Санкт-Петербургский государственный университет

Физический факультет Кафедра статистической физики

Михеев Александр Алексеевич

Динамика испарения капли на твёрдой подложке

Бакалаврская работа

Научный руководитель: д. ф.-м. н., профессор Кучма А. Е.

Рецензент: д. ф.-м. н., профессор Шабаев В. М.

Оглавление

Введение		3
1.	Основные уравнения динамики сидячей бинарной капли	5
2.	Уравнения эволюции капли в приближении идеального раствора	8
3.	Испарение капли водного раствора серной кислоты	11
4.	Сравнение с экспериментом	14
За	ключение	21
Сі	Список литературы	

Введение

Несмотря на весьма длительную историю, изучение динамики испарения капель продолжает оставаться одной из задач, привлекающих пристальное внимание исследователей. Подобный интерес обусловлен множеством практических приложений, в которых испарение капель играет важную роль. В частности, такие явления, как охлаждение распылением, печать и покрытие тесно связаны с испарением сидячих капель на твердых поверхностях. Изучение испарения сидячих капель является задачей более сложной по сравнению с испарением свободных капель, имеющих сферическую форму. Форма сидячей капли, существенно влияющая на процесс ее испарения, определяется эффектами поверхностного натяжения и свойствами подложки, прежде всего, степенью ее гидрофобности. Капли малого размера, для которых незначительно влияние силы тяжести, имеют форму шарового сегмента (Рис.1). Обычно предполагается, что испарение происходит в режиме стационарной диффузии пара. Теория такого режима для однокомпонентной капли в форме шарового сегмента при изотермическом испарении была разработана в 11 с использованием полученного ранее аналитического решения сходной задачи электростатики [2]. В дальнейшем такой подход использовался многими авторами, в частности, в недавних работах [3,4] при рассмотрении испарения сидячей капли в условиях гистерезиса краевого угла. В работе [5] проведено сравнение теоретических предсказаний, полученных в рамках предположения о стационарности и изотермичности процессов, с результатами прямого эксперимента по наблюдению за изменением объема и краевого угла сидячей капли со временем. В этих работах рассматривались однокомпонентные капли, то есть капли чистой жидкости.

В данной работе в изотермическом приближении рассматривается задача об испарении бинарной капли, состоящей из двух жидкостей, способных смешиваться друг с другом в произвольной пропорции. Более конкретно — рассматривается капля водного раствора другой жидкости (спирт, кислота) в атмосфере воздуха с определенной влажностью.

Состояние бинарной капли, в отличие от капли чистой жидкости, задается не только ее геометрическими параметрами, но и концентрацией раствора в капле, контролировать изменение которой в процессе испарения не представляется возможным. Этим обстоятельством значительно усложняется теоретическое описание, поскольку требуется тем или иным способом найти связь концентрации раствора в капле с измеряемыми ее характеристиками. В работе сформулирована система уравнений, в общем случае описывающая рассматриваемую ситуацию. В приближении идеального раствора получена в явном виде связь текущих значений концентрации раствора в капле с ее объемом. Показано при этом, что объем бинарной капли может, в отличие от однокомпонентного случая, немонотонно меняться с течением времени. При определенных условиях капля может вначале увеличиваться в объеме за счет конденсации водяного пара, переходя впоследствии в режим монотонного испарения.

В качестве конкретного примера в работе подробно рассмотрен процесс испарения капли водного раствора серной кислоты. Большое различие концентраций насыщенных паров кислоты и воды позволяет в данном случае построить описание без использования модели идеального раствора. Результаты, получаемые при этом в рамках стационарной изотермической теории, анализируются в сравнении с экспериментальными данными.

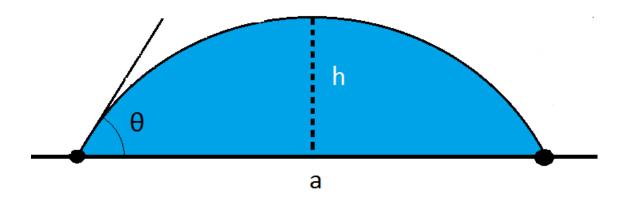


Рис. 1: Сидячая капля на твёрдой подложке.

1. Основные уравнения динамики сидячей бинарной капли

Рассмотрим сидячую бинарную каплю на твёрдой подложке. Если число частиц первого компонента (растворенного вещества) в капле есть N_1 , а растворителя (воды) N_2 , то концентрация (молярная) первого компонента в растворе есть

$$x = \frac{N_1}{N},\tag{1}$$

где $N=N_1+N_2$ - полное число молекул в капле. При этом концентрация растворителя равна, очевидно, 1-x. Дифференцирование (1) по времени приводит к выражению

$$\dot{x} = \frac{1}{N} \left(\dot{N}_1 - x \dot{N} \right), \tag{2}$$

которое можно переписать в виде

$$\dot{x} = \frac{1}{N} \left((1 - x) \, \dot{N}_1 - x \dot{N}_2 \right). \tag{3}$$

Потоки \dot{N}_1 и \dot{N}_2 в предположении о стационарности процесса диффузии молекул пара в окружающем каплю воздухе находится на основе решения уравнения Лапласа с соответствующими граничными условиями на поверхности капли и на поверхности подложки [1,3]. Получаемое при этом выражение для потока \dot{N}_i может быть записано в виде

$$\dot{N}_{i} = \dot{N}_{i}(x, R, \theta) = \pi R D_{i}(n_{i0} - n_{i\infty}(x)) F(\theta), \qquad i = 1, 2$$
 (4)

$$F(\theta) = tg\frac{\theta}{2} + 8\int_{0}^{+\infty} d\lambda \frac{ch^{2}\theta\lambda}{sh2\pi\lambda} th\left[(\pi - \theta)\lambda\right].$$
 (5)

Здесь D_i - коэффициент диффузии пара i-го компонента раствора в воздухе, $n_{i\infty}(x)$ - концентрация насыщенного пара i-го компонента вблизи поверхности капли, n_{i0} - концентрация пара i-го компонента на удалении от капли, R - радиус основания капли, θ - краевой угол.

Подставляя выражение (4) в (3), получаем

$$\frac{dx}{dt} = \pi R \frac{F(\theta)}{N} \left[(1-x) D_1 \left(n_{10} - n_{1\infty}(x) \right) - x D_2 \left(n_{20} - n_{2\infty}(x) \right) \right]. \tag{6}$$

Для полного числа частиц в капле получаем с использованием (4) выражение

$$\frac{dN}{dt} = \pi R \frac{F(\theta)}{N} \left[D_1 \left(n_{10} - n_{1\infty}(x) \right) + D_2 \left(n_{20} - n_{2\infty}(x) \right) \right]. \tag{7}$$

Уравнение, описывающее изменение объема капли со временем может быть записано в виде

$$\frac{dV}{dt} = v_1 \dot{N}_1 + v_2 \dot{N}_2 = \pi R \frac{F(\theta)}{N} \left[v_1 D_1 \left(n_{10} - n_{1\infty}(x) \right) + v_2 D_2 \left(n_{20} - n_{2\infty}(x) \right) \right], \tag{8}$$

где v_1 и v_2 - парциальные объемы молекул соответствующих компонентов в капле.

Из (6) и (7) следует связывающее текущее значение числа молекул в капле и концентрацию раствора уравнение:

$$\frac{dN}{N} = \frac{D_1 \left(n_{10} - n_{1\infty} \left(x \right) \right) + D_2 \left(n_{20} - n_{2\infty} \left(x \right) \right)}{\left(1 - x \right) D_1 \left(n_{10} - n_{1\infty} \left(x \right) \right) - x D_2 \left(n_{20} - n_{2\infty} \left(x \right) \right)} dx \tag{9}$$

Интегрирование этого уравнения при начальном условии $N\left(x_{0}\right)$ приводит к зависимости $N=N\left(x\right)$ в виде

$$N(x) = N(x_0) \exp \left(\int_{x_0}^x \frac{D_1(n_{10} - n_{1\infty}(x')) + D_2(n_{20} - n_{2\infty}(x'))}{(1 - x') D_1(n_{10} - n_{1\infty}(x')) - x' D_2(n_{20} - n_{2\infty}(x'))} dx' \right).$$
(10)

Соответствующий данному текущему значению концентрации объём капли $V\left(x\right)$ находится при этом из соотношения

$$V(x) = v(x) N(x), \qquad (11)$$

где v(x) - зависящий от концентрации раствора средний объем на одну молекулу в капле.

Для того, чтобы выполнить интегрирование в (10) и получить связь N и x в явном виде, необходимо, очевидно, знание зависимостей $n_{1\infty}(x)$ и $n_{2\infty}(x)$. Такие зависимости для реальных растворов в общем случае в аналитическом виде неизвестны. Поэтому интегрирование, вообще говоря, можно провести только численно, используя доступные табличные данные для растворов конкретных веществ. Аналитически интегрирование можно выполнить с использованием тех или иных моделей раствора. В следующем разделе мы проделаем это в приближении идеального раствора в капле.

2. Уравнения эволюции капли в приближении идеального раствора

В приближении идеального раствора имеют место соотношения:

$$n_{1\infty}(x) = x n_{1\infty}, n_{2\infty}(x) = (1 - x) n_{2\infty}$$

$$v(x) = v_2 + (v_2 - v_1) x \equiv v_2 (1 + \alpha x)$$
(12)

В этих выражениях $n_{1\infty}$ и $n_{1\infty}$ - концентрации насыщенного пара у поверхности чистых жидкостей соответствующих компонентов. Парциальные объемы v_1 и v_2 в этом приближении полагаются не зависящими от концентрации раствора и равными соответствующим величинам для чистых жидкостей. Для простоты будем рассматривать ситуацию, когда в окружающем воздухе изначально присутствует только пар второго компонента (воды), так что $n_{10}=0$. Введем обозначение $\gamma=n_{10}/n_{1\infty}<1$ для влажности воздуха, а также определим параметр ε выражением $\varepsilon=\frac{D_1n_{1\infty}}{D_2n_{2\infty}}$.

Тогда, с учетом соотношений (12), уравнение (6) после несложных преобразований приобретает вид

$$\frac{dx}{dt} = \pi R \frac{F(\theta)}{N} D_2 n_{2\infty} \left(\varepsilon - 1\right) x \left(x - x_\gamma\right),\tag{13}$$

где

$$x_{\gamma} = \frac{\varepsilon + \gamma - 1}{\varepsilon - 1}.\tag{14}$$

Уравнение (13) позволяет судить о характере изменения концентрации раствора в капле в зависимости от параметров ε и γ . При $\varepsilon>1$ имеем $x_\gamma>1$ и, соответственно, $\frac{dx}{dt}<0$ - концентрация раствора монотонно уменьшается со временем. При $\varepsilon<1$ ситуация иная. Если $1-\gamma<\varepsilon<1$, то $x_\gamma<-1$ и $\frac{dx}{dt}\leq0$, как и в случае $\varepsilon>1$. Если же $\varepsilon<1-\gamma$, то $0< x_\gamma<1$. В этом случае

$$\frac{dx}{dt} = -\pi R \frac{F(\theta)}{N} D_2 n_{2\infty} (1 - \varepsilon) x |x - x_{\gamma}|, \qquad (15)$$

так что концентрация при любом начальном ее значении $x_0 \neq 0$ стремится с течением времени к некоторому конечному стационарному значению x_{γ} .

Уравнение (8), описывающее эволюцию объема капли, в рассматриваемом случае приобретает вид

$$\frac{dV}{dt} = \pi RF(\theta) v_2 D_2 n_{2\infty} \left(1 - \varepsilon \frac{v_1}{v_2} \right) (x - x_V), \qquad (16)$$

где

$$x_V = \frac{1 - \gamma}{1 - \varepsilon v_1 / v_2}.\tag{17}$$

Как следует из (17), при выполнении условия

$$\varepsilon v_1/v_2 < \gamma < 1 \tag{18}$$

имеем $0 < x_V < 1$. Таким образом, если в процессе эволюции капли концентрация раствора в капле проходит через значение $x = x_V$, то в этот момент величина $\frac{dV}{dt}$ меняет знак. Нетрудно убедиться, что условие $x = x_V$ может быть выполнено, только в случае, когда концентрация с течением времени убывает, так что в момент перехода рост объема капли, как следует из (16), сменяется его убыванием.

Используя соотношения (12) в подынтегральном выражении в (10) и выполняя затем элементарное интегрирование, получаем явный вид зависимости $N\left(x\right)$ в приближении идеального раствора:

$$\frac{N(x)}{N(x_0)} = \left| \frac{x_0 - x_{\gamma}}{x - x_{\gamma}} \right|^{\frac{\varepsilon}{\varepsilon - 1 + \gamma}} \left| \frac{x}{x_0} \right|^{\frac{1 - \gamma}{\varepsilon - 1 + \gamma}}.$$
 (19)

Из (11), используя (12) и (19), теперь получаем искомую связь текущих значений объема капли и концентрации раствора в ней в виде

$$\frac{V(x)}{V(x_0)} = \frac{1 + \alpha x}{1 + \alpha x_0} \left| \frac{x_0 - x_\gamma}{x - x_\gamma} \right|^{\frac{\varepsilon}{\varepsilon - 1 + \gamma}} \left| \frac{x}{x_0} \right|^{\frac{1 - \gamma}{\varepsilon - 1 + \gamma}}.$$
 (20)

Таким способом концентрация может быть исключена из числа независимых переменных. Описание динамики испарения капли становится возможным, как и в случае однокомпонентной капли, с использованием только двух переменных, например, радиуса основания капли и ее высоты.

Сравнение получаемых при этом результатов с экспериментальными данными по испарению капель бинарного раствора, близкого по своим свойствам к идеальному, планируется в дальнейшем.

Отметим, что существуют ситуации, когда и при сильной неидеальности бинарного раствора в испаряющейся капле связь объема капли с концентрацией раствора можно описать аналитически. Такую ситуацию мы рассмотрим в следующем разделе на примере испарения капель водного раствора серной кислоты.

3. Испарение капли водного раствора серной кислоты

Особенности поведения капель раствора серной кислоты определяются во многом малостью концентрации насыщенного пара кислоты (компонент 1) по сравнению с плотностью насыщенного пара воды (компонент 2). В рассматриваемом случае имеем $\varepsilon = \frac{D_1 n_{1\infty}}{D_2 n_{2\infty}} \sim 10^{-5}$. Поэтому, учитывая результаты предыдущего раздела, следует ожидать, что в процессе испарения капли концентрация кислоты в ней будет стремиться к некоторому конечному стационарному значению x_s , определяемому условием $\frac{dx}{dt}\Big|_{x=x_s}=0$.

Полагая $n_{10} = 0$, уравнения (6) записываем в виде

$$\frac{dx}{dt} = -\pi R \frac{F(\theta)}{N} D_2 n_{2\infty} \left[\varepsilon \left(1 - x \right) \frac{n_{1\infty}(x)}{n_{1\infty}} + x \left(\gamma - \frac{n_{2\infty}(x)}{n_{2\infty}} \right) \right]. \tag{21}$$

Величина x_s определяется при этом условием

$$\frac{n_{2\infty}(x_s)}{n_{2\infty}} = \gamma + \varepsilon \frac{1 - x_s}{x_s} \frac{n_{1\infty}(x_s)}{n_{1\infty}}.$$
 (22)

Уравнение (21) теперь можно представить как

$$\frac{dx}{dt} = -\pi R \frac{F(\theta)}{N} D_2 n_{2\infty} x \left[\varepsilon \left(\frac{1 - x}{x} \frac{n_{1\infty}(x)}{n_{1\infty}} - \varepsilon \frac{1 - x_s}{x_s} \frac{n_{1\infty}(x_s)}{n_{1\infty}} \right) + \left(\frac{n_{2\infty}(x_s)}{n_{2\infty}} - \frac{n_{2\infty}(x)}{n_{2\infty}} \right) \right]. \tag{23}$$

При выполнении условия

$$\left| \frac{n_{2\infty}(x_s) - n_{2\infty}(x)}{n_{2\infty}} \right| >> \varepsilon, \tag{24}$$

эквивалентного условию $|x-x_s|>>\varepsilon$, уравнение (23) принимает простой вид:

$$\frac{dx}{dt} = \pi R \frac{F(\theta)}{N} x D_2 \left(n_{2\infty} \left(x \right) - n_{2\infty} \left(x_s \right) \right). \tag{25}$$

Таким образом, на протяжении практически всего процесса релаксации капли к режиму стационарного испарения эволюция капли определяется потоком водяного пара, а диффузионным потоком пара кислоты, в силу чрезвычайной малости ε , можно пренебречь. Иными сло-

вами, на протяжении практически всего процесса релаксации можно полагать неизменным количество кислоты в капле. Соответствующее условие можно записать в виде равенства:

$$xV(x)/v_l(x) = x_0V(x_0)/v_l(x_0).$$
 (26)

Если вместо молярной концентрации раствора x использовать массовую концентрацию x_m , то из выражения (26) получим

$$x_m(t) \rho(x_m(t)) = \frac{x_{m0}\rho(x_{m0}) V_0}{V(t)}, \qquad (27)$$

где $\rho(z)$ плотность раствора с массовой концентрацией z. Из этого уравнения, используя табличные данные для зависимости $\rho(x_m)$, находим значение концентрации в зависимости от объема капли V(t) (или от времени). Отметим, что определяемое таким образом значение концентрации практически совпадает с ее истинным значением, что обусловлено пренебрежимо малым потоком частиц пара кислоты из капли.

В пренебрежении потоком пара кислоты получаем из (8) уравнение эволюции объема капли в процессе релаксации к стационарному режиму в виде

$$\frac{dV}{dt} \approx \pi RF(\theta) D_2 v_2 n_{2\infty}(1) \left(\gamma - \frac{n_{2\infty}(x)}{n_{2\infty}(1)} \right). \tag{28}$$

Полагая концентрацию насыщенного пара функцией массовой концентрации и имея в виду очевидное равенство

$$\frac{n_{2\infty}(x_m)}{n_{2\infty}(1)} = \frac{P_{2\infty}(x_m)}{P_{2\infty}(1)},\tag{29}$$

где $P_{2\infty}(z)$ - давление насыщенного пара воды вблизи поверхности раствора с массовой концентрацией z , из выражения (28) получаем:

$$\frac{P_{2\infty}\left(x_{m}\left(t\right)\right)}{P_{2\infty}\left(1\right)} = \gamma - \frac{2}{\pi a\left(t\right) F\left(\theta\left(t\right)\right) D_{2} v_{2} n_{2\infty}\left(1\right)} \frac{dV\left(t\right)}{dt}.$$
 (30)

По измеряемым на опыте зависимостям диаметра основания капли $a\left(t\right)$ и высоты капли $h\left(t\right)$ текущие значения объема капли и краевого

угла рассчитываются с использованием выражений:

$$V = \frac{\pi h}{6} \left(h^2 + \frac{3a^2}{4} \right), \tag{31}$$

$$\theta = 2arctg\left(\frac{2h}{a}\right). \tag{32}$$

При всех численных расчетах можно использовать для функции $F(\theta)$ аппроксимацию вида [6]

$$F(\theta) = 1, 3 + 0, 27\theta^2, \tag{33}$$

обеспечивающую хорошую точность в диапазоне углов $0 < \theta < 1, 8$.

Таким образом, на основе измеренных геометрических параметров капли, можно из (30), используя табличные данные для зависимости $P_{2\infty}(x_m)$, рассчитать значение концентрации в зависимости от объема капли (или от времени).

О соответствии рассматриваемой теории эксперименту можно судить, сравнивая зависимость концентрации раствора в капле от ее объема (или от времени), рассчитываемую по (30) на основе экспериментальных данных по изменению геометрии капли, с соответствующей зависимостью, получаемой из условия (27). Результаты такого сравнения изложены в следующем разделе на конкретных примерах.

4. Сравнение с экспериментом

Проанализируем соответствие излагаемой теории опытным данным на примере результатов двух экспериментов по испарению капель водного раствора серной кислоты, проведенных при различных значениях исходной концентрации раствора в капле и влажности воздуха [7].

В первом опыте капля с начальной концентрацией $x_{m0}\approx 0,1$ и начальным объемом $V_0=0,8mm^3$ испаряется при относительной влажности воздуха $\gamma=0,35$. Температура воздуха в процессе испарения остается практически постоянной и равной T=295K. Полученные из данных измерений зависимости объема капли и краевого угла от времени представлены на рисунках 2 и 3 соответственно.

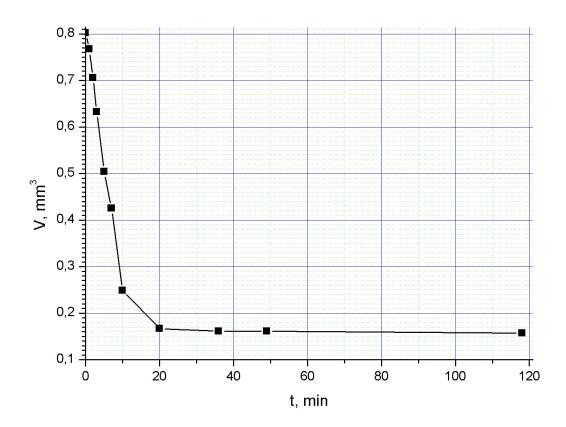


Рис. 2: Зависимость объёма капли от времени (10% раствор).

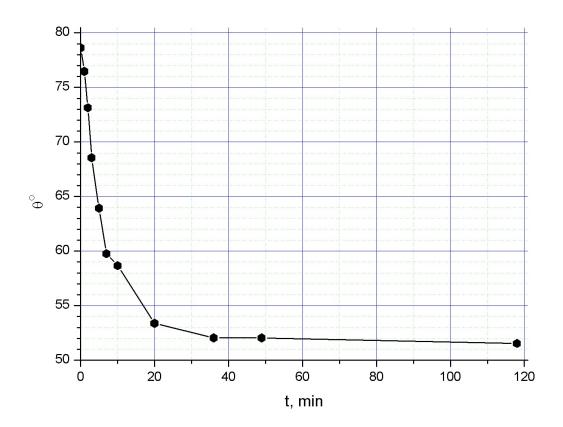


Рис. 3: Зависимость краевого угла капли от времени (10%раствор).

Поскольку начальная концентрация кислоты в капле для этого случая ниже стационарного ее значения, то с течением времени концентрация нарастает за счет уменьшения объема капли вследствие выпаривания воды. Постепенно капля переходит в стационарный режим, при котором испарение из капли является крайне медленным в силу малости потока кислоты, так что объем капли остается практически неизменным на протяжении длительного времени.

Зависимости концентрации раствора в капле от ее объема, рассчитанные по формулам (27) (плавная кривая с кружками) и (30) (линия с квадратами) представлены на рисунке 4. Как видно, различие между этими зависимостями становится малым только к завершению процесса релаксации, где концентрация приближается к стационарному значению $x_{ms} \approx 0,5$.

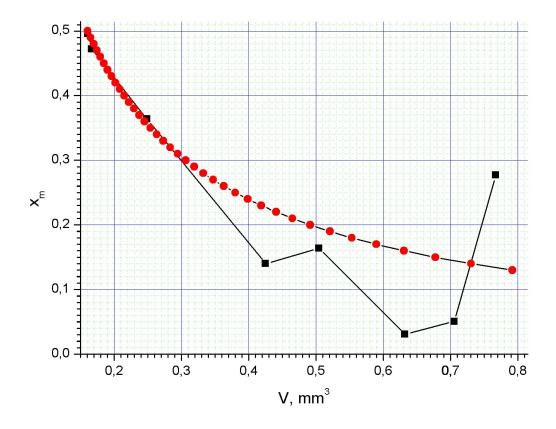


Рис. 4: Зависимости массовой концентрации кислоты от объёма капли (10%раствор).

Отличие массовой концентрации, рассчитанной по формуле (30), от средней по объёму, получаемой из (27), на начальном этапе испарения можно попытаться объяснить тем, что в процессе испарения воды должна понижаться температура в поверхностном слое капли вследствие поглощения тепла парообразования. Это обстоятельство приводит к тому, что давление насыщенного пара воды $P_{2\infty}(x_m)$ вблизи поверхности раствора будет меньше чем давление при температуре среды. Как следствие, концентрация x_m , рассчитанная из данных опыта, окажется выше, чем в изотермическом приближении. Кроме того, расчёт массовой концентрации по формуле (27) предполагает, что время, за которое происходят заметные изменения геометрических параметров капли, много больше времени диффузии молекул воды в капле (времени, за которое раствор успевает полностью перемешаться). В дей-

ствительности же процесс диффузии в капле очень медленный, поэтому на начальном этапе испарение воды из поверхностного слоя капли не успевает компенсироваться диффузионным потоком воды из внутренности капли, что приводит к повышению концентрации кислоты в поверхностном слое капли. Этот эффект будет продемонстрирован и во втором эксперименте.

В дальнейшем наблюдается отклонение вниз от средней концентрации. Это обусловлено как постепенным повышением температуры поверхности капли, так и диффузионным притоком воды к поверхности капли. Вследствие этого рассчитанная по (30) концентрация оказывается меньше реальной до тех пор, пока концентрация не приблизится к своему стационарному значению, где влияние обоих этих эффектов несущественно.

Во втором опыте капля с начальной концентрацией кислоты $x_{m0} \approx 0,58$ и начальным объемом $V_0 = 0,4mm^3$ испаряется при относительной влажности воздуха $\gamma = 0,84$ и температуре воздуха T = 293K. Полученные из измерений зависимости объема капли и краевого угла от времени для этого случая представлены на рисунках 5 и 6 соответственно.

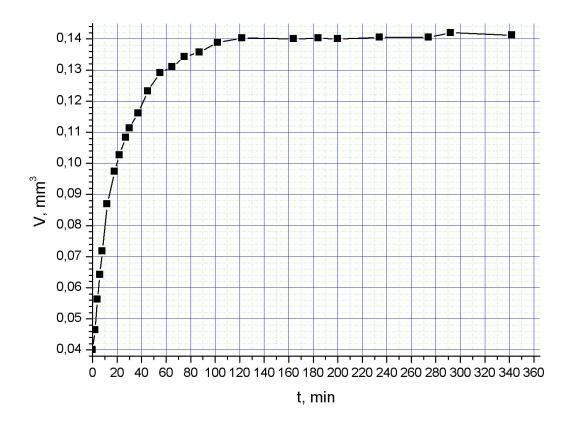


Рис. 5: Зависимость объёма капли от времени (58% раствор).

В отличие от первого опыта, в котором начальная концентрация раствора лежала существенно ниже её стационарного значения, имеем раствор, исходная концентрация которого выше стационарного значения, равного $x_{ms} \approx 0,22$ для данных условий опыта. Как следствие, в процессе релаксации капли к стационарному режиму наблюдается рост ее объема за счёт поглощения водяного пара.

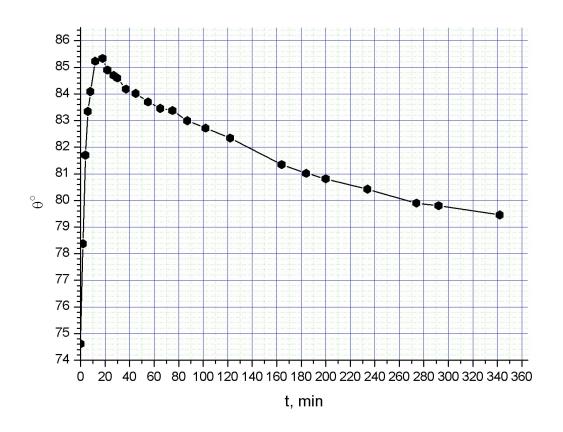


Рис. 6: Зависимость краевого угла капли от времени (58% раствор).

Аналогично предыдущему случаю строим зависимости массовой концентрации от объёма, найденные по формулам (27) и (30). Полученные зависимости представлены на рисунке 7. На рисунке 8 показаны зависимости этих же величин от времени, рассчитанные с использованием показанной на рисунке 5 зависимости от времени для объёма капли. Здесь также наблюдается отклонение от средней по объёму концентрации вплоть до момента приближения к стационарному значению. Однако, если в первом опыте концентрация была выше, чем рассчитанная по формуле (27), то теперь наблюдается отклонение в сторону меньших значений. Объясняется это тем, что в отличие от испарения, в процессе конденсации воды в каплю выделяется тепло. Вследствие этого рассчитанное значение концентрации оказывается ниже, чем среднее.

Очевидно, что одни лишь тепловые эффекты не могут объяснить на-

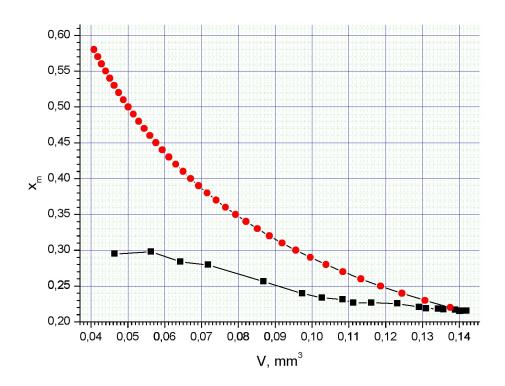


Рис. 7: Зависимости массовой концентрации кислоты от объёма капли (58% раствор).

блюдаемое расхождение почти в 2 раза. Такое различие можно объяснить, только если считать, что на начальном этапе, помимо неоднородности температуры имеет место существенная неоднородность концентрации раствора в капле. Оценка времени диффузионного перемещивания в капле дает величину порядка одного часа, что соизмеримо, как видно из рисунка 8, с длительностью процесса релаксации капли к стационарному режиму.

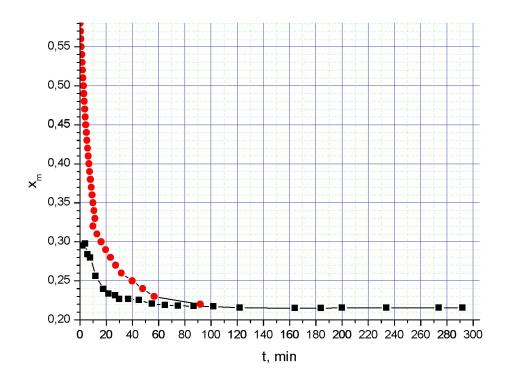


Рис. 8: Зависимости массовой концентрации кислоты от времени (58% раствор).

Заключение

В работе в изотермическом приближении рассмотрена задача об испарении сидячей бинарной капли, состоящей из двух жидкостей, способных смешиваться друг с другом в произвольной пропорции. На основе известного решения задачи о стационарной диффузии пара в случае однокомпонентной капли в форме шарового сегмента сформулирована система уравнений, в общем случае описывающая испарении бинарной капли (уравнения (6) и (8)). В приближении идеального раствора получена в явном виде связь текущих значений концентрации раствора в капле с ее объемом (уравнение (20)). Показано при этом, что в процессе испарения объем бинарной капли может, в отличие от однокомпонентного случая, немонотонно меняться с течением времени (уравнение (16)). В качестве конкретного примера в работе подробно рассмотрен процесс испарения капли водного раствора серной кисло-

ты. Результаты, получаемые при этом в рамках стационарной изотермической теории (уравнения (26) и (29)), проанализированы в сравнении с данными эксперимента. Показано, что наблюдаемое расхождение экспериментальных данных с выводами стационарной изотермической теории можно объяснить совместным влиянием тепловых эффектов и заметным различием текущих значений концентрации раствора на поверхности и в объеме капли.

Список литературы

- 1. Popov Y.O. Evaporative deposition patterns: Spatial dimensions of the deposit. //Physical Review E. 2005. V. 71. 036313.
- 2. Lebedev N.N. Special Functions and Their Applications. Prentice Hall, Inc., 1965
- 3. Stauber Jutta M., Wilson Stephen K., Duffy Brian R., and Sefiane Khellil. On the lifetimes of evaporating droplets with related initial and receding contact angles. //Physics of Fluids. 2015. V. 27. 122101
- 4. David Brutin, ed. Wetting and Evaporation: Droplets of Pure and Complex Fluids, 05/2015; Publisher: Elsevier, ISBN: 978-0-12-800722-8
- 5. Кучма А. Е., Щёкин А. Е., Есипова Н.Е., Татьяненко Д.В., Ицков С.В., Савин А.В. Три стадии испарения микрокапли воды на гидрофобизированной поверхности: сравнение стационарной теории с экспериментом. // Коллоидн. журн. 2017 . Т. 79. № 3. с. 297–303
- 6. Hu H., Larson, R.G., 2002. Evaporation of a sessile droplet on a substrate. //J. Phys. Chem. B. 2002. V. 106. P.1334.
- 7. Экспериментальные данные Н.Е. Есиповой и С.В. Ицкова (ИФХЭ РАН), полученные в рамках выполнения совместного проекта ИФХЭ РАН и СПбГУ (грант РФФИ 16-03-01140а, руководитель А.Е.Кучма), готовятся к публикации.