Санкт-Петербургский государственный университет Кафедра моделирования электромеханических и компьютерных систем

Семенюк Артем Евгеньевич

Выпускная квалификационная работа бакалавра

Деформация трехслойной резино-металлической полосы

при действии нормального давления

Направление 010900 Прикладные математика и физика ООП Прикладные математика, информатика и физика

Научный руководитель, кандидат физ.-мат. наук, доцент Малькова Ю.В.

Санкт-Петербург 2017

Оглавление

Введение	2
Обзор литературы	3
§1. Изгиб пластины, лежащей на упругом эластомерном слое	7
Постановка задачи	7
Решение задачи	8
§2. Динамика металлической пластины, лежащей на резино-	
вом слое	14
Постановка задачи	14
Решение задачи	15
§3. Деформация трёхслойной резино-металлической полосы	
под действием нормального давления	20
Постановка задачи	20
Решение задачи	21
Заключение	26
Литература	27

Введение

В работе рассматриваются решения задач для двухслойной и трехслойной резинометаллических пластин, подверженных постоянной и динамической нагрузке.

Задачи такого типа представляют практический интерес в технике и строительстве. Различные слоистые резинометаллические шарниры и амортизаторы используются в виброизолирующих системах различного технологического назначения. В частности, они применяются для защиты зданий и других объектов от техногенных вибраций.

Для снижения воздействия сейсмической нагрузки применяются системы сейсмоизолирующих слоистых резинометаллических опор.

В задачах о пластинах, лежащих на упругом основании, обычно предполагалось, что реакция упругого основания пропорциональна прогибу пластины. Коэффициент пропорциональности (коэффициент постели или коэффициент жесткости упругого основания) выбирали из некоторых соображений. В данной задаче реакция резинового основания определяется исходя из уравнений теории эластомерного слоя, разработанной в [5].

Цели работы состоят в изучении реакции упругого основания и прогиба металлической пластины, лежащей на эластомерном слое, при статической и динамической нагрузках в зависимости от параметров задачи. Исследовались деформации трехслойной пластины, состоящей из двух металлических слоев и одного резинового слоя. Были определены прогибы металлических слоев и проведен анализ влияния резинового слоя на величину прогиба металлических пластин.

Обзор литературы

Резинометаллические конструкции благодаря своим свойствам находят широкое применение в различных отраслях современной технике и строительстве.

В настоящее время на отечественном строительном рынке наблюдается недостаток относительно недорогих многослойных резинометаллических виброизоляторов, предназначенных для виброизоляции зданий. Это делают задачу разработки резинометаллических виброизоляторов весьма актуальной. Например, только в Москве к настоящему времени возведено уже около 30 виброизолированных сооружений. У [14] рассматриваются варианты конструкции многослойных резинометаллических виброизоляторов, предназначенных для виброизоляции зданий. По результатам статических и динамических испытаний моделируется конструкция, пригодная для использования в строительстве.

В статье [4] приводятся результаты исследований по разработке конструкций и опыту эксплуатации резиновых и резинометаллических виброизоляторов в виброизолирующих системах горных машин различного технологического назначения. Данные исследования являются актуальными, так как в горно-обогатительной отрасли значительное количество оборудования, которое имеют бесфундаментную схему закрепления и необходимо добиваться повышения эффективности их виброизоляции. Это требует разработки новым конструкций виброизоляторов на основе эластомеров. Использование разработанных виброизоляторов позволяет снизить затраты на поддержание строений промышленных предприятий и обеспечить защиту обслуживающего персонала от действия вредных вибраций.

В работе [2] приводятся экспериментальные расчеты резинометаллического амортизатора (конструкция чередующихся металлических и резиновых слоев, слои устанавливаются перпендикулярно приложенной нагрузке) при сжатии. Определяется жесткость амортизатора в зависимости

3

от нагрузки. Цель статьи [1] состояла в определении наиболее эффективных параметров резинометаллических опор для систем сейсмо- и виброизоляций зданий и сооружений. Приводятся результаты экспериментов резинометаллической опоры при статических нагрузках. Проведенные эксперименты позволили определить важные физико-механические параметры для резинометаллических опор.

Исследованию резинометаллических конструкций различного вида численными методами посвящено много работ. В статье [3] разработан конечно-элементный подход для анализа напряжённо-деформированного состояния резинометаллической сейсмоопоры в условиях вязкоупругого деформирования при наличии слоев из пористой резины. На основе вариационного принципа строится конечно-элементная модель деформирования конструкции с пространственной дискретизацией и дискретизацией по времени. В работе [9] представлены результаты статического расчета слоистого резинометаллического виброизолятора, используемого для защиты зданий от техногенной вибрации. Расчет резинометаллического виброизолятора выполнен вариационно-разностным методом.

Часто для исследования резинометаллических конструкций применяют конечно-элементные комплексы. В работе [12] в пакете ANSYS сделан расчет однослойного и трехслойного резинометаллических виброизоляторов. Полученные результаты сравниваются автором с результатами испытаний. Показано, что имеет место совпадение с "достаточной для практических надобностей точностью".

Для разработки и расчета многослойных конструкций используются различные аналитические методы. В книге [16] рассмотрена теория расчета трехслойных балок и панелей на изгиб, кручение и устойчивость при различных способах опирания. Приведены сведения о статических и динамических испытаниях. Изложена технология заготовления элементов слоистых конструкций, разбираются вопросы их проектирования, в том числе способы стыковании и крепления. В монографии [8] изложены основные подходы к оценке безопасности зданий и сооружений при сейсмических и аварийных воздействиях. Исследуются проблемы живучести строительных конструкций. В частности, рассмотрены особенности применения сейсмоизоляции зданий в виде резинометаллических опор и вопросы учета волновых эффектов при расчете на землетрясения. Приведены различные примеры расчета проектируемых уникальных высотных зданий и большепролетных сооружений на особые воздействия. В работе [15] рассматривается методика определения прогиба и внутренних усилий многослойной пластины с жестко закрепленными краями при равномерной поперечной нагрузке. Показана возможность приведения многослойной пластины к однородной с приведенным модулем упругости. Получено уравнения прогиба пластины в виде ряда с применением метода Леви.

В монографии [5] впервые дается систематическое изложение теории и методов расчета эластомерного слоя и многослойных конструкций, состоящих из тонких чередующихся резиновых и армиармирующих слоев. Используются асимптотические методы сведения трехмерных уравнений упругости к двумерным. Рассматриваются вопросы статики, термоупругости, динамики, устойчивости, вязкоупругости и диссипативного разогрева. Подобная теория находит применение при решении различных прикладных задач, в частности, при создании математических моделей в проблеме сейсмоизоляции объектов.

На основе этой книги в работе [6] построена динамическая теория эластомерного слоя, которая сводит трехмерную начально-краевую задачу для трех неизвестных функций к решению одного двумерного волнового уравнения для одной неизвестной функции. После решения этого уравнения все остальные неизвестные функции, в частности перемещения, находятся элементарным способом. Решение исходной задачи чрезвычайно упрощается. Для задачи гармонических колебаний в работе сделано сравнение результатов, полученных разными методами. Хотя коэффициенты разрешающего уравнения и динамические жесткости слоя отличаются по виду, но в пределах применимости динамической теории слоя по частоте результаты асимптотического и вариационного методов оказались близки.

Несмотря на широкое применение резинометаллических конструкций, знаний о их поведении под нагрузкой недостаточно и работы,

5

посвященные исследованиям напряженно-деформированного состояния слоистых конструкций, являются востребованными.

§1. Изгиб пластины, лежащей на упругом эластомерном слое

Постановка задачи

Рассмотрим прямоугольную металлическую пластину толщиной h_0 , лежащую на упругом эластомерном слое высотой h и длиной 2R (рис. 1.1).

Металлическая пластина нагружена равномерно распределенным по всей площади постоянным давлением: $q = \sigma_{33, plate}, z = h + h_0$.

Рис. 1.1: Резинометаллическая пластина

Основание резинового слоя неподвижно $w_{layer} = 0, z = 0.$ На поверхности соединения пластины и резинового слоя имеют место условия непрерывности напряжений и перемещений $\sigma_{33,layer} = \sigma_{33,plate}, w = w_{layer},$ z = h. Слои металла и резины жестко соединены. Пластина шарнирно опёрта по контуру, т. е. прогиб ме-

таллической пластины и изгибающий момент вдоль края пластины равны нулю

$$w = 0, \quad \frac{d^2w}{dx^2} = 0, \ x = \pm R.$$

Края резинового слоя свободны, так как нормальные напряжения слоя определяются формулой $\sigma = Ke$, где K — модуль объемного сжатия, e — относительное приращение объема, то условие на краях $x = \pm R$ будет e = 0.

Рассматривается плоская деформация, поэтому искомые функции зависят только от переменной x: w = w(x), e = e(x). Нагрузка на пластину, лежащую на эластомерном слое, складывается из давления q и реакции резинового слоя, равной Ke [5]. Уравнение для определения прогиба имеет вид

$$D\frac{d^4w}{dx^4} = q - Ke, \tag{1.1}$$

где $K = \frac{E}{3(1-2\nu)}$ — модуль объемного сжатия, E и ν — модуль Юнга и коэффициент Пуассона резинового слоя, $D = \frac{E_0 h_0^3}{12(1-\nu_0^2)}$ — цилиндрическая

жесткость, E_0 , ν_0 — модуль Юнга и коэффициент Пуассона пластины.

Отличие данного уравнения от классического уравнения для прогиба теории пластин состоит в наличии напряжений $\sigma_{zz} = Ke$, возникающих в резиновом слое в результате изгиба пластинки.

Задача сжатия резинового слоя сводится к решению уравнения Гельмгольца для функции относительного приращения объема [5]

$$R^{2}\frac{d^{2}e}{dx^{2}} - 12ce = \frac{-12c}{h}(w^{+} - w^{-}),$$

где $c = \frac{GR^2}{Kh^2}$, G — модуль сдвига, w^{\pm} — перемещения верхней и нижней поверхностей резинового слоя. В нашем случае $w^- = 0$ и $w^+ = w$, уравнение будет иметь вид

$$R^2 \frac{d^2 e}{dx^2} - 12ce = -12c\frac{w}{h}.$$
(1.2)

Уравнения (1.1), (1.2) нужно решать совместно.

Решение задачи

Перейдем к решению системы уравнений (1.1), (1.2) с заданными граничными условиями. Для этого выразим из равенства (1.2) функцию w(x)и подставим ее в (1.1). Получим

$$-\frac{hR^2}{12c}D\frac{d^6e}{dx^6} + hD\frac{d^4e}{dx^4} + Ke = q.$$
 (1.3)

Решение уравнения (1.3) будем искать в виде суммы общего и частного решений $e(x) = e_0(x) + e_1(x)$. Частное решение уравнения (1.3), очевидно, $e_1(x) = q/K$.

Для нахождения общего решения однородного уравнения введем замену переменных $x = R\xi$ и получим следующее дифференциальное уравнение

$$\frac{d^6 e_0}{d\xi^6} - 12c \frac{d^4 e_0}{d\xi^4} - \frac{12cKR^4}{hD}e_0 = 0.$$
(1.4)

Решение этого уравнения имеет вид $e_0(t) = e^{\lambda \xi}$, где λ — корень характеристического уравнения

$$\lambda^6 - 12c\lambda^4 - \frac{12cKR^4}{hD} = 0.$$

Обозначим $\lambda^2 = p$, тогда получим кубическое уравнение

$$p^3 - 12cp^2 - \frac{12cKR^4}{hD} = 0.$$

Корни этого кубического уравнения можно найти по формулам Кардано.

Общее решение уравнения (1.4) имеет вид [7]

$$e_0(\xi) = c_1 e^{-\lambda\xi} + c_2 e^{\lambda\xi} + c_3 e^{\alpha\xi} \cos\beta\xi + c_4 e^{-\alpha\xi} \cos\beta\xi + c_6 e^{-\alpha\xi} \sin\beta\xi, \qquad (1.5)$$

где c_i — неизвестные постоянные, подлежащие определению, α , β — вещественная и мнимая части комплексных корней характеристического уравнения, λ — вещественный корень.

Так как функция $e_0(\xi)$ является четной, то $c_1 = c_2, c_3 = c_4, c_5 = -c_6$. Решение (1.5) примет вид

$$e_0(\xi) = c_1 \operatorname{ch} \lambda \xi + c_2 \operatorname{ch} \alpha \xi \cos \beta \xi + c_3 \operatorname{sh} \alpha \xi \sin \beta \xi.$$

Найдем неизвестные постоянные, входящие в это решение. Для этого воспользуемся граничными условиями. На краю резинового слоя отсутствует относительное приращения объема $e|_{\xi=1} = 0$.

Так как $w|_{\xi=1} = 0$, то

$$\frac{d^2 e}{d\xi^2}\Big|_{\xi=1} = 0, \quad \frac{d^4 e}{d\xi^4}\Big|_{\xi=1} = 0.$$

Последнее условие получено дифференцированием уравнения Гельмгольца (1.2). Запишем систему уравнений, которую нужно разрешить

$$c_{1} \operatorname{ch} \lambda + c_{2} \operatorname{ch} \alpha \cos \beta + c_{3} \operatorname{sh} \alpha \sin \beta + \frac{q}{K} = 0,$$

$$c_{1} \lambda^{2} \operatorname{ch} \lambda + \operatorname{ch} \alpha \cos \beta [2\alpha\beta c_{3} + \alpha^{2}c_{2} - \beta^{2}c_{2}] +$$

$$+ \operatorname{sh} \alpha \sin \beta [-2\alpha\beta c_{2} + \alpha^{2}c_{3} - \beta^{2}c_{3}] = 0,$$

$$c_{1} \lambda^{4} \operatorname{ch} \lambda + \operatorname{ch} \alpha \cos \beta [c_{2} \alpha^{4} + c_{2} \beta^{4} - 4c_{3} \alpha \beta^{3} + 4c_{3} \alpha^{3} \beta - 6c_{2} \alpha^{2} \beta^{2}] +$$

$$+ \operatorname{sh} \alpha \sin \beta [c_{3} \alpha^{4} + c_{3} \beta^{4} + 4c_{2} \alpha \beta^{3} - 4c_{2} \alpha^{3} \beta - 6c_{3} \alpha^{2} \beta^{2}] = 0.$$

Отсюда

$$c_{1} = -\frac{2qe^{\lambda}(\alpha^{4} + 2\alpha^{2}\beta^{2} + \beta^{4})}{K(1 + e^{2\lambda})A},$$

$$c_{2} = \frac{q\lambda^{2}e^{\alpha}}{K\alpha\beta AB}(2\alpha\beta\cos\beta(1 + e^{2\alpha})(2\alpha^{2} - \lambda^{2} - 2\beta^{2}) + \sin\beta(1 - e^{2\alpha})(6\alpha^{2}\beta^{2} + \alpha^{2}\lambda^{2} - \beta^{2}\lambda^{2} - \alpha^{4} - \beta^{4})),$$

$$c_{3} = -\frac{q\lambda^{2}e^{\alpha}}{K\alpha\beta AB}(\cos\beta(1 + e^{2\alpha})(\alpha^{4} + \beta^{4} + \beta^{2}\lambda^{2} - 6\beta^{2}\alpha^{2} - \alpha^{2}\lambda^{2}) + 2\alpha\beta\sin\beta(e^{2\alpha} - 1)(\lambda^{2} - 2\alpha^{2} + 2\beta^{2})),$$

где $A = \alpha^4 + \beta^4 + \lambda^4 + 2\beta^2\lambda^2 + 2\beta^2\alpha^2 - 2\alpha^2\lambda^2, B = 1 + e^{4\alpha} + 2e^{2\alpha}\cos 2\beta.$ Таким образом, функция относительного приращения объема найде-

на. Определим теперь прогиб пластины. Из уравнения (1.2)

$$w(\xi) = he(\xi) - \frac{h}{12c} \cdot \frac{d^2 e(\xi)}{d\xi^2}.$$

Подставив сюда функцию $e(\xi)$, получим [11]

$$w(\xi) = \frac{qh}{K} + \left(h - \frac{h\lambda^2}{12c}\right)c_1 \operatorname{ch}\lambda\xi + \\ + \cos\beta\xi \operatorname{ch}\alpha\xi \left[hc_2 - \frac{h}{12c}(2\alpha\beta c_3 + c_2(\alpha^2 - \beta^2))\right] + \\ + \sin\beta\xi \operatorname{sh}\alpha\xi \left[hc_3 - \frac{h}{12c}(c_3(\alpha^2 - \beta^2) - 2\alpha\beta c_2)\right].$$
(1.6)

В отсутствии резинового слоя прогиб пластинки удовлетворяет линейному дифференциальному уравнению и граничным условиям

$$D\frac{d^4w}{dx^4} = q, \quad w = w'' = 0, \quad x = \pm R.$$

Рис. 1.2: Резинометаллическая пластина после деформации

Решая задачу, после замены переменных получим следующее выражение [13]

$$w(\xi) = \frac{qR^4}{4D} \left(\frac{1}{6}\xi^4 - \xi^2 + \frac{5}{6}\right).$$
(1.7)

Выполнен расчет прогибов пластины для параметров системы: $K = 25 \cdot 10^3 \text{ кг/см}^2, G = 10 \text{ кг/см}^2, R = 50 \text{ см}; E_0 = 2, 1 \cdot 10^6 \text{ кг/см}^2,$ $\nu_0 = 0, 3, q = 1 \text{ кг/см}^2.$

На рис. 1.3 представлен график зависимости прогиба металлической пластины от безразмерного параметра $\xi = x/R$. Линия 1 соответствует формуле (1.6), линия 2 — формуле (1.7).

Видим, что наличие резинового слоя существеннно влияет на прогиб металлической пластины. Для приведенных параметров величина прогиба резинометаллической пластины почти в 2 раза меньше, чем металлической.

На рис. 1.4 представлены графики зависимости прогиба металлической пластины от безразмерного параметра $\xi = x/R$ при различной толщине резинового слоя. Как видно из графиков при увеличении толщины резиного слоя будет увеличиваться и прогиб металлической пластины.

Рис. 1.3: Зависимость прогиба металлической пластины от безразмерного параметра $\xi=x/R,\,h=1$ см, $h_0=2,5\,$ см

Рис. 1.4: Прогиб металлической пластины при различной толщине резинового слоя а)-г).

§2. Динамика металлической пластины, лежащей на резиновом слое

Постановка задачи

Рассматривается прямоугольная металлическая пластина толщиной h_0 , лежащая на упругом эластомерном слое толщиной h и длиной 2R (рис. 2.1). На металлическую пластину действует распределенная по всей площади динамическая нагрузка вида $\sigma_{33,plate} = q(t) = A \sin pt$ при $z = h + h_0$, где p — частота вынужденных или свободных колебаний.

Рис. 2.1: Резинометаллическая пластина

Основание резинового слоя неподвижно $w_{layer} = 0, \ z = 0.$

На поверхности контакта пластины и резинового слоя имеют место условия непрерывности напряжений и перемещений $\sigma_{33,layer} = \sigma_{33,plate}, w = w_{layer}, z = h.$

Пластина шарнирно опёрта по контуру $x = \pm R$, т. е. прогиб металлической пластины и изгибающий

момент вдоль края равны нулю:

$$w = 0, \quad \frac{d^2w}{dx^2} = 0, \quad x = \pm R.$$

Края резинового слоя свободны от напряжений. Нормальные напряжения слоя определяются формулой $\sigma_{33} = Ke$, где $K = \frac{E}{3(1-2\nu)}$ — модуль объёмного сжатия, E и ν — модуль Юнга и коэффициент Пуассона резины, e — относительное приращение объёма [5]. Тогда условие на краях $x = \pm R$ имеет вид e = 0.

Рассматривается плоская деформация, поэтому искомые функции зависят от двух переменных x, t: w = w(x, t), e = e(x, t). Нагрузка на металлическую пластину состоит из заданной функции $q = A \sin(pt)$ и реакции резинового слоя, равной *Ke*. Динамическое уравнение для прогиба пластины имеет вид [5, 10]

$$D\frac{\partial^4 w}{\partial x^4} + \rho h_0 \frac{\partial^2 w}{\partial t^2} = q(t) - Ke(x, t), \qquad (2.1)$$

где $D = \frac{E_0 h_0^3}{12(1-\nu_0^2)}$ — цилиндрическая жесткость, E_0 и ν_0 — модуль Юнга и коэффициент Пуассона металлической пластины, ρ — плотность.

Задача динамического сжатия резинового слоя сводится к решению уравнения Гельмгольца для функции относительного приращения объёма [5]

$$R^2 \frac{d^2 e^*}{dx^2} - 12\bar{c}e^* = -\frac{12\bar{c}}{h}w^*, \qquad (2.2)$$

где

$$\overline{c} = \frac{ck^2}{12(\frac{2}{k}\operatorname{tg}(\frac{k}{2}) - 1)}, \quad c = \frac{GR^2}{Kh^2}, \quad k = \frac{ph}{b},$$

b — скорость волны сдвига (скорость поперечных волн). В уравнении (2.2) выписаны амплитудные значения функций, множитель $\sin pt$ опущен.

Решение задачи

Решим систему уравнений (2.1), (2.2) с заданными граничными условиями методом разделения переменных. Пусть

$$e(x,t) = e^*(x)\sin pt,$$
 (2.3)

$$w(x,t) = w^*(x)\sin pt.$$
 (2.4)

Подставим соотношения (2.3) в уравнение (2.1). В итоге получим два обыкновенных дифференциальных уравнения одной переменной x:

$$D\frac{d^4w^*}{dx^4} - p^2\rho h_0 w^*(x) = A - Ke^*(x), \qquad (2.5)$$

$$R^{2} \frac{d^{2} e^{*}}{dx^{2}} - 12\overline{c} e^{*}(x) + 12\overline{c} \frac{1}{h} w^{*}(x) = 0.$$
(2.6)

Из уравнения (2.6) выразим функцию $w^*(x)$ и подставим в (2.5). Получим следующее дифференциальное уравнение

$$\frac{d^6 e^*}{d\xi^6} - 12\overline{c}\frac{d^4 e^*}{d\xi^4} - \frac{\rho h_0 p^2}{D} R^4 \frac{d^2 e^*}{d\xi^2} + \frac{12\overline{c}}{D} R^4 \left(\rho h_0 p^2 - \frac{K}{h}\right) e^* + \frac{12\overline{c}}{Dh} R^4 A = 0. \quad (2.7)$$

Здесь введена безразмерная переменная $\xi = x/R$.

Решение будем искать в виде суммы общего решения однородного уравнения и частного решения $e^*(x) = e^*_0(x) + e^*_1(x)$. Частное решение уравнения (2.7) имеет вид $e^*_1(x) = \frac{A}{K - \rho h h_0 p^2}$.

Найдём общее решение однородного уравнения

$$\frac{d^6 e_0^*}{d\xi^6} - 12\overline{c}\frac{d^4 e_0^*}{d\xi^4} - \frac{\rho h_0 p^2}{D} R^4 \frac{d^2 e_0^*}{d\xi^2} + \frac{12\overline{c}}{D} R^4 \left(\rho h_0 p^2 - \frac{K}{h}\right) e_0^* = 0.$$
(2.8)

Это решение ищем в виде $e_0^* = e^{\lambda\xi}$, где λ — корень характеристического уравнения

$$\lambda^{6} - 12\overline{c}\lambda^{4} - \frac{\rho h_{0}p^{2}}{D}R^{4}\lambda^{2} + \frac{12\overline{c}}{D}R^{4}\left(\rho h_{0}p^{2} - \frac{K}{h}\right) = 0.$$
 (2.9)

При решении уравнения (2.9) получаются два различных вещественных корня и четыре комплексно сопряженных.

С учетом четности функци
и $e_0^*(\xi)$ решение уравнения (2.8) примет вид [7]

$$e_0^*(\xi) = c_1 \operatorname{ch} \lambda \xi + c_2 \operatorname{ch} \alpha \xi \cos \beta \xi + c_3 \operatorname{sh} \alpha \xi \sin \beta \xi,$$

где c_i — неизвестные постоянные, подлежащие определению, α, β — действительная и мнимая части комплексного корня, λ — вещественный корень характеристического уравнения (2.9).

Для определения неизвестных постоянных используются граничные условия

$$e^* = 0, \quad \frac{d^2 e^*}{d\xi^2} = 0, \quad \frac{d^4 e^*}{d\xi^4} = 0, \quad \xi = 1.$$

Таким образом, решение дифференциального уравнения (2.7) будет иметь вид

$$e^*(\xi) = c_1 \operatorname{ch} \lambda \xi + c_2 \operatorname{ch} \alpha \xi \cos \beta \xi + c_3 \operatorname{sh} \alpha \xi \sin \beta \xi + \frac{A}{K - \rho h h_0 p^2},$$

где

$$c_{1} = -\frac{2Ae^{\lambda}(\alpha^{4} + 2\alpha^{2}\beta^{2} + \beta^{4})}{(K - \rho hh_{0}p^{2})(1 + e^{2\lambda})B},$$

$$c_{2} = \frac{A\lambda^{2}e^{\alpha}}{(K - \rho hh_{0}p^{2})\alpha\beta BC}(2\alpha\beta\cos\beta(1 + e^{2\alpha})(2\alpha^{2} - \lambda^{2} - 2\beta^{2}) + sin\beta(1 - e^{2\alpha})(6\alpha^{2}\beta^{2} + \alpha^{2}\lambda^{2} - \beta^{2}\lambda^{2} - \alpha^{4} - \beta^{4})),$$

$$c_{3} = -\frac{A\lambda^{2}e^{\alpha}}{(K - \rho hh_{0}p^{2})\alpha\beta BC}(\cos\beta(1 + e^{2\alpha})(\alpha^{4} + \beta^{4} + \beta^{2}\lambda^{2} - 6\beta^{2}\alpha^{2} - \alpha^{2}\lambda^{2}) + 2\alpha\beta\sin\beta(e^{2\alpha} - 1)(\lambda^{2} - 2\alpha^{2} + 2\beta^{2})),$$

где $B = \alpha^4 + \beta^4 + \lambda^4 + 2\beta^2\lambda^2 + 2\beta^2\alpha^2 - 2\alpha^2\lambda^2, C = 1 + e^{4\alpha} + 2e^{2\alpha}\cos 2\beta.$ Функция прогиба металлической пластины (2.4)

$$w(\xi,t) = \left(c_1 h \operatorname{ch} \lambda \xi \left(1 - \frac{\lambda^2}{12\overline{c}}\right) + h \cos\beta\xi \operatorname{ch} \alpha\xi \left[c_2 - \frac{1}{12\overline{c}}(2\alpha\beta c_3 + c_2(\alpha^2 - \beta^2))\right] + h \sin\beta\xi \operatorname{sh} \alpha\xi \left[c_3 - \frac{1}{12\overline{c}}(c_3(\alpha^2 - \beta^2) - (2.10))\right] \\ -2\alpha\beta c_2 \left[1 - 2\alpha\beta c_2\right] = 0 \quad \text{(2.10)}$$

Ниже представлены графики зависимости прогиба металлической пластины от параметра $\xi = x/R$ (рис. 2.2, 2.3) для различного значения A. Выполнен расчет прогиба пластины $w^*(\xi)$ для параметров R = 50 см, $K = 25 \cdot 10^3 \text{ кг/см}^2$, $h_0 = 1$ см, h = 2.5 см, $E_0 = 2, 1 \cdot 10^6 \text{ кг/см}^2$, $\nu_0 = 0, 3$, $G = 10 \text{ кг/см}^2$, $\rho = 1, 2 \cdot 10^{-6}$, k = 1, 61, p = 500 1/c.

На рис. 2.4 и 2.5 представлены графики зависимости прогиба металлической пластины $w(\xi, t)$ от безразмерного параметра ξ и и времени t при различном значении A.

Рис. 2.2: Зависимость прогиба металлической пластины $w^*(\xi)$ от параметра $\xi = x/R$ и времени, $A = 1~{\rm kr/cm}^2$

Рис. 2.3: Зависимость прогиба металлической пластины $w^*(\xi)$ от параметра $\xi=~x/R$ и времени, $A=20~{\rm kr/cm^2}$

Рис. 2.4: Зависимость прогиба металлической пластины $w(\xi,t)$ от параметра $\xi=\,x/R$ и времени, $A=1~{\rm kr/cm^2}$

Рис. 2.5: Зависимость прогиба металлической пластины $w(\xi,t)$ от параметра $\xi=~x/R$ и времени, $A=20~{\rm kr/cm^2}$

§3. Деформация трёхслойной резино-металлической полосы под действием нормального давления

Постановка задачи

Рассмотрим две прямоугольные металлические пластины толщиной h_0 , между которыми помещён упругий эластомерный слой высотой h и длиной 2R (рис. 3.1). Верхняя металлическая пластина нагружена равномерно распределённым по всей площади постоянным давлением q.

Рис. 3.1: Трёхслойная резинометаллическая пластина

На поверхностях соединения пластин и резинового слоя имеют место условия непрерывности напряжений и перемещений

$$\sigma_{33}^+ = \sigma_{33}^{(1)}, \quad \sigma_{33}^- = \sigma_{33}^{(2)},$$

 $w_1 = w^+, \quad w_2 = w^-, \quad z = \pm h/2.$

Здесь w^{\pm} — перемещения верхней и нижней поверхностей резинового слоя, w_1 , w_2 — прогибы верхней и нижней пластины соответственно.

Пластины шарнирно опёртые по контуру, т.е. прогибы верхней и нижней металлических пластин и изгибающие моменты вдоль края равны нулю

$$w_1\Big|_{x=R} = 0, \quad w_2\Big|_{x=R} = 0, \quad \frac{d^2w_1}{dx^2}\Big|_{x=R} = 0, \quad \frac{d^2w_2}{dx^2}\Big|_{x=R} = 0$$

Края резинового слоя свободны, так как нормальные напряжения слоя определяются формулой $\sigma_{33} = Ke$, где $K = \frac{E}{3(1-2\nu)}$ — модуль объёмного сжатия резины, E и ν — модуль Юнга и коэффициент Пуассона резины, e — относительное приращение объёма. Тогда условие на краях будет e = 0.

Так как рассматривается плоская деформация, то все искомые функции будут зависеть только от одной переменной $x: w_1 = w_1(x), w_2 = w_2(x), e = e(x).$

Нагрузка на пластину, лежащую на эластомерном слое, складывается из давления q и реакции резинового слоя, равной Ke. Уравнение для прогиба имеет вид [5]

$$D\frac{d^4w_1}{dx^4} = q - Ke. (3.1)$$

Нагрузка на пластину, лежащую под эластомерным слоем, равна реакции резинового слоя. Следовально, уравнение для прогиба будет иметь следующий вид [5]

$$D\frac{d^4w_2}{dx^4} = Ke, (3.2)$$

где $D = \frac{E_0 h_0^3}{12(1-\nu_0^2)}$ — цилиндрическая жесткость металлических пластин, E_0 и ν_0 — модуль Юнга и коэффициент Пуассона этих пластин.

Задача сжатия резинового слоя сводится к решению уравнения Гельмгольца для функции относительного приращения объёма

$$R^{2}\frac{d^{2}e}{dx^{2}} - 12ce = \frac{12c}{h}(w_{1} - w_{2}), \quad c = \frac{GR^{2}}{Kh^{2}},$$
(3.3)

где G — модуль сдвига.

Решение задачи

Складываем и вычитаем уравнения (3.1), (3.2)

$$D\frac{d^4}{dx^4}(w_1 + w_2) = q,$$
$$D\frac{d^4}{dx^4}(w_1 - w_2) = q - 2Ke.$$

После замены переменных $w_1 + w_2 = u_1, w_1 - w_2 = u_2$ придем к системе дифференциальных уравнений

$$D\frac{d^4u_1}{dx^4} = q, (3.4)$$

$$D\frac{d^4u_2}{dx^4} = q - 2Ke, (3.5)$$

$$R^2 \frac{d^2 e}{dx^2} - 12ce = -\frac{12c}{h}u_2. \tag{3.6}$$

Видим, что уравнения (3.5) и (3.6) нужно решать совместно, уравнение (3.4) решаем отдельно.

После последовательного интегрирования по переменной x имеем

$$u_1 = \frac{q}{24D}x^4 + \frac{1}{6}a_4x^3 + \frac{1}{2}a_3x^2 + a_2x + a_1.$$
(3.7)

Сделав замену перенных $x = R\xi$, получим

$$u_1 = \frac{qR^4}{24D}\xi^4 + \frac{R^3}{6}a_4\xi^3 + \frac{R^2}{2}a_3\xi^2 + Ra_2\xi + a_1,$$

где a_1, a_2, a_3, a_4 — константы, подлежащие определению.

Так как должно выполняться условие чётности относительно ос
иOz,то $a_2=a_4=0.$ Исходя из граничных условий

$$u_1\Big|_{\xi=1} = 0, \quad \frac{d^2u_1}{d\xi^2}\Big|_{\xi=1} = 0,$$

определяем константы a_1, a_3 . В итоге получим

$$u_1(\xi) = \frac{qR^4}{4D} \left(\frac{1}{6} \xi^4 - \xi^2 + \frac{5}{6} \right).$$
(3.8)

Решим теперь систему уравнений (3.5), (3.6). Для этого выразим из (3.6) функцию $u_2(x)$ и подставим в её в соотношение (3.5). Получим

$$-\frac{hR^2}{12c}D\frac{d^6e}{dx^6} + hD\frac{d^4e}{dx^4} + 2Ke = q.$$
(3.9)

Сделаем замену переменных $x = R\xi$

$$-\frac{hD}{12R^4c} \cdot \frac{d^6e}{d\xi^6} + \frac{hD}{R^4} \cdot \frac{d^4e}{d\xi^4} + 2Ke = q.$$
(3.10)

Решение будем искать в виде суммы общего решения однородного уравнения и частного решения $e(\xi) = e_0(\xi) + e_1(\xi)$. Частное решение уравнения (3.10), очевидно, $e_1(\xi) = \frac{q}{2K}$.

Найдём общее решение однородного уравнения

$$\frac{d^6 e_0}{d\xi^6} - 12c\frac{d^4 e_0}{d\xi^4} - \frac{24KR^4c}{hD}e_0 = 0.$$

Согласно [7], его ищем в виде $e_0(\xi) = e^{\lambda\xi}$, где λ — корень характеристического уравнения

$$\lambda^6 - 12c\lambda^4 - \frac{24KR^4c}{hD} = 0.$$

Тогда общее решение однородного уравнения имеет вид

$$e_0(\xi) = c_1 e^{-\lambda\xi} + c_2 e^{\lambda\xi} + c_3 e^{\alpha\xi} \cos\beta\xi + c_4 e^{-\alpha\xi} \cos\beta\xi + c_5 e^{\alpha\xi} \sin\beta\xi + c_6 e^{-\alpha\xi} \sin\beta\xi, \qquad (3.11)$$

где c_i —неизвестные постоянные, подлежащие определению, α, β — вещественная и мнимая части комплексных корней характеристического уравнения, λ — вещественный корень.

Так как функция $e_0(\xi)$ — чётная, то $c_1 = c_2$, $c_3 = c_4$, $c_5 = -c_6$. Соотношение (3.11) примет вид

$$e_0(t) = c_1 \operatorname{ch} \lambda \xi + c_2 \operatorname{ch} \alpha \xi \cos \beta \xi + c_3 \operatorname{sh} \alpha \xi \sin \beta \xi.$$
(3.12)

Для определения неизвестных постоянных воспользуемся граничными условиями

$$e\Big|_{\xi=1} = 0, \quad \frac{d^2e}{d\xi^2}\Big|_{\xi=1} = 0, \quad \frac{d^4e}{d\xi^4}\Big|_{\xi=1} = 0$$

Система, которую нужно разрешить относительно c_1, c_2 и c_3 имеет вид

$$c_{1} \operatorname{ch}(\lambda) + c_{2} \operatorname{ch}(\alpha) \cos(\beta) + c_{3} \operatorname{sh}(\alpha) \sin(\beta) + \frac{q}{2K} = 0,$$

$$c_{1}\lambda^{2} \operatorname{ch}(\lambda) + \operatorname{ch}(\alpha) \cos(\beta) [2\alpha\beta c_{3} + \alpha^{2}c_{2} - \beta^{2}c_{2}] +$$

$$+ \operatorname{sh}(\alpha) \sin(\beta) [-2\alpha\beta c_{2} + \alpha^{2}c_{3} - \beta^{2}c_{3}] = 0,$$

$$c_{1}\lambda^{4} \operatorname{ch}(\lambda) + \operatorname{ch}(\alpha) \cos(\beta) [c_{2}\alpha^{4} + c_{2}\beta^{4} - 4c_{3}\alpha\beta^{3} +$$

$$+ 4c_{3}\alpha^{3}\beta - 6c_{2}\alpha^{2}\beta^{2}] + \operatorname{sh}(\alpha) \sin(\beta) [c_{3}\alpha^{4} + c_{3}\beta^{4} +$$

$$+ 4c_{2}\alpha\beta^{3} - 4c_{2}\alpha^{3}\beta - 6c_{3}\alpha^{2}\beta^{2}] = 0.$$
(3.13)

Общее решение уравнения (3.10)

$$e(\xi) = c_1 \operatorname{ch}(\lambda\xi) + c_2 \operatorname{ch}(\alpha\xi) \cos(\beta\xi) + c_3 \operatorname{sh}(\alpha\xi) \sin(\beta\xi) + \frac{q}{2K}, \quad (3.14)$$

где постоянные определены из системы (3.13)

Таким образом, функция относительного приращения объёма найдена. Теперь определим функцию прогиба w_2 из уравнения (3.6)

$$u_2(x) = he(x) - \frac{R^2h}{12c} \cdot \frac{d^2e(x)}{dx^2},$$

или, после замены переменных $x = R\xi$,

$$u_2(\xi) = he(\xi) - \frac{h}{12c} \cdot \frac{d^2 e(\xi)}{d\xi^2}.$$
 (3.15)

Прогибы верхней и нижней металлических пластин, соответственно, имеют вид

$$w_1 = \frac{u_1 + u_2}{2}, \quad w_2 = \frac{u_1 - u_2}{2},$$

Подставим в полученные выражения соотношения (3.8) и (3.15)

$$w_1(\xi) = \frac{qR^4}{8D} \left(\frac{1}{6} \xi^4 - \xi^2 + \frac{5}{6} \right) + \frac{1}{2} \left(he(\xi) - \frac{h}{12c} \cdot \frac{d^2 e(\xi)}{dx^2} \right), \quad (3.16)$$

$$w_2(\xi) = \frac{qR^4}{8D} \left(\frac{1}{6} \xi^4 - \xi^2 + \frac{5}{6} \right) - \frac{1}{2} \left(he(\xi) - \frac{h}{12c} \cdot \frac{d^2 e(\xi)}{dx^2} \right), \quad (3.17)$$

где функция $e(\xi)$ — функция относительного приращения объёма (3.14).

Выполнен расчёт прогибов пластин для параметров системы: $K = 25 \cdot 10^3 \text{ кг/см}^2, h_0 = 1 \text{ см}, R = 50 \text{ см}, E_0 = 2, 1 \cdot 10^6 \text{ кг/см}^2, \nu_0 = 0, 3, G = 10 \text{ кг/см}^2.$

Ниже представлены графики зависимости прогиба верхней и нижней пластин от различных параметров, где синяя линия отображает прогиб верхней пластины, а красная линия прогиб нижней, соответственно (рис. 3.2 а)–г)). Увеличение наргузки приводит к увеличению величины прогибов пластин. Также видно, что увеличение толщины резинового слоя ведет к увеличению прогиба верхней пластины и уменьшению прогиба нижней.

Рис. 3.2: Прогибы вехней и нижней металлических пластин при различной награзке и толщине резинового слоя a)-г).

Заключение

- Решена задача изгиба пластины, лежащей на упругом эластомерном слое. Подобные задачи раньше решали, используя предположение, что реакция основания пропорциональна прогибу пластины. Здесь впервые поставлена и решена задача, когда прогиб и реакция основания определяются из системы связанных дифференциальных уравнений.
- Решена динамическая задача изгиба пластины, лежащей на упругом эластомерном слое. Прогиб пластины и реакция резинового слоя находятся из системы связанных дифференциальных уравнений шестого порядка. На основе уравнений теории эластомерного слоя определена реакция упругого основания. Найдена функция прогиба металлической пластины.
- Получено аналитическое решение задачи о трехслойной резнометаллической пластине, нагруженной постоянным давлением. Для заданных параметров сделан расчет прогибов металлических пластин при действии постоянной нагрузки.

Литература

- Аскарбеков Р.Н. Определение физико-механических параметров резинометаллических опор при сжатии // Известия КГТУ им. И.Раззакова. 2015. Т.36. С. 233–238.
- [2] Аскарбеков Р.Н., Рабидинова Ж.Д. Деформирование резинометаллической опоры при сжатии // Известия КГТУ им. И.Раззакова. 2013. Т.29. С. 29–33.
- [3] Гоменюк С.И., Гребенюк С.Н., Бова А.А., Юречко В.З. Исследование напряжённо-деформированного состояния резинометаллической сейсмоопоры // Вестник СГТУ. Серия: Физико-математические науки, 2014. №2. С. 64–81.
- [4] Дырда В.И., Лисица Н.И., Лисица Н.Н. Создание виброизоляторов для горных машин // Известия высших учебных заведений. Горный журнал. 2014. №5. С. 80–87.
- [5] Мальков В.М. Механика многослойных эластомерных конструкций. СПб.: Изд-во СПбГУ, 1998. 320 с.
- [6] Мальков В.М., Колесникова С.С. Построение динамической теории эластомерного слоя вариационным летомод Лагреанжа // Вестник СПбГУ. 2010. №3. С. 59–68.
- [7] Матвеев Н.М. Методы интегрирования обыкновенных дифференциальных уравнений. Минск: Высшая школа, 1974. 768 с.
- [8] Мкртычев О.В. Безопасность зданий и сооружений при сейсмических и аварийных воздействиях. М.: МГСУ, 2010. 152 с.
- [9] Мондрус В.Л., Сизов Д.К. Решение краевой задачи сжатия многослойного резинометаллического виброизолятора с учётом больших упругих деформаций // Научное обозрение. 2014. №9–2. С. 386–389.

- [10] Прочность, устойчивость, колебания. Справочник / под редакцией И.А. Бригера и Я.Г. Пановко. Т.З. М.: Машиностроение, 1968. 567 с.
- [11] Семенюк А.Е., Малькова Ю.В. Изгиб пластины, лежащей на упругом эластомерном слое // Процессы управления и устойчивость. 2016. Т.3.
 № 1. С. 275–279.
- [12] Сизов Д.К. Статический расчёт резинометаллического виброизолятора в современных программных комплексах // Вестник МГСУ. 2008. №1. С. 148–150.
- [13] Тимошенко С.П., Войновский-Кригер С. Пластинки и оболочки. М.: Наука, 1966. 636 с.
- [14] Цейтлин А.И., Неустоев Э.А., Пичугин А.А., Сафонов А.А. Разработка конструкции высоконагруженных слоистых резинометаллических виброизоляторов, применяемых для виброзащиты зданий // Научный журнал строительства и архитектуры. 2008. №4. С.48–52.
- [15] Чемодуров В.Т., Канцеров П.М. Рассчет многослойной пластины с приведенной жесткостью // Строительство и техногенная безопасность. 2012. №42. С. 18–25.
- [16] Штамм К., Витте Х. Многослойные конструкции. М.: Стройиздат, 1983. 300 с.