Правительство Российской Федерации

Федеральное государственное бюджетное образовательное учреждение высшего образования

«Санкт-Петербургский государственный университет»

Кафедра вычислительной физики

Каргин Тимофей Юрьевич

Идентификация заряженных частиц в эксперименте BM@N

Направление 010900 – «Прикладные математика и физика»

Бакалаврская работа

Научный руководитель:

к. ф.-м. н., доцент С. А. Немнюгин

Рецензент:

к. ф.-м. н., с.н.с. ОИЯИ С. П. Мерц

Санкт-Петербург

Оглавление

Be	веден	ле	3		
1	Описание эксперимента BM@N				
2	Обзор литературы				
	2.1	Методы идентификации заряженных частиц	8		
	2.2	Фильтр Калмана	10		
3	Реконструкция треков и идентификация частиц				
	3.1	Реконструкция глобальных треков	14		
	3.2	Идентификация частиц	16		
	3.3	Реализация алгоритма	18		
	3.4	Анализ эффективности идентификации	19		
Вь	Выводы				
Бл	Благодарности				
Ли	Литература				

Одной из актуальных задач современной физики является изучение особого фазового состояния вещества – кварк-глюонной плазмы – сверхгорячей и плотной ядерной материи [1]. Уникальную возможность для получения таких условий обеспечивают столкновения тяжелых ионов высоких энергий.

Экстремальные условия хорошо подходят для исследования ядерной материи, в частности – для поиска и изучения ранее не наблюдавшихся ее состояний. Теоретические модели предлагают различные возможные сценарии, поэтому новые экспериментальные данные необходимы для того, чтобы подтвердить или опровергнуть теоретические модели.

Исследование сверхгорячей и плотной ядерной материи является одной из программ Объединенного института ядерных исследований (г. Дубна). На базе уже существующего ускорителя «Нуклотрон» создается ускорительнонакопительный комплекс NICA (Nuclotron-based Ion Collider fAcility, puc. 1) [2].

Рис. 1: Схема строящегося ускорительно-накопительного комплекса NICA

На первой стадии реализации мегапроекта NICA создается установка для экспериментов на фиксированной мишени BM@N (Barionic Matter at Nuclotron, puc. 2).

Рис. 2: Схема экспериментальной установки BM@N

Техническая установка состоит из поддетекторных систем, которые позволяют восстановить траектории движения заряженных частиц, провести их идентификацию и проанализировать их свойства.

Для физического анализа материи, образовавшейся в точке удара пучка и мишени необходимо определить свойства частиц, порожденных этим взаимодействием, в том числе – их тип. Таким образом, идентификация частиц является одной из важных и актуальных задач восстановления событий для экспериментов физики высоких энергий [1].

Цель работы – реализовать алгоритм идентификации заряженных частиц в эксперименте BM@N.

Для достижения поставленной цели были решены следующие задачи:

- Исследование существующих методов идентификации частиц в экспериментах физики высоких энергий.
- Разработка и внедрение в программный пакет BmnRoot алгоритма связывания треков частиц с откликами на них детектора TOF.
- Реализация алгоритма идентификации заряженных частиц в качестве модуля для программного пакета BmnRoot.

5

Глава 1

Описание эксперимента ВМ@N

Основным трековым детектором установки BM@N является GEM (Gas Electron Multipliers), который состоит из 12-ти параллельных плоскостей, стоящих одна за другой по ходу движения пучка частиц. После первичной обработки экспериментальных данных, полученных с поддетекторной системы, становятся известными координаты «хитов» – восстановленных откликов детектора (точек, через которые прошла частица).

В последующем этапе реконструкции полученные хиты объединяются в треки, геометрия которых позволяет определить знак заряда частицы, ее импульс.

Для идентификации частиц предусмотрены времяпролетные камеры TOF-400 и TOF-700 (расположенные в 400 см и 700 см от мишени, соответственно. См. рис. 2). TOF-400 состоит из двух частей, разнесенных друг от друга в плоскости, перпендикулярной направлению движения пучка частиц (см рис. 2). Данный детектор предназначен для регистрации времени пролета частиц с малыми энергиями, которые из-за магнитного поля изменяют направление своего движения. Частицы бо́льших энергий пролетают между двумя частями TOF-400 и регистрируются при помощи TOF-700.

На последнем этапе реконструкции формируются «глобальные треки» (хиты с разных подсистем объединяются в один общий трек, к которому приписываются различные характеристики, такие как импульс, длина, время

 $\mathbf{6}$

пролета и др.) [3].

После получения параметров глобального трека реализуется идентификация частицы.

Для поддержки эксперимента разрабатывается программный пакет BmnRoot [4]. Он является мощным инструментом для изучения работы детекторов, моделирования событий, разработки алгоритмов реконструкции и физического анализа данных, обработки экспериментальных данных для установки BM@N.

ВmnRoot разрабатывается на основе программных средств ROOT (CERN) и FairRoot (GSI – Центр по изучению тяжёлых ионов имени Гельмгольца, Дармштадт, Германия) [5]. На рис. 3 приведена схема, описывающая структуру программного пакета.

Рис. 3: Схема структуры BmnRoot

Глава 2

Обзор литературы

2.1 Методы идентификации заряженных частиц

В данной части работы дается обзор методов идентификации частиц в других экспериментах физики высоких энергий.

В эксперименте STAR (Solenoidal Tracker at RHIC. RHIC – The Relativistic Heavy Ion Collider, Брукхейвенская национальная лаборатория, штат Нью-Йорк) [6] изучают столкновения встречных пучков тяжелых ионов. На месте столкновения находится детектирующая система (рис. 4). Для решения задачи идентификации используются два основных типа детекторов - TPC (Time Projection Chamber) и TOF (Time-Of-Flight) [7].

Рис. 4: Схема экспериментальной установки STAR

Столкновение происходит внутри ТРС. Дальнейшее движение продуктов взаимодействия регистрируется данным детектором. Реконструированные треки содержат информацию о том, как частицы ионизировали содержимое камеры, теряя при этом свою энергию. Одним из критериев идентификации является (dE/dx)(p) (потеря энергии) – согласно этой величине можно делать предположения относительно типа рассматриваемой частицы [8]. Соответствующий график показан на рис. 5

Рис. 5: Распределение $log_{10}(dE/dx)$ как функция $log_{10}(p)$ для e, π, K, p и их античастиц.

Далее частицы попадают в TOF-детектор, позволяющий определить время пролета частицы, а значит появляется возможность вычислить ее скорость ($\beta = v/c$). Таким образом, TOF-система позволяет разделить частицы по времени пролета, как показано на рис. 6.

Рис. 6: Зависимость $1/\beta$ от p (в системе отсчета, связанной с центром масс) для π , K (, p, \bar{p}) согласно ТОF для столкновения Au + Au при 62.4 GeV. Разделение между π , K, p, \bar{p} достигается до $p \sim 1.6(3.0)\Gamma$ эB/с

Рассмотренные методы идентификации (по TOF и dE/dx) являются основными для большинства экспериментов физики высоких энергий, таких как: ALICE(LHC,CERN) [9, 10], PHENIX (RHIC, BNL) [11], NA49 (SPS, CERN) [8].

2.2 Фильтр Калмана

Для реконструкции треков и дальнейшей идентификации соответствующих частиц необходимо реализовать связывание хитов разных поддетекторных систем, относящихся к одной и той же частице. Для решения этой задачи необходим инструмент, позволяющий корректно экстраполировать трек. В качестве такого инструмента используется фильтр Калмана. Рассмотрим данный алгоритм.

Фильтр Калмана – вычислительный алгоритм, оценивающий вектор состояния линейной динамический системы(набор параметров, характеризующих состояние системы в данный момент времени) [12]. Состояние системы в текущий момент времени вычисляется из текущего измерения и состояния фильтра в предыдущий момент.

Особенность алгоритма заключается в том, что он оперирует не только оценками вектора состояния, но и оценками его неопределенности.

В рассматриваемой задаче алгоритм используется для оценивания состояния исследуемого процесса по серии зашумленных измерений.

Фильтр Калмана – рекурсивный, то есть для вычисления состояния системы на *k*-м шаге нужно знать «состояние фильтра» на предыдущем и измерение на текущем шаге.

Каждый шаг фильтра Калмана состоит из двух последовательных этапов: экстраполяции и коррекции. На этапе экстраполяции вычисляются предварительные оценки вектора состояния \mathbf{r}_k и ковариационной матрицы ошибок \mathbf{C}_k . На этапе коррекции оценки корректируются с учетом текущего измерения.

На рис. 7 представлена блок-схема, иллюстрирующая работу фильтра Калмана (знак «–» означает, что измерение *k*-го шага не учитывается).

Рис. 7: Блок-схема работы классического фильтра Калмана

На рис. 7 используются следующие обозначения:

- r_k оценка вектора состояния системы в момент k, полученная по результатам наблюдений до момента k включительно;
- С_k ковариационная матрица ошибок, содержащая дисперсии ошибок вычисленного вектора и ковариации параметров состояния системы;
- \mathbf{F}_k матрица эволюции процесса;
- \mathbf{Q}_k ковариационная матрица гауссовского случайного процесса;
- $-\mathbf{m}_{k}$ результат измерения на k-м шаге;
- \mathbf{H}_k матрица измерений, связывающая вектор состояния с измерением;
- V_k ковариационная матрица белого гауссовского шума;

- К_k – оптимальная матрица коэффициентов усиления (определяет вклад измерения в корректировку оценки, полученной на этапе экстраполяции).

Описанный выше алгоритм реализован в программном комплексе ВтnRoot и используется в частности для связывания GEM-треков и TOF-хитов.

Глава З

Реконструкция треков и идентификация частиц

3.1 Реконструкция глобальных треков

В эксперименте BM@N частицы (например, ядра золота) ускоряются в Нуклотроне до энергий порядка нескольких ГэВ/нуклон. Далее они посылаются на фиксированную мишень, на которой происходит взаимодействие, порождение вторичных частиц и другие явления. За мишенью расположены GEM детекторы.

После первого этапа реконструкции данных GEM-хиты объединяются в треки. Используя экстраполяцию при помощи фильтра Калмана находятся ожидаемые точки пересечения треков с детектором TOF-400. Далее, ищутся ближайшие к этим точкам TOF-хиты (согласно минимальному расстоянию). Ближайший TOF-хит связывается с рассматриваемым GEM-треком. Затем вычисляется длина трека от мишени до TOF-плоскости.

Одной из характеристик связывания ТОF-хитов и GEM-треков является невязка *R* - расстояние между ТОF-хитами и точками на плоскости детектора, через которые проходит экстраполированный трек.

На рис. 8 можно видеть гистограмму невязок между TOF-400 хитами и точками на плоскости детектора, через которые проходит экстраполированный трек. Из графика видно, что наиболее вероятное значение невязки – порядка 3 см.

14

Рис. 8: Гистограмма невязок, полученная в результате моделирования 50.000 столкновений Au-Au

В качестве эффективности связывания GEM-треков и TOF-хитов используется доля верно связанных пар от общего их числа. На рис. 9 показана гистограмма эффективности связывания. Общая эффективность связывания – 71%.

Рис. 9: Эффективность связывания GEM-треков и ТОF-хитов в зависимости от импульса

Из рисунка видно, что для частиц с импульсом более 1 ГэВ/с эффективность связывания порядка 80%.

3.2 Идентификация частиц

Детектор TOF-400 способен измерять время от старта события до достижения частицей детектора. Согласно этому времени и длине трека мы можем вычислить две величины: массу *m* и $\beta(=v/c)$.

Используемые методы идентификации основаны на уравнении:

$$mc^{2} = pc\sqrt{\frac{t^{2}c^{2}}{l^{2}} - 1}$$

Согласно этому мы получаем выражения для m^2 и $1/\beta$:

$$m^{2} = \frac{p^{2}}{c^{2}} \left(\frac{t^{2}c^{2}}{l^{2}} - 1\right)$$
$$1/\beta = \frac{ct}{l} = \frac{m^{2}}{p^{2}} + 1$$

Как можно видеть, для каждого типа заряженных частиц зависимость 1/β от *p* – обратно пропорциональна квадрату импульса. Для частиц с разными массами ожидаются разные кривые. Так, зная длину трека и время пролета можно вычислить массу и скорость частицы. Это позволяет разделить частицы.

На рис. 10 и рис. 11 показаны гистограммы 1/β и m² в зависимости от импульса частицы соответственно. Черными линиями показаны теоретические ожидания. Видно, что на некоторых интервалах импульса можно с высокой вероятностью верно определить тип частицы. Но иногда точка может лежать между ожидаемыми линиями. В этом случае предполагается, что частица относится к ближайшей по ординате линии.

Рис. 10: 1/β (p, ΓэΒ/с)

3.3 Реализация алгоритма

Рассмотренный выше алгоритм идентификации частиц для эксперимента BM@N был реализован на языке C++, имеет объем около 1200 строк программного кода.

Т.к. данный алгоритм реализован в качестве модуля для BmnRoot, в случае улучшения GEM-трекинга также будет повышена эффективность идентификации.

У данного метода есть некоторые перспективы развития. Так, аналогичную работу следует совершить для идентификации частиц, пролетающих между плоскостей TOF-400 и регистрируемых детектором TOF-700 (частиц с бо́льшими энергиями). Также, можно изменить подход к выбору типа частицы согласно величинам $1/\beta$, m^2 и p – выбирать не ближайшую теоретическую линию (см. рис. 10 и рис. 11), а использовать более тонкую процедуру, например классифицировать полученные точки при помощи алгоритмов машинного обучения.

18

3.4 Анализ эффективности идентификации

Для оценки качества идентификации были использованы две величины для каждого типа частиц: эффективность и примеси:

Эффективность =
$$\frac{N_{\text{хороших}}}{N_{\text{MK}}}$$

Примеси = $\frac{N_{\text{плохих}}}{N_{\text{рек}}}$

где:

– $N_{\rm xopomux}$ – количество верно идентифицированных частиц данного типа;

– $N_{\rm MK}$ – количество смоделированных частиц данного типа;

– $N_{\text{плохих}}$ – количество неверно идентифицированных частиц данного типа;

– N_{рек} – количество частиц, идентифицированных как данный тип.

На рис. 12 – 15 показаны эффективность и примеси идентификации протонов и пи-мезонов.

Рис. 12: Эффективность (а) и примеси (б) идентификации протонов

Рис. 13: Эффективность (а) и примеси (б) идентификации К-мезонов

Рис. 14: Эффективность (а) и примеси (б) идентификации *π*-мезонов

Рис. 15: Эффективность (а) и примеси (б) идентификации электронов

На представленных гистограммах представлены результаты оценки качества идентификации для двух способов – оценка по $m^2(p)$ и $1/\beta(p)$, т.к. оба способа дали почти идентичный результат.

Результаты

Описанный метод был протестирован на моделированных событиях столкновения Au-Au и дал следующие результаты:

Качество соотнесения ТОГ-хитов: 71%.

В таблице приведены значения эффективности и примесей идентификации частиц, усредненные по импульсу.

Efficiency $(p) =$	84%	Contamination(p) =	15%
Efficiency $(\pi) =$	27%	$\operatorname{Contamination}(\pi) =$	59%
Efficiency $(K) =$	57%	$\operatorname{Contamination}(\mathrm{K}) =$	46%

Выводы

- 1. Были рассмотрены существующие методы идентификации частиц в экспериментах физики высоких энергий.
- 2. Разработан алгоритм связывания GEM-треков и TOF-хитов.
- 3. Разработанный алгоритм связывания был внедрен в BmnRoot.
- 4. Разработан алгоритм идентификации частиц.
- 5. Разработанный алгоритм идентификации был внедрен в BmnRoot в качестве модуля.

Выражаю признательность за помощь в проведении представленного исследования моему научному руководителю - Немнюгину Сергею Андреевичу. Благодаря ему я впервые ознакомился с данной областью науки, получал поддержку и помощь на протяжении всей работы.

Также хочется отметить дружелюбие и отзывчивость коллектива Лаборатории физики высоких энергий ОИЯИ, политику администрации Института, направленную на привлечение студентов – Летние студенческие программы, возможность удаленной работы над задачами.

Литература

- [1] Review of particle physics / J. Beringer, J.-F. Arguin, R.M. Barnett et al. // Physical Review D Particles, Fields, Gravitation and Cosmology. 2012. Vol. 86, no. 1.
- [2] Мегапроект NICA. [Электронный ресурс] Режим доступа:. http://nica. jinr.ru/. — (дата обращения: 25.05.2017).
- [3] Upper D. The unsuccessful self-treatment of a case of ,,Writer's block" // Journal of Applied Behavior Analysis. — 1974. — Vol. 7, no. 3. — P. 497–497.
- [4] Программный пакет BmnRoot. [Электронный ресурс] Режим доступа:. http://mpd.jinr.ru/. (дата обращения: 25.05.2017).
- [5] Rogachevsky O., Gertsenberger K., Merts S. BmnRoot start guide // BM@N colloboration. — 2016.
- [6] The STAR experiment. [Электронный ресурс] Режим доступа:. https: //www.star.bnl.gov/. — (дата обращения: 25.05.2017).
- [7] Extensive particle identification with TPC and TOF at the STAR experiment /
 M. Shao, O. Barannikova, X. Dong et al. // Nuclear Instruments and Methods in
 Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 2006. Vol. 558, no. 2. P. 419–429.
- [8] NA49 large acceptance hadron detector / S. Afanasiev, T. Alber, H. Appelshäuser et al. // Nuclear Instruments and Methods in Physics Research, Sec-

tion A: Accelerators, Spectrometers, Detectors and Associated Equipment. – 1999. – Vol. 430, no. 2-3. – P. 210–244.

- [9] Construction and tests of the MRPC detectors for TOF in ALICE / A. Akindinov, A. Alici, P. Antonioli et al. // Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. – 2009. – Vol. 602, no. 3. – P. 658–664.
- [10] The ALICE experiment at the CERN LHC / K. Aamodt, A.A. Quintana,R. Achenbach et al. // Journal of Instrumentation. 2008. Vol. 3, no. 8.
- [11] Particle identification in TEC/TRD prototypes for the PHENIX detector at RHIC / B. Libby, A. Chikanian, S. Coe et al. // Nuclear Inst. and Methods in Physics Research, A. – 1995. – Vol. 367, no. 1-3. – P. 244–247.
- [12] Kalman filter-based fast track reconstruction for charged particles in a compressed baryonic matter experiment using parallel computing on a multicore server at the laboratory of information technologies, joint institute for nuclear research / T.O. Ablyazimov, M.V. Zyzak, V.V. Ivanov, P.I. Kisel // Physics of Particles and Nuclei Letters. — 2015. — Vol. 12, no. 3. — P. 423–427.