, мусковит	2	46-1045, 82-0675
24	55.34	1.659	Кварц, мусковит	1	46-1045, 82-0675
25	56.22	1.635	Мусковит	<1	82-0675
26	59.97	1.541	Кварц, мусковит	5	46-1045, 82-0675
27	61.51	1.506	Мусковит	<1	82-0675
28	61.74	1.501	Мусковит	<1	82-0675
29	64.04	1.453	Кварц	<1	46-1045
30	64.26	1.448	Мусковит	<1	82-0675
31	67.76	1.382	Кварц, мусковит	2	46-1045, 82-0675
32	67.98	1.378	Кварц	<1	46-1045
33	68.17	1.375	Кварц, мусковит	3	46-1045, 82-0675
34	68.32	1.372	Мусковит	<1	82-0675
35	73.47	1.288	Кварц, мусковит	<1	46-1045, 82-0675
36	73.71	1.284	Мусковит	<1	82-0675
37	75.68	1.256	Мусковит	1	82-0675
38	75.88	1.253	Мусковит	<1	82-0675
39	77.66	1.229	Кварц, мусковит	<1	46-1045, 82-0675
40	77.93	1.225	Мусковит	<1	82-0675
41	79.91	1.199	Кварц, мусковит	1	46-1045, 82-0675
42	81.19	1.184	Мусковит	1	82-0675
43	81.50	1.180	Мусковит	<1	82-0675
44	81.81	1.176	Мусковит	<1	82-0675
45	83.85	1.153	Мусковит	<1	82-0675

Рентгенограмма образца 4300-51. Основная масса породы

N пика	20 СиКа, град	d, Å	Минерал	I/I _o	Эталон
					(JCPDD)
1	12.41	7.1240	Хлорит	1	02-0028
2	20.92	4.2423	Кварц	19	46-1045
3	24.81	3.5852	Сидерит, хлорит	4	03-0746, 02-0028
4	26.71	3.3345	Кварц	100	46-1045
5	30.61	2.9180	Хлорит	1	02-0028
6	32.06	2.7894	Сидерит	15	03-0746
7	36.64	2.4508	Кварц	8	46-1045
8	38.38	2.3432	Сидерит	2	03-0746
9	39.58	2.2751	Кварц	6	46-1045
10	40.41	2.2300	Кварц	3	46-1045
11	42.52	2.1241	Кварц	7	46-1045
12	45.88	1.9761	Кварц	3	46-1045
13	46.18	1.9642	Сидерит	2	03-0746
14	50.21	1.8156	Кварц	12	46-1045
15	52.75	1.7339	Сидерит	3	03-0746
16	54.94	1.6698	Кварц	4	46-1045
17	55.39	1.6575	Кварц	1	46-1045
18	60.02	1.5399	Кварц	8	46-1045
19	61.45	1.5076	Сидерит	1	03-0746
20	64.11	1.4515	Кварц	1	46-1045
21	65.51	1.4238	Кварц	<1	46-1045
22	67.81	1.3809	Кварц	4	46-1045
23	68.21	1.3738	Сидерит	4	03-0746
24	68.37	1.3709	Кварц	4	46-1045

Результаты расчета рентгенограммы образца 4300-51. Основная масса породы

 $2theta(deg) \ (CuK\alpha)$

Рентгенограмма образца 4300-8. Черная масса с зеленоватым отливом

N пика	2Ө СиКа, град	d, Å	Минерал	I/I _o	Эталон
					(JCPDD)
1	21.02	4.222	Кварц	18	46-1045
2	26.82	3.322	Кварц	100	46-1045
3	36.73	2.445	Кварц	8	46-1045
4	39.66	2.271	Кварц	7	46-1045
5	40.49	2.226	Кварц	4	46-1045
6	42.64	2.119	Кварц	5	46-1045
7	45.99	1.972	Кварц	3	46-1045
8	50.31	1.812	Кварц	12	46-1045
9	55.04	1.667	Кварц	4	46-1045
10	55.48	1.655	Кварц	1	46-1045
11	57.37	1.605	Кварц	<1	46-1045
12	60.11	1.538	Кварц	8	46-1045
13	64.19	1.450	Кварц	1	46-1045
14	65.93	1.416	Кварц	<1	46-1045
15	67.89	1.379	Кварц	4	46-1045
16	68.29	1.372	Кварц	5	46-1045
17	68.46	1.369	Кварц	3	46-1045

Результаты расчета рентгенограммы образца 4300-8. Черная масса с зеленоватым отливом

2theta(deg) (CuKa)

Рентгенограмма образца 4300-7а. Светло-серая тонко-полосчатая масса

Рез	ультаты	расчета	рентгеног	раммы об	бразца	4300-7a.	Светло-се	рая тонко	-полосчатая	масса
		1	1 .		1 1			1		

N пика	20 СиКа, град	d, Å	Минерал	I/I _o	Эталон
					(JCPDD)
1	21.00	4.226	Кварц	17	46-1045
2	23.91	3.719	Кутногорит	5	11-0345
3	24.50	3.630	Родохрозит	5	44-1472
4	26.80	3.324	Кварц	100	46-1045
5	30.65	2.915	Кутногорит	34	11-0345
6	31.69	2.821	Родохрозит	23	44-1472
7	36.72	2.446	Кварц	8	46-1045
8	37.08	2.422	Кутногорит	4	79-1347
9	37.92	2.371	Родохрозит	3	44-1472
10	39.64	2.272	Кварц	6	46-1045
11	40.46	2.228	Кварц	4	46-1045
12	40.76	2.212	Кутногорит	4	11-0345
13	41.88	2.155	Родохрозит	2	44-1472
14	42.64	2.119	Кварц	5	46-1045
15	44.66	2.027	Кутногорит	5	11-0345
16	45.61	1.987	Родохрозит	2	44-1472
17	45.98	1.972	Кварц	5	46-1045
18	49.89	1.827	Кутногорит	3	11-0345
19	50.32	1.812	Кварц	15	46-1045
20	52.06	1.755	Родохрозит, кутногорит	4	44-1472,11-0345
21	55.02	1.668	Кварц	4	46-1045
22	55.42	1.656	Кварц	5	46-1045
23	59.32	1.557	Родохрозит, кутногорит	1	44-1472,11-0345
24	60.10	1.538	Кварц	8	46-1045
25	62.75	1.479	Кутногорит	<1	11-0345
26	64.18	1.450	Кварц	2	46-1045

27	67.89	1.379	Кварц	5	46-1045
28	68.30	1.372	Кварц	4	46-1045
29	68.46	1.369	Кварц	4	46-1045

Рентгенограмма образца 4300-76. Темно-коричневая тонко-полосчатая масса с пиритом

Результаты расчета рентгенограммы	образца 4300-76	б. Темно-коричневая тонко-полосчатая
	масса с пиритов	Μ

N пика	20 СиКа, град	d, Å	Минерал	I/I _o	Эталон
					(JCPDD)
1	12.56	7.042	Пироксмангит, хлорит	18	29-0895, 02-0028
2	18.92	4.688	Хлорит	3	02-0028
3	21.01	4.225	Кварц	4	46-1046
4	21.43	4.144	Пироксмангит	2	29-0895
5	24.09	3.692	Родохрозит	4	44-1472
6	24.65	3.608	Хлорит	31	02-0028
7	25.27	3.522	Пироксмангит	17	29-0895
8	26.71	3.335	Кварц, пироксмангит	15	46-1045
9	30.49	2.930	Пироксмангит	2	29-0895
10	31.19	2.865	Хлорит	44	02-0028
11	31.77	2.814	Родохрозит	100	44-1472
12	34.56	2.594	Хлорит, родохрозит	3	02-0028, 44-1472
13	36.82	2.439	Кварц, хлорит	3	46-1045, 02-0028
14	38.09	2.361	Хлорит, родохрозит	11	02-0028, 44-1472
15	41.04	2.198	Родохрозит	3	44-1472
16	41.99	2.150	Кварц, пироксмангит	14	46-1045, 29-0895
17	45.00	2.009	Хлорит, родохрозит	6	02-0028, 44-1472
18	45.75	1.982	Кварц	13	46-1045
19	50.38	1.810	Кварц, пироксмангит	7	46-1045, 29-0895
20	52.28	1.749	Хлорит, родохрозит	20	02-0028, 44-1472
21	58.94	1.566	Родохрозит, пироксмангит	2	44-1472, 29-0895
22	59.77	1.546	Кварц, хлорит	9	46-1045, 02-0028
23	61.02	1.517	Хлорит, пироксмангит	7	02-0028, 29-0895
24	64.69	1.440	Хлорит	2	02-0028

2theta(deg) (CuK α)

Рентгенограмма образца 4300-42а. Черная скрытокристаллическая масса

N пика	20 СиКа, град	d, Å	Минерал	I/I _o	Эталон
		,			(JCPDD)
1	7.39	11.948	Стильпномелан	23	71-6217
2	8.82	10.013	Биотит	26	42-1437
3	19.21	4.616	Биотит, стильпномелан	4	42-1437, 71-6217
4	19.51	4.546	Биотит	4	17-0467
5	20.99	4.227	Кварц	2	46-1045
6	22.11	4.017	Стильпномелан, доломит	6	71-6217, 36-0426
7	24.21	3.674	Биотит, доломит	31	42-1437, 36-0426
8	26.52	3.358	Биотит, стильпномелан	24	42-1437, 71-6217
9	26.69	3.337	Кварц	21	46-1045
10	28.43	3.137	Стильпномелан	3	71-6217
11	29.68	3.007	Стильпномелан	18	71-6217
12	30.54	2.925	Биотит, кутногорит	95	42-1437, 11-0345
13	31.33	2.853	Доломит, стильпномелан	100	36-0426, 71-6217
14	33.05	2.708	Доломит, кутногорит	6	36-0426, 11-0345
15	34.17	2.622	Биотит, стильпномелан	13	42-1437, 71-6217
16	34.98	2.563	Кутногорит	10	11-0345
17	36.87	2.436	Доломит, кутногорит	19	36-0426, 11-0345
18	37.71	2.384	Стильпномелан	4	71-6217
19	40.68	2.216	Доломит, кутногорит	18	36-0426, 11-0345
20	41.51	2.173	Биотит, стильпномелан	26	42-1437, 71-6217
21	44.44	2.037	Доломит, кутногорит	10	36-0426, 11-0345
22	45.33	1.999	Биотит, стильпномелан	14	42-1437, 71-6217
23	48.89	1.862	Доломит, кутногорит	5	36-0426, 11-0345
24	50.03	1.822	Доломит	14	36-0426
25	51.72	1.766	Доломит, кутногорит	11	36-0426, 11-0345

Результаты расчета рентгенограммы образца 4300-42а. Черная скрытокристаллическая масса

26	54.72	1.676	Биотит, стильпномелан	8	42-1437, 71-6217
27	58.29	1.582	Доломит	2	36-0426
28	59.20	1.559	Доломит, кутногорит	6	36-0426, 11-0345
29	59.92	1.543	Биотит, доломит	7	42-1437, 36-0426

Рентгенограмма образца 4300-426. Темно-серые линзочки с просечками

N пика	20 СиКа, град	d, Å	Минерал	I/I _o	Эталон
	-				(JCPDD)
1	7.44	11.868	Стильпномелан	1	71-6217
2	24.30	3.659	Родохрозит	31	44-1472
3	26.75	3.331	Стильпномелан	2	71-6217
4	28.47	3.132	Стильпномелан	2	71-6217
5	30.52	2.926	Кутногорит	38	11-0345
6	31.09	2.874	Доломит	68	36-0426
7	31.47	2.840	Родохрозит	100	44-1472
8	37.05	2.424	Доломит, стильпномелан	2	36-0426, 71-6217
9	37.67	2.386	Родохрозит, кутногорит	15	44-1472, 11-0345
10	40.63	2.219	Кутногорит, доломит	1	11-0345, 36-0426
11	41.51	2.174	Родохрозит, стильпномелан	15	44-1472, 71-6217
12	44.44	2.037	Кутногорит, доломит	2	11-0345, 36-0426
13	45.29	2.001	Родохрозит	14	44-1472
14	49.68	1.834	Родохрозит, кутногорит	17	44-1472, 11-0345
15	50.82	1.795	Кутногорит	22	11-0345
16	51.83	1.763	Родохрозит, кутногорит	39	44-1472, 11-0345
17	59.22	1.559	Родохрозит, кутногорит	2	44-1472, 11-0345
18	60.17	1.537	Родохрозит, кутногорит	6	44-1472, 11-0345
19	62.91	1.476	Родохрозит, кутногорит	1	44-1472, 11-0345
20	63.85	1.457	Родохрозит, кутногорит	4	44-1472, 11-0345
21	67.99	1.378	Родохрозит, кутногорит	2	44-1472, 11-0345

Результаты расчета рентгенограммы образца 4300-426. Темно-серые линзочки с просечками

 $2theta(deg) \ (CuK\alpha)$

Рентгенограмма образца 4300-2а. Темно-серые неясно-полосчатые прослои

N пика	20 СиКа, град	d, Å	Минерал	I/I _o	Эталон
	_		_		(JCPDD)
1	16.56	5.348	Кутногорит	1	11-0345
2	20.95	4.238	Кварц	13	46-1045
3	23.87	3.725	Кутногорит	15	11-0345
4	26.72	3.333	Кварц	79	46-1045
5	30.71	2.909	Кутногорит	100	11-0345
6	33.15	2.700	Кутногорит	1	11-0345
7	36.66	2.449	Кварц	6	46-1045
8	37.09	2.422	Кутногорит	12	11-0345
9	39.58	2.275	Кварц	5	46-1045
10	40.45	2.228	Кварц	4	46-1045
11	40.76	2.212	Кутногорит	13	11-0345
12	42.56	2.123	Кварц	4	46-1045
13	44.67	2.027	Кутногорит	13	11-0345
14	45.91	1.975	Кварц	3	46-1045
15	48.97	1.859	Кутногорит	4	11-0345
16	50.14	1.818	Кварц, кутногорит	5	46-1045, 11-0345
17	50.41	1.809	Кварц, кутногорит	10	46-1045, 11-0345
18	54.97	1.669	Кварц	3	46-1045
19	55.40	1.657	Кварц	1	46-1045
20	58.46	1.578	Кутногорит	1	11-0345
21	59.25	1.558	Кутногорит	4	11-0345

Результаты расчета рентгенограммы образца 4300-2а. Темно-серые неясно-полосчатые прослои

Продолжение приложения 14

22	60.02	1.540	Кварц	6	46-1045
23	62.76	1.479	Кутногорит	2	11-0345
24	63.97	1.454	Кварц	1	46-1045
25	66.79	1.400	Кутногорит	2	11-0345
26	67.83	1.381	Кварц	3	46-1045
27	68.23	1.374	Кварц	4	46-1045

2theta(deg) (CuKa)

Рентгенограмма образца 4300-26. Темно-серый тонко-полосчатый прослой

N пика	20 СиКа град	đÅ	Минерац	I/L	Эталон
i v iniku	20 Curra, 1pug	и, А	winiepusi	1/ 10	(JCPDD)
1	12.81	6.908	Ортоклаз	<1	31-0966
2	16.65	5.319	Кутногорит	1	11-0345
3	21.12	4.203	Ортоклаз	2	31-0966
4	23.75	3.744	Кутногорит	1	11-0345
5	24.06	3.696	Родохрозит	15	44-1472
6	26.87	3.315	Ортоклаз	16	31-0966
7	30.85	2.896	Кутногорит	100	11-0345
8	31.80	2.812	Родохрозит	8	44-1472
9	33.32	2.687	Кутногорит	1	11-0345
10	37.35	2.406	Кутногорит	12	11-0345
11	37.83	2.376	Родохрозит, ортоклаз	2	44-1472, 31-0966
12	41.04	2.197	Кутногорит	15	11-0345
13	41.62	2.168	Родохрозит	2	44-1472
14	44.80	2.021	Кутногорит	14	11-0345
15	45.42	1.995	Родохрозит	2	44-1472
16	49.03	1.857	Кутногорит	4	11-0345
17	49.82	1.829	Родохрозит	3	44-1472
18	50.48	1.806	Кутногорит, ортоклаз	18	11-0345, 31-0966
19	51.08	1.787	Кутногорит	5	11-0345
20	58.78	1.570	Кутногорит	1	11-0345
21	59.46	1.553	Кутногорит, родохрозит	4	11-0345, 44-1472
22	61.40	1.509	Кутногорит	1	11-0345

Результаты расчета рентгенограммы образца 4300-26. Темно-серый тонко-полосчатый прослой

23	62.86	1.477	Кутногорит	3	11-0345
24	64.28	1.448	Кутногорит	1	11-0345
25	67.04	1.395	Ортоклаз	3	31-0966
26	67.41	1.388	Кутногорит	1	11-0345

 $2theta(deg) \ (CuK\alpha)$

Рентгенограмма образца 4300-3а. Серая тонко-полосчатая масса

N пика	20 СиКа, град	d, Å	Минерал	I/I _o	Эталон
		-	-		(JCPDD)
1	8.76	10.092	Биотит	3	42-1437
2	20.87	4.250	Кварц	10	46-1045
3	23.70	3.751	Кутногорит	16	11-0345
4	24.18	3.677	Родохрозит, биотит	4	44-1472, 42-1437
5	26.66	3.341	Кварц, биотит	64	46-1045, 42-1437
6	30.55	2.924	Кутногорит	100	11-0345
7	31.20	2.864	Родохрозит	22	44-1472
8	33.00	2.712	Кутногорит	1	11-0345
9	34.13	2.625	Биотит	2	42-1437
10	36.63	2.451	Кварц, биотит	8	46-1045, 42-1437
11	36.91	2.434	Кутногорит	14	11-0345
12	39.54	2.277	Кварц, биотит	4	46-1045, 42-1437
13	40.76	2.212	Кутногорит	16	11-0345
14	41.46	2.176	Родохрозит, биотит	3	44-1472, 42-1437
15	42.47	2.127	Кварц	3	46-1045
16	44.53	2.033	Кутногорит	14	11-0345
17	45.22	2.004	Родохрозит, биотит	2	44-1472, 42-1437
18	48.67	1.869	Кутногорит	2	11-0345
19	49.51	1.840	Родохрозит, биотит	2	44-1472, 42-1437
20	50.10	1.819	Кутногорит	15	11-0345
21	50.47	1.807	Кутногорит	11	11-0345
22	51.44	1.775	Кутногорит, родохрозит	4	11-0345, 44-1472

Результаты расчета рентгенограммы образца 4300-3а. Серая тонко-полосчатая масса

23	54.90	1.671	Кварц, биотит	2	46-1045, 42-1437
24	58.38	1.579	Кутногорит	1	11-0345
25	59.24	1.559	Кутногорит, родохрозит	4	11-0345, 44-1472
26	59.95	1.542	Кварц, биотит	5	46-1045, 42-1437
27	62.61	1.483	Кутногорит	2	11-0345
28	63.98	1.454	Кутногорит	2	11-0345
29	66.62	1.403	Кутногорит	2	11-0345
30	67.78	1.381	Кварц, родохрозит	3	46-1045, 44-1472
31	68.15	1.375	Кварц, биотит	4	46-1045, 42-1437

2theta(deg) (CuKa)

Рентгенограмма образца 4300-36. Светло-желтая линза

Результаты расчета рентгенограммы образца 4300-36. Светло-желтая линза

N пика	20 СиКа, град	d, Å	Минерал	I/I _o	Эталон
					(JCPDD)
1	20.88	4.251	Кварц	7	46-1045
2	24.05	3.697	Кутногорит	12	11-0345
3	24.29	3.662	Родохрозит	24	44-1472
4	26.66	3.341	Кварц	44	46-1045
5	30.55	2.924	Кутногорит	39	11-0345
6	31.43	2.844	Родохрозит	100	44-1472
7	36.87	2.436	Кварц, кутногорит	5	46-1045, 11-0345
8	37.64	2.388	Родохрозит	12	44-1472
9	39.51	2.279	Кварц	3	46-1045
10	40.60	2.220	Кварц, кутногорит	5	46-1045, 11-0345
11	41.53	2.172	Родохрозит	10	44-1472
12	44.49	2.035	Кутногорит, родохрозит	5	79-1347, 44-1472
13	45.28	2.001	Родохрозит	13	44-1472
14	49.90	1.826	Родохрозит, кутногорит	7	44-1472, 11-0345
15	50.29	1.813	Кварц, кутногорит	6	46-1045, 11-0345
16	51.69	1.767	Родохрозит	19	44-1472
17	59.97	1.541	Родохрозит	3	44-1472
18	60.24	1.535	Кварц, родохрозит	5	46-1045, 44-1472
19	64.07	1.452	Кварц, родохрозит	3	46-1045, 44-1472
20	65.88	1.417	Кварц, родохрозит	1	46-1045, 44-1472
21	67.76	1.382	Родохрозит	2	44-1472
22	68.14	1.375	Кварц, родохрозит	3	46-1045, 44-1472
23	72.02	1.310	Родохрозит, кутногорит	1	44-1472, 11-0345

Рентгенограмма образца 4300-3в. Ясно-полосчатый серо-белый слой

Результаты	прасчета	рентгенограммы	образца 430)-3в. 9	Ясно-полосчатый	і серо-белн	ый слой
------------	----------	----------------	-------------	---------	-----------------	-------------	---------

N пика	20 СиКа, град	d, Å	Минерал	I/I _o	Эталон
					(JCPDD)
1	20.81	4.264	Кварц	17	46-1045
2	23.69	3.753	Кутногорит	1	11-0345
3	26.59	3.349	Кварц	100	46-1045
4	30.52	2.927	Кутногорит	9	11-0345
5	36.53	2.458	Кварц	7	46-1045
6	36.87	2.436	Кутногорит	1	11-0345
7	39.46	2.282	Кварц	7	46-1045
8	40.28	2.237	Кварц	3	46-1045
9	40.60	2.220	Кутногорит	1	11-0345
10	42.44	2.128	Кварц	5	46-1045
11	44.47	2.036	Кутногорит	1	11-0345
12	45.78	1.980	Кварц	3	46-1045
13	49.92	1.825	Кварц,	2	46-1045, 11-0345
14	50.11	1.819	Кварц,	11	46-1045, 11-0345
15	54.84	1.673	Кварц	3	46-1045
16	55.29	1.660	Кварц	1	46-1045
17	59.29	1.557	Кутногорит	<1	11-0345
18	59.92	1.543	Кварц	7	46-1045
19	63.99	1.454	Кварц	1	46-1045
20	65.76	1.419	Кварц	<1	46-1045
21	66.57	1.404	Кутногорит	<1	11-0345
22	67.71	1.383	Кварц	4	46-1045
23	68.11	1.376	Кварц	5	46-1045
24	68.28	1.373	Кварц	2	46-1045
25	73.43	1.289	Кварц	1	46-1045
26	75.62	1.257	Кварц	2	46-1045

27	77.63	1.229	Кварц	1	46-1045
28	79.83	1.205	Кварц	2	46-1045

Рентгенограмма образца 4300-3г. Розовато-серый прослой

Результаты расчета рентгенограммы обр	разца 4300-3г. Розовато-серый прослой
---------------------------------------	---------------------------------------

N пика	20 СиКа, град	d, Å	Минерал	I/I _o	Эталон
					(JCPDD)
1	20.84	4.260	Кварц	17	46-1045
2	23.71	3.750	Кутногорит	1	11-0345
3	26.62	3.346	Кварц	100	46-1045
4	30.52	2.927	Кутногорит	4	11-0345
5	31.70	2.821	Родохрозит	2	44-1472
6	36.54	2.457	Кварц	8	46-1045
7	39.48	2.281	Кварц	7	46-1045
8	40.28	2.237	Кварц	3	46-1045
9	42.48	2.127	Кварц	5	46-1045
10	44.51	2.034	Кутногорит, родохрозит	1	11-0345, 44-1472
11	45.81	1.979	Кварц	4	46-1045
12	50.14	1.818	Кварц, кутногорит	11	46-1045, 11-0345
13	54.86	1.672	Кварц	3	46-1045
14	55.32	1.659	Кварц	1	46-1045
15	59.78	1.546	Кутногорит, родохрозит	<1	11-0345, 44-1472
16	59.95	1.542	Кварц, родохрозит	7	46-1045, 44-1472
17	64.02	1.453	Кварц, родохрозит	1	46-1045, 44-1472
18	65.68	1.420	Кварц, родохрозит	<1	46-1045, 44-1472
19	67.74	1.382	Кварц, родохрозит	4	46-1045, 44-1472
20	68.13	1.375	Кварц	5	46-1045
21	68.31	1.372	Кварц	2	46-1045
22	73.46	1.288	Кварц, родохрозит	1	46-1045, 44-1472
23	75.65	1.256	Кварц, родохрозит	2	46-1045, 44-1472
24	77.66	1.229	Кварц, родохрозит	1	46-1045, 44-1472
25	79.87	1.200	Кварц, родохрозит	2	46-1045, 44-1472
26	81.16	1.184	Кварц	1	46-1045
27	81.47	1.180	Кварц	2	46-1045
28	83.82	1.153	Кварц	1	46-1045

2theta(deg) (CuK α)

Рентгенограмма образца 4300-26а. Темно-серая тонко-полосчатая масса

N пика	20 СиКа, град	d, Å	Минерал	I/I _o	Эталон
	_		_		(JCPDD)
1	8.76	10.090	Биотит	2	42-1437
2	24.24	3.669	Родохрозит	25	44-1472
3	26.51	3.359	Биотит	3	42-1437
4	31.10	2.874	Доломит	14	36-0426
5	31.35	2.851	Родохрозит	100	44-1472
6	34.26	2.615	Родохрозит	2	44-1472
7	37.23	2.413	Биотит	3	42-1437
8	37.56	2.393	Родохрозит	13	44-1472
9	41.22	2.188	Доломит	2	36-0426
10	41.50	2.174	Родохрозит	14	44-1472
11	44.86	2.019	Доломит	3	36-0426
12	45.27	2.002	Родохрозит	14	44-1472
13	49.74	1.832	Родохрозит	4	44-1472
14	51.17	1.784	Доломит	2	36-0426
15	51.68	1.767	Родохрозит	22	44-1472
16	59.40	1.555	Доломит	1	36-0426
17	60.14	1.537	Родохрозит	5	44-1472
18	63.57	1.463	Родохрозит	1	44-1472
19	64.01	1.453	Родохрозит	3	44-1472
20	65.57	1.423	Родохрозит	1	44-1472
21	67.82	1.381	Родохрозит	2	44-1472

Рентгенограмма образца 4300-26б. Светло-бежевый тонко-полосчатый прослой

Результаты расчета рентгенограммы	и образца 4300-266.	Светло-бежевый	тонко-полосчатый
	прослой		

N пика	20 СиКа, град	d, Å	Минерал	I/I _o	Эталон
					(JCPDD)
1	12.19	7.256	Хлорит	6	02-0028
2	18.53	4.785	Хлорит	2	02-0028
3	24.25	3.668	Родохрозит	25	44-1472
4	24.96	3.565	Хлорит	3	02-0028
5	31.41	2.845	Родохрозит, хлорит	100	44-1472, 02-0028
6	34.47	2.600	Родохрозит, хлорит	2	44-1472, 02-0028
7	35.04	2.559	Хлорит	6	02-0028
8	37.57	2.392	Родохрозит, хлорит	14	44-1472, 02-0028
9	41.56	2.171	Родохрозит	13	44-1472
10	42.72	2.115	Пиролюзит	1	02-0567
11	45.29	2.001	Родохрозит, хлорит	14	44-1472, 02-0028
12	49.75	1.831	Родохрозит, хлорит	5	44-1472, 02-0028
13	51.78	1.764	Родохрозит	23	44-1472
14	54.56	1.681	Хлорит	1	02-0028
15	56.43	1.629	Пиролюзит	3	02-0567
16	60.38	1.532	Родохрозит, хлорит	5	44-1472, 02-0028
17	63.95	1.455	Родохрозит, хлорит	4	44-1472, 02-0028
18	65.47	1.424	Родохрозит, хлорит	1	44-1472, 02-0028
19	66.50	1.405	Родохрозит, хлорит	1	44-1472, 02-0028
20	67.86	1.380	Родохрозит, пиролюзит	3	44-1472, 02-0567

Рентгенограмма образца 4300-26в. Розовато-серый светлый прослой

Результ	аты расчета	рентгеногра	аммы образи	а 4300-26в.	Розовато-се	рый с	ветлый	трослой
1 03 3 31 D 1	arbi pue ieru	pennenorpe	ummbi oopusiq	a 1500 20D.	1 0505010 00			poonon

N пика	20 СиКа, град	d, Å	Минерал	I/I _o	Эталон
			_		(JCPDD)
1	8.71	10.147	Биотит	2	42-1437
2	12.30	7.190	Хлорит	1	02-0028
3	18.63	4.759	Пироксмангит	1	29-0895
4	24.28	3.662	Родохрозит	25	44-1472
5	26.37	3.378	Пироксмангит	2	29-0895
6	26.65	3.342	Биотит,	5	42-1437, 29-0895
7	31.39	2.847	Родохрозит	100	44-1472
8	34.33	2.610	Родохрозит, биотит	1	44-1472, 42-1437
9	37.61	2.390	Родохрозит	14	44-1472
10	41.54	2.172	Родохрозит, биотит	13	44-1472, 42-1437
11	45.33	1.999	Родохрозит, биотит	15	44-1472, 42-1437
12	49.76	1.831	Родохрозит	5	44-1472
13	51.68	1.767	Родохрозит	23	44-1472
14	60.21	1.536	Родохрозит, биотит	5	44-1472, 42-1437
15	64.09	1.452	Родохрозит	3	44-1472
16	65.50	1.424	Родохрозит	1	44-1472
17	67.92	1.379	Родохрозит	3	44-1472

2theta(deg) (CuKa)

Рентгенограмма образца 4300-26г. Серая плохо оконтуренная линза

DOMUTI TOTLI	nacitaria	neutreuor	naver of	manta	1300 26r	Conar	ππονο	OKOUTW	DOILIDO	TITIO
гсэультаты	pacycia	ренисног	раммы оч	разца	4500-201.	Ссрая	плоло	UKUHIY	ланая.	липза
2	1	1		1 '		-		~ 1		

N пика	20 СиКа, град	d, Å	Минерал	I/I _o	Эталон
			_		(JCPDD)
1	12.24	7.223	Фриделит	57	35-0572
2	16.75	5.288	Тефроит	6	35-0748
3	18.65	4.754	Пироксмангит	6	29-0895
4	19.96	4.446	Тефроит	4	35-0748
5	21.94	4.048	Тефроит	5	35-0748
6	23.07	3.853	Тефроит	5	35-0748
7	24.63	3.612	Фриделит, тефроит	72	35-0572, 35-0748
8	24.99	3.561	Пироксмангит	9	29-0895
9	26.58	3.351	Пироксмангит	4	29-0895
10	28.54	3.125	Тефроит	7	35-0748
11	31.14	2.870	Фриделит, тефроит	95	35-0572, 35-0748
12	31.57	2.831	Пироксмангит	11	29-0895
13	33.30	2.689	Тефроит	25	35-0748
14	33.83	2.647	Тефроит, пироксмангит	10	35-0748, 29-0895
15	34.44	2.602	Тефроит, пироксмангит	53	35-0748, 29-0895
16	35.10	2.555	Фриделит, тефроит	100	35-0572, 35-0748
17	36.74	2.444	Тефроит	12	35-0748
18	37.34	2.406	Фриделит	12	35-0572
19	37.78	2.379	Тефроит	10	35-0748
20	38.20	2.354	Тефроит, пироксмангит	9	35-0748, 29-0895
21	38.61	2.330	Тефроит	8	35-0748
22	40.52	2.224	Тефроит	6	35-0748
23	41.67	2.166	Пироксмангит	3	29-0895
24	42.72	2.115	Фриделит	18	35-0572
25	45.35	1.998	Тефроит	2	35-0748
26	45.96	1.973	Фриделит	4	35-0572
27	48.23	1.885	Тефроит	5	35-0748

20	10.00	1.055	TF 1	2	25 07 49 20 0005
28	49.09	1.855	Гефроит, пироксмангит	3	35-0748, 29-0895
29	50.35	1.811	Тефроит	44	35-0748
30	50.67	1.800	Тефроит	21	35-0748
31	52.83	1.732	Фриделит	6	35-0572
32	53.97	1.698	Тефроит	4	35-0748
33	54.40	1.685	Тефроит, пироксмангит	7	35-0748, 29-0895
34	54.66	1.678	Фриделит	11	35-0572
35	55.58	1.652	Тефроит, пироксмангит	4	35-0748, 29-0895
36	56.28	1.633	Фриделит	7	35-0572
37	56.61	1.625	Фриделит	3	35-0572
38	57.21	1.609	Тефроит, пироксмангит	3	35-0748, 29-0895
39	59.08	1.562	Тефроит, пироксмангит	14	35-0748, 29-0895
40	59.46	1.553	Тефроит	3	35-0748
41	60.09	1.539	Тефроит	10	35-0748
42	60.89	1.520	Фриделит	3	35-0572
43	62.75	1.479	Тефроит	3	35-0748
44	64.38	1.446	Фриделит	6	35-0572
45	64.73	1.439	Фриделит, пироксмангит	1	35-0572, 29-0895
46	65.06	1.433	Тефроит, пироксмангит	3	35-0748, 29-0895
47	66.87	1.398	Фриделит	2	35-0572
48	67.15	1.393	Тефроит, пироксмангит	2	35-0748, 29-0895
49	68.35	1.371	Фриделит, пироксмангит	3	35-0572, 29-0895
50	68.79	1.364	Фриделит	2	35-0572

2theta(deg) (CuKa)

Рентгенограмма образца 4300-26д. Бежевая матовая линза

N пика	20 СиКа, град	d, Å	Минерал	I/I _o	Эталон
		,	*		(JCPDD)
1	6.39	13.830	Сонолит	2	82-1455
2	12.31	7.182	Кариопилит	17	41-1446
3	16.75	5.288	Тефроит	6	35-0748
4	19.54	4.540	Сонолит	1	82-1455
5	19.98	4.440	Тефроит	6	35-0748
6	22.01	4.035	Тефроит	8	35-0748
7	23.04	3.858	Тефроит, сонолит	4	35-0748, 82-1455
8	24.34	3.654	Кариопилит	8	41-1446
9	24.65	3.608	Тефроит, сонолит	54	35-0748, 82-1455
10	26.71	3.335	Сонолит	2	82-1455
11	28.63	3.115	Тефроит	7	35-0748
12	31.27	2.858	Тефроит, сонолит	100	35-0748, 82-1455
13	33.34	2.686	Тефроит, сонолит	29	35-0748, 82-1455
14	33.82	2.648	Тефроит, сонолит	10	35-0748, 82-1455
15	34.49	2.598	Тефроит, сонолит	55	35-0748, 82-1455
16	35.17	2.550	Тефроит	82	35-0748
17	36.83	2.438	Тефроит, кариопилит	16	35-0748, 41-1446
18	37.33	2.407	Сонолит	4	82-1455
19	37.78	2.379	Тефроит, сонолит	6	35-0748, 82-1455
20	38.20	2.354	Тефроит	15	35-0748
21	38.68	2.326	Тефроит, сонолит	13	35-0748, 82-1455
22	40.55	2.223	Тефроит, кариопилит	5	35-0748, 41-1446
23	42.80	2.111	Тефроит, сонолит	11	35-0748, 82-1455
24	43.17	2.094	Тефроит, сонолит	2	35-0748, 82-1455

Результаты расчета рентгенограммы образца 4300-26д. Бежевая матовая линза

25	45.48	1.993	Сонолит	2	82-1455
26	45.99	1.972	Сонолит	2	82-1455
27	46.89	1.936	Тефроит, сонолит	2	35-0748, 82-1455
28	48.28	1.883	Тефроит, сонолит	6	35-0748, 82-1455
29	49.19	1.851	Тефроит, кариопилит	4	35-0748, 41-1446
30	50.41	1.809	Тефроит, сонолит	63	35-0748, 82-1455
31	50.79	1.796	Тефроит, сонолит	23	35-0748, 82-1455
32	53.00	1.726	Тефроит, сонолит	7	35-0748, 82-1455
33	53.95	1.698	Тефроит, сонолит	8	35-0748, 82-1455
34	54.43	1.684	Тефроит, сонолит	6	35-0748, 82-1455
35	54.68	1.677	Тефроит, сонолит	6	35-0748, 82-1455
36	55.65	1.650	Кариопилит, сонолит	8	41-1446, 82-1455
37	56.36	1.631	Тефроит, сонолит	4	35-0748, 82-1455
38	57.07	1.613	Кариопилит, сонолит	3	41-1446, 82-1455
39	59.10	1.562	Тефроит, сонолит	23	35-0748, 82-1455
40	60.12	1.538	Тефроит, кариопилит	15	35-0748, 41-1446
41	60.72	1.524	Сонолит	3	82-1455
42	62.68	1.481	Тефроит, сонолит	4	35-0748, 82-1455
43	64.39	1.446	Сонолит	12	82-1455
44	64.63	1.441	Тефроит, сонолит	2	35-0748, 82-1455
45	65.07	1.432	Тефроит, кариопилит	3	35-0748, 41-1446
46	67.04	1.395	Тефроит, сонолит	6	35-0748, 82-1455
47	68.30	1.372	Тефроит, кариопилит	4	35-0748, 41-1446
48	68.98	1.360	Тефроит, сонолит	1	35-0748, 82-1455
49	69.94	1.344	Тефроит, сонолит	2	35-0748, 82-1455
50	71.62	1.316	Тефроит, сонолит	2	35-0748, 82-1455
51	72.57	1.302	Тефроит, кариопилит	2	35-0748, 41-1446

2theta(deg) (CuK α)

Рентгенограмма 4300-26е. Темно-коричневые полупрозрачные тонкие прослои-линзы

N⁰	20 СиКа, град	d, Å	Минерал	I/I _o	Эталон
		,	-		(JCPDD)
1	6.22	14.200	Хлорит	7	10-0183
2	7.61	11.600	Фриделит	2	35-0572
3	12.26	7.211	Фриделит	43	35-0572
4	12.43	7.114	Хлорит	19	10-0183
5	16.74	5.293	Тефроит	2	35-0748
6	18.68	4.746	Хлорит	19	10-0183
7	19.20	4.619	Хлорит	4	10-0183
8	20.00	4.437	Тефроит	3	35-0748
9	21.99	4.038	Тефроит	3	35-0748
10	23.11	3.845	Тефроит	2	35-0748
11	24.30	3.660	Родохрозит	20	44-1472
12	24.63	3.611	Тефроит, фриделит	41	35-0748, 35-0572
13	24.97	3.563	Хлорит	27	10-0183
14	28.59	3.119	Тефроит	3	35-0748
15	31.19	2.865	Тефроит, фриделит	53	35-0748, 35-0572
16	31.42	2.845	Родохрозит	100	44-1472
17	33.29	2.689	Тефроит	9	35-0748
18	33.96	2.638	Тефроит	2	35-0748
19	34.43	2.603	Тефроит, родохрозит	22	35-0748, 44-1472
20	35.10	2.555	Тефроит, фриделит	48	35-0748, 35-0572
21	36.74	2.444	Тефроит	9	35-0748
22	37.41	2.402	Родохрозит	1	44-1472
23	37.72	2.383	Тефроит	12	35-0748
24	38.20	2.354	Тефроит	5	35-0748

Результаты расчета рентгенограммы образца 4300-26е. Темно-коричневые полупрозрачные тонкие прослои-линзы

25	38.64	2.328	Тефроит	3	35-0748
26	39.85	2.260	Хлорит	2	10-0183
27	40.63	2.219	Тефроит	1	35-0748
28	41.40	2.179	Тефроит	<1	35-0748
29	41.57	2.171	Родохрозит	9	44-1472
30	42.75	2.113	Тефроит, фриделит	8	35-0748, 35-0572
31	45.04	2.011	Тефроит	2	35-0748
32	45.31	2.000	Родохрозит	12	44-1472
33	45.93	1.974	Фриделит	3	35-0572
34	48.37	1.880	Тефроит	4	35-0748
35	49.80	1.830	Родохрозит	3	44-1472
36	50.40	1.809	Тефроит	15	35-0748
37	50.74	1.798	Тефроит	9	35-0748
38	51.67	1.768	Тефроит	15	35-0748
39	52.13	1.753	Родохрозит	6	44-1472
40	52.82	1.731	Тефроит, фриделит	3	35-0748, 35-0572
41	54.45	1.684	Тефроит	1	35-0748
42	54.72	1.676	Хлорит, фриделит	5	10-0183, 35572
43	56.35	1.631	Тефроит, фриделит	5	35-0748, 35-0572
44	56.60	1.625	Фриделит	1	35-0572
45	58.68	1.572	Тефроит	1	35-0748
46	59.12	1.561	Тефроит	7	35-0748
47	59.95	1.542	Тефроит	9	35-0748
48	60.35	1.533	Тефроит	2	35-0748
49	64.17	1.450	Родохрозит	3	44-1472
50	64.52	1.443	Тефроит, фриделит	1	35-0748, 35-0572
51	66.80	1.399	Тефроит	1	35-0748
52	68.15	1.375	Родохрозит, фриделит	2	44-1472, 35-0572

Рентгенограмма образца 4300-26ж. Розовый слой

N пика	20 СиКа, град	d, Å	Минерал	I/I _o	Эталон
		,	*		(JCPDD)
1	12.75	6.939	Пироксмангит	<1	29-0895
2	13.34	6.632	Пироксмангит	1	29-0895
3	18.78	4.722	Пироксмангит	4	29-0895
4	20.89	4.248	Кварц, пироксмангит	20	46-1045, 29-0895
5	26.53	3.357	Пироксмангит	7	29-0895
6	26.70	3.336	Кварц	100	46-1045
7	28.08	3.175	Пироксмангит	2	29-0895
8	28.51	3.128	Пироксмангит	5	29-0895
9	29.43	3.032	Пироксмангит	3	29-0895
10	29.70	3.006	Пироксмангит	4	29-0895
11	30.17	2.960	Пироксмангит	12	29-0895
12	31.48	2.839	Пироксмангит	3	29-0895
13	33.50	2.673	Пироксмангит	6	29-0895
14	33.91	2.641	Пироксмангит	3	29-0895
15	34.39	2.605	Пироксмангит	3	29-0895
16	35.84	2.504	Пироксмангит	1	29-0895
17	36.62	2.452	Кварц	9	46-1045
18	39.56	2.276	Кварц	7	46-1045
19	40.37	2.233	Кварц	4	46-1045
20	40.83	2.209	Пироксмангит	3	29-0895
21	41.30	2.184	Пироксмангит	2	29-0895
22	42.52	2.124	Кварц	5	46-1045
23	44.27	2.044	Пироксмангит	1	29-0895
24	45.88	1.976	Кварц	4	46-1045

Результаты расчета рентгенограммы образца 4300-26ж. Розовый слой

25	48.73	1.867	Пироксмангит	1	29-0895
26	50.211	1.816	Кварц	14	46-1045
27	53.10	1.72	Пироксмангит	1	29-0895
28	53.95	1.698	Пироксмангит	1	29-0895
29	54.93	1.670	Кварц	4	46-1045
30	55.38	1.658	Кварц	2	46-1045
31	58.47	1.577	Пироксмангит	1	29-0895
32	59.99	1.541	Кварц	9	46-1045
33	62.35	1.488	Пироксмангит	1	29-0895
34	64.08	1.452	Кварц	1	46-1045
35	65.79	1.418	Кварц	2	46-1045
36	67.78	1.382	Кварц	5	46-1045
37	68.19	1.374	Кварц	6	46-1045
38	68.36	1.371	Кварц	4	46-1045

Рентгенограмма образца 4300-13а. Серый слой

N пика	20 СиКа, град	d, Å	Минерал	I/I _o	Эталон
	_				(JCPDD)
1	12.19	7.255	Хлорит	4	02-0028
2	16.68	5.311	Тефроит	7	35-0748
3	19.90	4.458	Тефроит	6	35-0748
4	21.93	4.050	Тефроит	10	35-0748
5	22.96	3.870	Тефроит	6	35-0748
6	24.18	3.677	Доломит	9	36-0426
7	24.48	3.634	Тефроит, хлорит	53	35-0748, 02-0028
8	28.52	3.128	Тефроит	9	35-0748
9	31.18	2.867	Тефроит, доломит	100	35-0748, 36-0426
10	33.22	2.694	Тефроит	26	35-0748
11	33.79	2.651	Тефроит, доломит	8	35-0748, 36-0426
12	34.39	2.606	Тефроит, хлорит	61	35-0748, 02-0028
13	35.06	2.558	Тефроит, хлорит	89	35-0748, 02-0028
14	36.70	2.447	Тефроит, хлорит	16	35-0748, 02-0028
15	37.64	2.388	Тефроит, доломит	7	35-0748, 36-0426
16	38.09	2.360	Тефроит	12	35-0748
17	38.58	2.332	Тефроит	11	35-0748
18	40.43	2.229	Тефроит	6	35-0748
19	41.46	2.176	Тефроит, доломит	2	35-0748, 36-0426
20	42.73	2.114	Тефроит	4	35-0748
21	43.15	2.095	Тефроит, хлорит	2	35-0748, 02-0028
22	44.86	2.019	Тефроит, хлорит	<1	35-0748, 02-0028
23	45.11	2.008	Тефроит, доломит	2	35-0748, 36-0426

Таблица . Результаты расчета рентгенограммы образца 4300-13а. Серый слой

24	46.71	1.943	Тефроит	2	35-0748
25	48.19	1.887	Тефроит	7	35-0748
26	49.03	1.856	Тефроит	3	35-0748
27	49.92	1.825	Хлорит	1	02-0028
28	50.32	1.812	Тефроит	42	35-0748
29	50.69	1.800	Тефроит, доломит	20	35-0748, 36-0426
30	51.59	1.770	Доломит	2	36-0426
31	52.92	1.729	Тефроит, хлорит	9	35-0748, 02-0028
32	53.89	1.700	Тефроит	8	35-0748
33	54.38	1.686	Тефроит, хлорит	9	35-0748, 02-0028
34	55.59	1.652	Тефроит	9	35-0748
35	56.07	1.639	Тефроит	4	35-0748
36	56.99	1.615	Тефроит	4	35-0748
37	59.01	1.564	Тефроит	22	35-0748
38	59.40	1.555	Тефроит, доломит	3	35-0748, 36-0426
39	60.08	1.539	Тефроит, хлорит	16	35-0748, 02-0028
40	60.35	1.533	Доломит	4	36-0426
41	62.59	1.483	Тефроит	5	35-0748
42	62.79	1.479	Тефроит	1	35-0748
43	64.30	1.448	Тефроит	9	35-0748
44	64.53	1.443	Тефроит, хлорит	5	35-0748, 02-0028
45	64.95	1.435	Тефроит, доломит	6	35-0748, 36-0426
46	66.96	1.396	Тефроит, хлорит	6	35-0748, 02-0028
47	67.20	1.392	Тефроит	2	35-0748
48	68.27	1.373	Тефроит	5	35-0748

2theta(deg) (CuKa)

Рентгенограмма образца 4300-136. Фиолетовый слой

N пика	20 СиКа, град	d, Å	Минерал	I/I _o	Эталон
		,	*		(JCPDD)
1	12.30	7.189	Хлорит	33	02-0028
2	16.94	5.231	Сонолит	6	82-1455
3	18.63	4.760	Хлорит	4	02-0028
4	19.18	4.623	Сонолит, ххлорит	1	82-1455, 02-0028
5	20.01	4.434	Тефроит	7	35-0748
6	22.15	4.011	Сонолит, тефроит	3	82-1455, 35-0748
7	22.94	3.874	Сонолит, тефроит	8	82-1455, 35-0748
8	24.63	3.612	Тефроит. хлорит	62	35-0748, 02-0028
9	25.01	3.557	Сонолит	9	82-1455
10	26.63	3.344	Сонолит	20	82-1455
11	29.58	3.018	Сонолит	2	82-1455
12	31.21	2.864	Тефроит	47	35-0748
13	31.24	2.861	Сонолит	93	82-1455
14	31.78	2.814	Сонолит	17	82-1455
15	33.29	2.69-	Сонолит, тефроит	51	82-1455, 35-0748
16	33.79	2.651	Сонолит, тефроит	38	82-1455, 35-0748
17	34.42	2.603	Сонолит, тефроит	46	82-1455, 35-0748
18	35.13	2.553	Тефроит, хлорит	21	35-0748, 02-0028
19	36.03	2.491	Сонолит	18	82-1455
20	36.56	2.456	Тефроит, хлорит	19	35-0748, 02-0028
21	36.87	2.436	Сонолит, тефроит	17	82-1455, 35-0748
22	38.19	2.355	Сонолит, тефроит	22	82-1455, 35-0748
23	38.53	2.335	Сонолит, тефроит	18	82-1455, 35-0748
24	39.53	2.278	Сонолит, хлорит	5	82-1455, 02-0028
25	40.63	2.219	Тефроит	3	35-0748
26	41.62	2.168	Сонолит	5	82-1455

Таблица. Результаты расчета рентгенограммы образца 4300-136. Фиолетовый слой

27	42.78	2.112	Сонолит, тефроит	8	82-1455, 35-0748
28	43.93	2.059	Сонолит	3	82-1455
29	45.09	2.009	Тефроит, хлорит	2	35-0748, 02-0028
30	45.36	1.998	Сонолит	6	82-1455
31	45.91	1.975	Сонолит	3	82-1455
32	48.28	1.884	Сонолит	6	82-1455
33	50.44	1.808	Сонолит, тефроит	100	82-1455, 35-0748
34	50.77	1.797	Сонолит, тефроит	15	82-1455, 35-0748
35	51.69	1.767	Сонолит	6	82-1455
36	52.54	1.740	Сонолит	6	82-1455
37	54.40	1.685	Сонолит	11	82-1455
38	54.71	1.676	Сонолит, хлорит	4	82-1455, 02-0028
39	56.34	1.632	Сонолит, тефроит	7	82-1455, 35-0748
40	57.35	1.605	Сонолит	10	82-1455
41	59.11	1.562	Сонолит	24	82-1455
42	59.84	1.544	Сонолит, тефроит	23	82-1455, 35-0748
43	60.32	1.533	Сонолит	6	82-1455
44	62.80	1.478	Тефроит	4	35-0748
45	64.12	1.451	Сонолит, тефроит	13	82-1455, 35-0748
46	64.72	1.439	Сонолит, тефроит	4	82-1455, 35-0748
47	66.70	1.401	Сонолит, хлорит	2	82-1455, 02-0028
48	67.15	1.393	Сонолит, хлорит	8	82-1455, 02-0028

Рентгенограмма образца 4300-12а. Фиолетовый слой

-				-			-	
Резупьтаты 1	расчета	рентгеног	раммы о	бразиа	4300-	12a.	Фиолетовь	лй спой
1 cojindiardi j		pennenor		оразца	1200	1 200	I HOMETODE	

N пика	20 СиКа, град	d, Å	Минерал	I/I _o	Эталон
		,	*		(JCPDD)
1	12.28	7.202	Хлорит	25	02-0028
2	16.90	5.242	Сонолит	4	82-1455
3	18.67	4.748	Хлорит	1	02-0028
4	19.17	4.627	Сонолит, хлорит	2	82-1455, 02-0028
5	20.05	4.425	Сонолит	6	82-1455
6	22.19	4.003	Сонолит	3	82-1455
7	22.94	3.874	Сонолит	5	82-1455
8	24.33	3.656	Хлорит	4	02-0028
9	24.67	3.605	Сонолит	47	82-1455
10	26.41	3.372	Сонолит	2	82-1455
11	26.67	3.339	Сонолит	10	82-1455
12	28.61	3.118	Сонолит	3	82-1455
13	31.13	2.870	Сонолит, хлорит	100	82-1455, 02-0028
14	31.52	2.836	Сонолит	27	82-1455
15	33.26	2.692	Сонолит	30	82-1455
16	33.77	2.652	Сонолит	18	82-1455
17	34.41	2.604	Сонолит, хлорит	33	82-1455, 02-0028
18	35.11	2.554	Хлорит	24	02-0028
19	36.06	2.489	Сонолит	5	82-1455
20	36.55	2.457	Сонолит	7	82-1455
21	36.85	2.438	Сонолит, хлорит	10	82-1455, 02-0028
22	37.89	2.373	Сонолит	2	82-1455
23	38.15	2.357	Сонолит	14	82-1455
24	38.52	2.335	Сонолит	11	82-1455
25	39.59	2.275	Сонолит, хлорит	1	82-1455, 02-0028
26	40.63	2.219	Сонолит	3	82-1455
27	41.56	2.171	Сонолит	5	82-1455

28	41.89	2.155	Сонолит	1	82-1455
29	42.79	2.112	Сонолит	7	82-1455
30	43.10	2.097	Сонолит	1	82-1455
31	43.87	2.062	Сонолит, хлорит	2	82-1455, 02-0028
32	45.31	2.000	Сонолит, хлорит	6	82-1455, 02-0028
33	48.32	1.882	Сонолит	5	82-1455
34	49.09	1.855	Сонолит, хлорит	2	82-1455, 02-0028
35	50.43	1.808	Сонолит	67	82-1455
36	50.69	1.799	Сонолит	31	82-1455
37	51.65	1.768	Сонолит	7	82-1455
38	52.52	1.741	Сонолит, хлорит	4	82-1455, 02-0028
39	54.36	1.686	Сонолит	8	82-1455
40	54.74	1.676	Сонолит, хлорит	2	82-1455, 02-0028
41	56.36	1.631	Сонолит	4	82-1455
42	57.31	1.606	Сонолит, хлорит	5	82-1455, 02-0028
43	59.07	1.563	Сонолит	19	82-1455
44	59.41	1.555	Сонолит	3	82-1455
45	59.85	1.544	Сонолит, хлорит	16	82-1455, 02-0028
46	62.67	1.481	Сонолит	3	82-1455
47	64.02	1.453	Сонолит, хлорит	7	82-1455, 02-0028
48	64.68	1.440	Сонолит	2	82-1455
49	67.15	1.393	Сонолит	5	82-1455
50	68.41	1.370	Сонолит, хлорит	1	82-1455, 02-0028

Рентгенограмма образца 4300-126. Фиолетово-серый прослой

N пика	20 СиКа, град	d, Å	Минерал	I/I _o	Эталон
					(JCPDD)
1	12.31	7.184	Хлорит	44	02-0028
2	13.63	6.491	Пироксмангит	2	29-0895
3	16.67	5.315	Тефроит	5	36-0748
4	18.74	4.730	Пироксмангит	7	29-0895
5	19.18	4.623	Пироксмангит	2	29-0895
6	20.01	4.433	Тефроит	5	36-0748
7	22.03	4.031	Тефроит	7	36-0748
8	23.08	3.851	Тефроит	5	36-0748
9	24.69	3.602	Тефроит, хлорит	65	36-0748, 02-0028
10	26.72	3.334	Пироксмангит	3	29-0895
11	28.64	3.114	Тефроит	6	36-0748
12	31.23	2.862	Тефроит	34	36-0748
13	31.26	2.859	Доломит	100	36-0426
14	33.33	2.686	Тефроит	30	36-0426
15	33.88	2.643	Тефроит, доломит	13	36-0748, 36-0426
16	34.49	2.598	Тефроит	54	36-0748
17	35.16	2.550	Тефроит	88	36-0748
18	36.79	2.441	Тефроит	14	36-0748
19	37.72	2.383	Тефроит, хлорит	8	36-0748, 02-0028
20	38.16	2.356	Тефроит	14	36-0748
21	38.62	2.330	Тефроит	10	36-0748
22	40.53	2.224	Тефроит	5	36-0748
23	41.58	2.170	Тефроит, доломит	7	36-0748, 36-0426
24	42.77	2.112	Тефроит	15	36-0748
25	45.31	2.000	Тефроит, доломит	8	36-0748, 36-0426
26	45.87	1.977	Пироксмангит	4	29-0895
27	48.27	1.884	Тефроит	6	36-0748
28	49.05	1.856	Тефроит	2	36-0748
29	50.4	1.809	Тефроит, доломит	58	36-0748, 36-0426
30	50.74	1.798	Тефроит	28	36-0748

Результаты расчета рентгенограммы образца 4300-126. Фиолетово-серый прослой

31	51.69	1.767	Тефроит,	9	36-0748, 29-0895
32	52.86	1.731	Тефроит	5	36-0748
33	53.99	1.697	Тефроит,	3	36-0748, 29-0895
34	54.38	1.686	Тефроит	7	36-0748
35	54.64	1.678	Пироксмангит	10	29-0895
36	55.64	1.651	Тефроит	5	36-0748
37	56.31	1.632	Тефроит	6	36-0748
38	57.19	1.610	Тефроит	2	36-0748
39	59.23	1.559	Тефроит	20	36-0748
40	60.17	1.537	Тефроит,	16	36-0748, 29-0895
41	62.85	1.477	Тефроит,	2	36-0748, 29-0895
42	64.29	1.448	Тефроит	8	36-0748
43	67.00	1.396	Тефроит	3	36-0748
44	68.33	1.372	Тефроит	3	36-0748

Рентгенограмма образца 4300-12в. Темно-коричневое пятно

N пика	20 СиКа, град	d, Å	Минерал	I/I _o	Эталон
	_		_		(JCPDD)
1	16.76	5.287	Тефроит	7	35-0748
2	19.98	4.440	Тефроит	6	35-0748
3	22.02	4.033	Тефроит	10	35-0748
4	23.08	3.851	Тефроит	5	35-0748
5	24.61	3.615	Тефроит	54	35-0748
6	28.59	3.120	Тефроит	10	35-0748
7	31.24	2.861	Тефроит	100	35-0748
8	33.32	2.687	Тефроит	26	35-0748
9	33.82	2.648	Тефроит	8	35-0748
10	34.47	2.600	Тефроит	61	35-0748
11	35.14	2.552	Тефроит	84	35-0748
12	36.79	2.441	Тефроит	20	35-0748
13	37.73	2.382	Тефроит	7	35-0748
14	38.19	2.355	Тефроит	13	35-0748
15	38.67	2.326	Тефроит	14	35-0748
16	40.50	2.226	Тефроит	7	35-0748
17	42.85	2.109	Тефроит	4	35-0748
18	44.98	2.014	Тефроит	1	35-0748
19	46.73	1.942	Тефроит	3	35-0748
20	48.20	1.886	Тефроит	7	35-0748
21	49.04	1.856	Тефроит	4	35-0748
22	50.38	1.810	Тефроит	56	35-0748
23	50.67	1.800	Тефроит	24	35-0748
24	53.01	1.726	Тефроит	8	35-0748
25	53.93	1.699	Тефроит	10	35-0748
26	54.44	1.684	Тефроит	10	35-0748
27	55.66	1.650	Тефроит	10	35-0748
28	56.16	1.637	Тефроит	5	35-0748
29	57.06	1.613	Тефроит	4	35-0748

Результаты расчета рентгенограммы образца 4300-12в. Темно-коричневое пятно
Продолжение приложения 31

30	59.07	1.563	Тефроит	20	35-0748
31	60.15	1.537	Тефроит	16	35-0748
32	62.67	1.481	Тефроит	4	35-0748
33	64.37	1.446	Тефроит	10	35-0748
34	64.59	1.442	Тефроит	6	35-0748
35	65.01	1.434	Тефроит	6	35-0748
36	66.99	1.396	Тефроит	5	35-0748
37	67.32	1.390	Тефроит	2	35-0748
38	68.32	1.372	Тефроит	5	35-0748

Рентгенограмма образца 4300-12г. Темно-зеленый прослой

Резч	ультаты ⁻	расчета	рентгеног	раммы об	разца 43	300-12г.	Темно-	зеленый	просло	й
105	y sidiai di	pue le lu	pennenon		разца і.	500 121.		Sestembin	1100010	

N пика	20 СиКа, град	d, Å	Минерал	I/I _o	Эталон
	-		-		(JCPDD)
1	12.34	7.167	Хлорит, пироксмангит	5	02-0028, 29-0895
2	16.70	5.303	Тефроит	7	35-0748
3	18.70	4.740	Хлорит, пироксмангит	4	02-0028, 29-0895
4	19.94	4.450	Тефроит	7	35-0748
5	21.98	4.040	Тефроит	9	35-0748
6	23.03	3.859	Тефроит	5	35-0748
7	24.51	3.629	Тефроит	50	35-0748
8	25.05	3.552	Хлорит, пироксмангит	7	02-0028, 29-0895
9	26.59	3.350	Пироксмангит	6	29-0895
10	28.57	3.122	Тефроит, пироксмангит	7	35-0748, 29-0895
11	31.22	2.863	Тефроит	100	35-0748
12	33.25	2.692	Тефроит	23	35-0748
13	33.82	2.648	Тефроит	9	35-0748
14	34.43	2.603	Тефроит	57	35-0748
15	35.09	2.555	Тефроит	75	35-0748
16	36.77	2.442	Тефроит	14	35-0748
17	37.64	2.388	Тефроит	5	35-0748
18	38.14	2.358	Тефроит	10	35-0748
19	38.62	2.329	Тефроит	10	35-0748
20	40.48	2.227	Тефроит	5	35-0748
21	41.57	2.171	Тефроит, пироксмангит	2	35-0748, 29-0895
22	42.70	2.116	Тефроит, пироксмангит	4	35-0748, 29-0895
23	45.17	2.006	Тефроит	1	35-0748
24	46.75	1.941	Тефроит	2	35-0748
25	48.23	1.885	Тефроит, пироксмангит	4	35-0748, 29-0895
26	49.05	1.856	Тефроит. пироксмангит	4	35-0748, 29-0895
27	50.35	1.811	Тефроит, пироксмангит	49	35-0748, 29-0895

28	50.74	1.798	Тефроит	19	35-0748
29	52.94	1.728	Тефроит	7	35-0748
30	53.87	1.700	Тефроит	8	35-0748
31	54.39	1.686	Тефроит, пироксмангит	7	35-0748, 29-0895
32	55.62	1.651	Тефроит	8	35-0748
33	56.12	1.638	Тефроит	4	35-0748
34	57.03	1.614	Тефроит	3	35-0748
35	59.05	1.563	Тефроит	15	35-0748
36	60.11	1.538	Тефроит	15	35-0748
37	62.61	1.482	Тефроит, пироксмангит	3	35-0748, 29-0895
38	64.35	1.447	Тефроит	8	35-0748
39	65.01	1.434	Тефроит	4	35-0748
40	66.96	1.396	Тефроит	5	35-0748
41	68.30	1.372	Тефроит	4	35-0748

Рентгенограмма образца 4300-12д. Фиолетово-коричневое пятно

Результаты расче	га рентгенограммь	и образца 4300-12д.	Фиолетово-коричневое пятно
2 1	1 1	1 1	1

N пика	20 СиКа, град	d, Å	Минерал	I/I _o	Эталон
					(JCPDD)
1	12.29	7.197	Хлорит	20	02-0028
2	16.93	5.234	Сонолит	5	82-1455
3	19.20	4.618	Сонолит, хлорит	3	82-1455, 02-0028
4	20.07	4.421	Сонолит	8	82-1455
5	22.18	4.004	Сонолит	3	82-1455
6	22.94	3.873	Сонолит	7	82-1455
7	24.64	3.610	Сонолит, хлорит	55	82-1455, 02-0028
8	24.99	3.561	Сонолит	8	82-1455
9	26.64	3.344	Сонолит	17	82-1455
10	28.45	3.135	Сонолит	2	82-1455
11	29.43	3.032	Сонолит	3	82-1455
12	31.21	2.863	Сонолит, хлорит	54	82-1455, 02-0028
13	31.23	2.862	Сонолит	66	82-1455
14	33.28	2.690	Сонолит	49	82-1455
15	33.78	2.651	Сонолит	34	82-1455
16	34.41	2.605	Сонолит, хлорит	40	82-1455, 02-0028
17	35.14	2.551	Хлорит	8	02-0028
18	35.97	2.494	Сонолит	14	82-1455
19	36.53	2.458	Сонолит, хлорит	15	82-1455, 02-0028
20	36.88	2.436	Сонолит	15	82-1455
21	38.17	2.356	Сонолит	25	82-1455
22	38.51	2.336	Сонолит	18	82-1455
23	39.59	2.275	Сонолит, хлорит	3	82-1455, 02-0028
24	40.69	2.216	Сонолит	2	82-1455
25	41.63	2.168	Сонолит	2	82-1455
26	41.84	2.157	Сонолит	2	82-1455
27	42.68	2.117	Сонолит	4	82-1455

28	43.05	2.100	Сонолит	1	82-1455
29	43.98	2.057	Сонолит, хлорит	3	82-1455, 02-0028
30	45.30	2.000	Сонолит, хлорит	4	82-1455, 02-0028
31	45.96	1.973	Сонолит	2	82-1455
32	46.67	1.945	Сонолит	2	82-1455
33	48.37	1.880	Сонолит	5	82-1455
34	48.92	1.860	Сонолит, хлорит	4	82-1455, 02-0028
35	50.45	1.807	Сонолит	100	82-1455
36	50.74	1.798	Сонолит	32	82-1455
37	51.34	1.778	Сонолит	2	82-1455
38	52.48	1.742	Сонолит, хлорит	7	82-1455, 02-0028
39	54.29	1.688	Сонолит	13	82-1455
40	54.74	1.676	Сонолит, хлорит	3	82-1455, 02-0028
41	56.32	1.632	Сонолит	3	82-1455
42	56.66	1.623	Сонолит	2	82-1455
43	57.26	1.608	Сонолит	11	82-1455
44	57.65	1.598	Сонолит, хлорит	1	82-1455, 02-0028
45	59.10	1.562	Сонолит	24	82-1455
46	59.85	1.544	Сонолит, хлорит	23	82-1455, 02-0028
47	62.75	1.479	Сонолит	4	82-1455
48	64.12	1.451	Сонолит	10	82-1455
49	64.63	1.441	Сонолит, хлорит	5	82-1455, 02-0028
50	67.16	1.393	Сонолит	8	82-1455
51	67.48	1.387	Сонолит	2	82-1455

Приложение 34

Минеральный состав вмещающих пород по результатам рентгенофазового анализа

N⁰	N⁰	Краткое описание	Диагностированные	Главные	Эталон
п/п	Образца	пробы	минералы	диагностические линии $d(A) I$	(JCPDD)
			Кварц	4.29/23, 3.36/100, 2.46/12, 2.24/3, 2.23/3, 2.13/3, 1.82/5, 1.54/3, 1.38/3	46-1045
1	1-1	Белый прослой.	Кальцит	3.85/7, 3.02/56, 2.29/7, 2.09/5, 1.90/8, 1.87/4	24-0027
			Монтмориллонит	12.50/1, 4.29/23, 2.26/2	12-0204
2	1.2	0	Кварц	4.26/20, 3.34/100, 2.45/9, 2.28/6, 2.23/3, 2.12/3, 1.98/1, 1.82/7, 1.67/1, 1.59/3, 1.54/4, 1.38/2, 1.38/2	46-1045
2	1-2	Основная масса.	Стильпномелан	12.08/8, 6.04/<1, 5.47/<1, 4.04/1, 3.82/2, 3.39/2, 3.00/27, 2.91/6, 2.79/1, 2.08/2, 1.89/6	71-6217
2	1.2	Hanwy w waaayaw	Стильпномелан	12.31/35, 4.77/<1, 4.38/1, 4.06/5, 3.59/3, 2.93/3, 2.80/3, 2.58/4	71-6217
3	1-3	черный прослой.	Кварц	4.28/24, 3.36/100, 2.46/5, 2.29/3, 2.13/4, 1.82/8, 1.54/4, 1.37/5	46-1045
4	2	0	Кварц	4.25/20, 3.34/100, 2.45/6, 2.28/5, 2.23/2, 1.98/2, 1.82/9, 1.54/5, 1.38/3	46-1045
4	Z	Основная масса.	Мусковит	9.92/2, 4.97/<1, 4.49/1, 3.89/2, 1.98/1, 1.37/2	82-0675
			Кутногорит	4.04/1, 3.72/9, 2.91/100, 2.69/1, 2.42/8, 2.20/14, 2.03/8, 1.82/27,	11-0345
5	2 1	Темно-серый		1.80/16, 1.47/2	
5	5-1	прослой.	Кварц	4.25/4, 3.34/20, 1.67/1	46-1045
			Кальцит	3.84/2, 3.01/11	24-0027

Примечание. Жирным шрифтом выделены главные минералы, нормальным – второстепенные.

Минеральный состав вмещающих пород по результатам рентгенофазового анализа

N⁰	N⁰	Краткое описание	Диагностированные	Главные	Эталон
п/п	Образца	пробы	минералы	диагностические линии $d(A) I$	(JCPDD)
6	<i>c</i> 20		Кварц	4.26/20, 3.35/100, 2.46/5, 2.28/5, 1.82/8, 1.81/5, 1.54/6	46-1045
0	5-2	Основная масса.	Мусковит	9.99/1, 4.98/<1, 4.51/<1, 3.02/5, 2.91/8	82-0675
7	7 2.2	-3 Серо-черные прослои.	Кварц	4.26/21, 3.34/100, 2.23/2, 1.82/9, 1.54/5	46-1045
/	3-3		Мусковит	9.94/2, 4.97/<1, 4.52/1, 3.34/100, 3.01/5, 1.26/1, 1.18/1	82-0676

Приложение 35

Минеральный состав кварц-карбонатных марганцевых пород по результатам рентгенофазового анализа

N⁰	N⁰	Краткое описание	Диагностированные	Главные	Эталон
п/п	Образца	пробы	минералы	диагностические линии $d(\r{A}) I$	(JCPDD)
1	4300/51	Основная масса породы	Кварц Сидерит Хлорит	4.24/19, 3.33/100, 2.45/8, 2.28.6, 2.23/3, 2.12/7, 1.98/3, 1.82/12, 1.67/4, 1.66/1, 1.54/8, 1.45/1, 1.38/4, 1.37/4 3.59/4, 2.79/15, 2.34/2, 1.96/2, 1.73/3, 1.51<1, 1.37/4 7.12/1, 3.59/4, 2.92/1	46-1045 03-0746 02-0028
2	4300/8	Черная масса с зеленоватым отливом	Кварц	4.28/17. 3.35/100. 2.46/6. 1.82/14. 1.54/7	46-1045
3	4300/7 <i>a</i>	Светло-серая тонко- полосчатая масса	Кварц Кутногорит Родохрозит	4.23/17, 4.32/100, 4.45/8, 2.27/6, 2.23/4, 2.12/5, 1.97/5, 1.81/15, 1.67/4, 1.66/2, 1.54/8, 1.45/2, 1.38/5, 1.37/4 3.72/5, 2.92/34, 2.42/4, 2.21/4, 2.03/5, 1.83/3, 1.48/1 3.63/5, 2.82/23, 2.37/3, 2.16/2, 1.99/2	46-1045 11-0345 44-1472
4	4300/76	Темно-коричневая тонко-полосчатая масса с пиритом	Родохрозит Хлорит Кварц Пироксмангит	3.69/4, 2.81/100, 2.60/3, 2.36/11, 2.20/3, 2.01/6, 1.75/21, 1.57/2 7.04/18, 4.69/3, 3.61/31, 2.87/44, 2.60/3, 2.44/3, 2.36/11, 2.01/6, 1.75/21, 1.55/9, 1.52/7, 1.44/2 4.23/4, 3.34/15, 2.44/3, 2.15/14, 1.98/14, 1.81/7, 1.55/9 7.04/18, 4.14/2, 3.52/17, 3.34/15, 2.93/2, 2.15/14, 1.81/7, 1.57/2, 1.52/7	44-1472 02-0028 46-1045 29-0895
		Harran	Доломит Стильпномелан	3.67/31, 2.85/100, 2.71/6, 2.44/19, 2/22/18, 2.04/10, 1.86/5, 1.82/14, 1.77/11, 1.58/2, 1.56/6, 1.54/7 11.95/23, 4.62/4, 4.01/6, 3.36/24, 3.14/4, 3.01/18, 2.62/13, 2.38/4, 2.17/26, 1.99/14	36-0426 71-6217
5	4300/42a	черная скрытокристаллическ ая масса	Биотит	10.01/26, 3.55/4, 3.67/31, 3.36/24,2.92/95, 2.62/13, 2.17/26, 1.99/14, 1.67/8, 1.54/7	42-1437
		ая масса	Кутногорит	2.92/95, 2.71/6, 2.56/10, 2.44/19, 2.22/18, 2.04/10, 1.86/5, 1.77/11, 1.56/6	11-0345
			Кварц	4.23/2, 3.34/21	46-1045

Примечание. Жирным шрифтом выделены главные минералы, нормальным – второстепенные

N⁰	N⁰	Краткое описание	Диагностированные	Главные	Эталон
п/п	Образца	пробы	минералы	диагностические линии $d(\AA) I$	(JCPDD)
			Родохрозит	3.66/31, 2.84/100, 2.39/15, 2.17/15, 1.83/17, 1.76/40	44-1472
C	4200/425	Темно-серые	Доломит	2.87/68, 2.42/2, 2.31/1, 2.04/2	36-0426
0	4300/420	линзочки с просечками	Кутногорит	2.93/38, 2/04/2, 1.83/17, 1.80/22	11-0345
		npoce individ	Стильпномелан	11.87/1, 3.33/2, 3.13/2	71-6217
			Кутногорит	5.35<1, 3.73/15, 2.91/100, 2.70/1, 2.42/12, 2.21/13, 2.03/13, 1.86/4,	11-0345
7	4200/20	Темно-серые неясно-		1.82/5, 1.81/10, 1.58/1, 1.56/4, 1.48/2, 1.40/2	
/	4300/2a	полосчатые прослои	Кварц	4.23/13, 3.33/79, 2.45/6, 2.28/5, 2.23/4, 2.12/4, 1.98/3, 1.67/3, 1.66/1,	46-1045
				1.54/6, 1.45/1, 1.38/3, 1.37/4	
			Кутногорит	5.31/1, 3.74/1, 2.90/100, 2.69/1, 2.41/12, 2.20/15, 2.02/14, 1.86/4,	11-0345
0	4300/26	Темно-серый тонко- полосчатый прослой		1.81/18, 1.79/5, 1.57/1, 1.51/1, 1.48/3, 1.45/1, 1.39/1	
0			Родохрозит	3.17/15, 2.81/8, 2.17/2, 2.00/2, 1.83/3	44-1472
			Ортоклаз	6.91<1, 4.20/2, 3.32/16, 1.81/18, 1.40/3	31-0966
			Кутногорит	3.75/16, 2.92/100, 2.71/1, 2.43/14, 2.21/16, 2.03/14, 1.87/2,	11-0345
				1.82/15,1.81/11, 1.58/1, 1.48/2, 1.45/2, 1.40/2	
9	4300/3a	Серая тонко-	Кварц	4.25/10, 3.34/64, 2.45/8, 2.28/4, 2.13/3, 1.67/2, 1.54/5, 1.38/3, 1.38/4	46-1045
,	4500/5 u	полосчатая масса	Родохрозит	1.68/4, 2.86/22, 2.18/3, 2.00/2, 1.84/2, 1.78/4, 1.56/4, 1.38/3	44-1472
			Биотит	10.09/3, 3.68/4, 3.34/64, 2.63/2, 2.45/8, 2.28/4, 2.18/3, 2.00/2, 1.84/2,	42-1437
				1.67/2, 1.54/5, 1.38/4	
			Родохрозит	3.66/24, 2.84/100, 2.39/12, 2.17/10, 2.00/13, 1.77/19, 1.54/3, 1.38/2	44-1472
10	4300/36	Светло-желтая линза	Кварц	4.25/7, 3.34/44, 2.28/3	46-1045
			Кутногорит	3.70/12, 2.92/39, 1.83/7, 1.81/6	11-0345
			Кварц	4.26/17, 3.35/100, 2.46/7, 2.28/7, 2.24/3, 2.13/5, 1.98/3, 1.67/3, 1.66/1,	46-1045
11	4300/3в	серо-белый слой		1.54/7, 1.45/1, 1.38/4, 1.38/5, 1.37/2, 1.29/1, 1.26/2, 1.21/2	
		серо-оелыи слои	Кутногорит	3.75/1, 2.93/9, 2.44/1, 2.21/1, 2.04/1, 1.54/<1, 1.40/<1	11-0345

Минеральный состав кварц-карбонатных марганцевых пород по результатам рентгенофазового анализа

N⁰	N⁰	Краткое описание	Диагностированные	Главные	Эталон
п/п	Образца	пробы	минералы	диагностические линии $d(\r{A}) I$	(JCPDD)
12	4300/3г	Розовато-серый прослой	Кварц Кутногорит Родохрозит	4.26/17, 3.35/100, 2.46/8, 2.28/7, 2.24/3, 2.13/5, 1.98/4, 1.67/3, 1.66/1, 1.38/5, 1.37/2, 1.18/1 3.75/<1, 2.93/4, 1.82/11 2.82/2	46-1045 11-0345 44-1472
13	4300/26a	Темно-серая тонко- полосчатая масса	Родохрозит Доломит Биотит	3.67/25, 2.85/100, 2.62/2, 2.39/13, 2.17/14, 2.00/14, 1.83/4, 1.77/22, 1.54/5, 1.46/1, 1.45/3, 1.42/1, 1.38/2 2.87/14, 2.19/2, 2.02/3, 1.78/2, 1.56/1 10.09/2, 3.36/3, 2.41/3	44-1472 36-0426 42-1437
14	4300/26б	Светло-бежевый тонко-полосчатый слой	Родохрозит Хлорит Пиролюзит	3.67/25, 2.85/100, 2.17/13, 1.76/23 7.26/6, 4.79/2, 3.57/3, 2.56/5, 1.68/<1 2.12/1, 1.63/3	44-1472 02-0028 02-0567
15	4300/26в	Розовато-серый светлый прослой	Родохрозит Пироксмангит Биотит Хлорит	3.66/25, 2.85/100, 2.39/14, 1.835, 1.77/23, 1.45/3, 142/<1, 1.38/3 4.76/1, 3.38/2 10.15/2, 3.34/5 7.19/1	44-1472 29-0895 42-1437 02-0028
16	4300/26г	Серая плохо оконтуренная линза	Фриделит Тефроит Пироксмангит	7.22/57, 3.61/72, 2.87/95, 2.56/100, 2.41/12, 2.12/18, 1.97/4, 1.73/6, 1.68/11, 1.63/7, 1.63/3, 1.52/3, 1.45/6, 1.40/2, 1.36/2 5.29/7, 4.45/5, 4.05/5, 3.85/5, 3.12/7, 2.69/25, 2.64/10, 2.60/53, 2.56/100, 2.44/12, 2.37/10, 2.33/8, 2.22/6, 2.00/2, 1.89/5, 1.81/44, 1.80/21, 1.70/4, 1.55/3, 1.54/10, 1.48/3 4.75/6, 3.56/9, 3.35/4, 2.83/11, 2.65/10, 2.60/53, 2.17/3	35-0572 35-0748 29-0895
17	4300/26д	Бежевая матовая линза	Сонолит Тефроит Кариопилит	13.86/2, 4.54/1, 3.61/54, 3.34/2, 2.86/100, 2.60/55, 2.41/4, 1.99/2, 1.97/2, 1.81/63, 1.52/3, 1.44/12 5.29/6, 4.44/6, 4.04/8, 3.12/7, 2.55/82, 2.35/15, 1.81/63 7.18/17, 3.65/8, 1.65/8	82-1455 35-0748 41-1446

Минеральный состав кварц-карбонатных(12) и карбонатно-силикатных (13-17) марганцевых пород по результатам рентгенофазового анализа

N⁰	N⁰	Краткое описание	Диагностированные	Главные	Эталон
п/п	Образца	пробы	минералы	диагностические линии $d(\r{A}) I$	(JCPDD)
18	4300/26e	Темно-коричневые полупрозрачные тонкие прослои- линзы	Родохрозит Фриделит Тефроит Хлорит	3.66/20, 2.85/100, 2.17/9, 2.00/17, 1.83/3, 1.75/6, 1.45/3 11.60/2, 7.11/43, 3.61/41, 2.87/53, 2.56/48, 1.97/3, 1.63/1 5.29/2, 4.44/3, 4.04/3, 3.85/2, 3.61/41, 3.12/3, 2.69/9, 2.64/2, 2.6021, 2.44/9, 2.38/12, , 2.35/5, 2.33/3, 2.21/1, 2.18<1, 2.01/2, 1.88/4, 1.81/15, 1.80/9, 1.77/15, 1.68/1, 1.57/2, 1.56/7, 1.54/9, 1.53/2, 1.40/1 14.20/7, 7.11/19, 4.75/19, 4.62/4, 3.56/27, 2.26/2	44-1472 35-0572 35-0748 02-0028
19	4300/26ж	Розовый слой	Кварц Пироксмангит	3.34/100, 2.45/9, 2.28/7, 2.23/4, 2.12/5, 1.98/4, 1.82/14, 1.67/4, 1.66/2, 1.54/9, 1.38/5, 1.37/6, 1.37/4 6.94/<1, 6.63/1, 4.72/4, 3.36/7, 3.18/2, 3.03/3, 3.01/4, 2.96/12, 2.84/3, 2.67/6, 2.61/3, 2.50/1, 2.21/3, 2.18/2, 2.04/1, 1.87/1, 1.72/1, 1.70/1, 1.58/1, 1.48/1	46-1045 29-0895
20	4300/13a	Серый слой	Тефроит Доломит Хлорит	5.31/7, 4.46/6, 4.05/10, 3.87/6, 3.63/53, 3.13/9, 2.87/100, 2.69/25, 2.61/61, 2.56/89, 2.36/12, 2.33/11, 2.23/6, 2.11/4, 1.94/3, 1.89/7, 1.86/3, 1.81/42, 1.70/8, 1.65/9, 1.64/4, 1.62/4, 1.56/22, 1.48/5, 1.45/9, 1.39/2, 1.37/5 3.68/9, 2.65/8, 2.39/7, 1.80/20, 1.77/2, 1.53/4 7.26/4, 3.63/53, 1.82/1	35-0748 36-0426 02-0028
21	4300/136	Фиолетовый слой	Сонолит Тефроит Хлорит	5.23/6, 3.56/9, 3.34/20, 3.02/2, 2.86/93,2.81/17, 2.69/51, 2.49/18, 2.16/5, 2.06/3, 2.00/6, 1.98/3, 1.88/6, 1.81/100, 1.77/6, 1.74/6, 1.69/11, 1.61/10, 1.56/24, 1.53/6 4.43/6, 2.87/47, 2.55/21, 2.21/3, 1.48/4 7.19/33, 4.76/4, 3.61/62	82-1455 35-0748 02-0028

Минеральный состав карбонатно-силикатных марганцевых пород по результатам рентгенофазового анализа

N⁰	N⁰	Краткое описание	Диагностированные	Главные	Эталон
п/п	Образца	пробы	минералы	диагностические линии $d(\AA) I$	(JCPDD)
23	4300/126	Фиолетово-серый слой	Доломит Тефроит Хлорит Пироксмангит	2.86/100, 2.17/7, 1.81/58 5.31/5, 4.43/5, 4.03/7, 3.85/5, 3.11/6, 2.86/33, 2.69/30, 2.60/54, 2.55/88, 2.44/14, 2.36/14, 2.33/10, 2.22/5, 2.11/15, 1.88/6, 1.86/2, 1.81/58, 1.80/27, 1.73/5, 1.69/7, 1.65/5, 1.63/6, 1.61/2, 1.56/20, 1.45/8, 1.40/3, 1.37/3 7.18/44, 3.60/65 6.49/2, 4.73/7, 4.62/2, 3.33/3, 1.98/4, 1.68/10	36-0426 36-0748 02-0028 29-0895
24	4300/12в	Темно-коричневое пятно	Тефроит	5.28/7, 3.62/53, 2.86/100, 2.60/61, 2.55/84, 1.81/56	35-0748
25	4300/12г	Темно-зеленый прослой	Тефроит Хлорит Пироксмангит	5.30/7, 4.45/7, 4.04/9, 3.85/5, 3.63/60, 2.86/100, 2.69/23, 2.64/9, 2.60/ 57, 2.56/75, 2.44/14, 2.39/6, 2.36/10, 2.33/10, 2.23/5, 2.01/1, 1.94/2, 1.80/19, 1.73/7, 1.70/8, 1.65/8, 1.63/4, 1.61/3, 1.56/15, 1.54/15, 1.45/8, 1.43/4, 1.40/5, 1.37/4 7.17/5, 4.74/4, 3.55/7 7.17/5, 4.74/4, 3.55/7, 3.35/6	35-0748 02-0028 29-0895
26	4300/12д	Фиолетово- коричневое пятно	Сонолит Хлорит	5.23/5, 4.42/8, 4.00/3, 3.87/7, 3.56/8, 3.34/17, 3.14/3, 3.03/3, 2.86/66, 2.69/49, 2.65/34, 2.49/14, 2.44/15, 2.36/24, 2.34/18, 2.22/2, 2.17/2, 2.16/2, 2.12/4, 2.10/1, 1.97/2, 1.95/2, 1.88/5, 1.81/100, 1.80/32, 1.78/2, 1.69/13, 1.63/3, 1.62/2, 1.61/11, 1.56/24, 1.48/4, 1.45/10, 1.39/8, 1.38/2 7.20/20, 3.61/54, 2.86/54, 2.55/8, 2.46/15, 1.86/4, 1.74/7, 1.54/23, 1.44/5	82-1455 02-0028

Минеральный состав карбонатно-силикатных марганцевых пород по результатам рентгенофазового анализа