
SAINT-PETERSBURG STATE UNIVERSITY

Software Engineering

Evgeniy Auduchinok

Implementation of F# language support in
JetBrains Rider IDE

Graduation Thesis

Scientific supervisor:
Senior lecturer Iakov Kirilenko

Reviewer:
Software engineer Dmitry Ivanov

Saint-Petersburg
2017

Contents
Introduction 3

1. Statement of the problem 5

2. Overview 6

3. Implementation design 8

4. Language specific features implementation 10
4.1. Code analysis and editor features 10
4.2. Working with F# projects 11
4.3. Source code navigation . 12
4.4. Building, running and debugging code 14

5. Conclusion 16

References 17

2

Introduction
F# [5] is an open-source functional-first programming language that

was designed to be used in .NET, a software framework developed by
Microsoft. .NET Framework contains a large class library and a powerful
runtime called Common Language Runtime (CLR). F# was highly
influenced by OCaml, an ML family language. Code written in F# may
inter-operate with code written in other .NET languages such as C# and
VB.NET and, being a general-purpose programming language, is
especially popular in data analysis, web-development and as a language
for rapid prototyping and scripting. F# was designed by Don Syme,
Microsoft Research and is developed by F# Software Foundation,
Microsoft and open-source contributors.
An integrated development environment (an IDE) provides an easy

navigation through source code, shows warnings and errors found with
offering possible fixes and allows users to do refactorings across multiple
files along with other useful features. In addition to code reading and
editing features, an IDE usually includes tools for building, unit-testing
and publishing code and version control systems integration.
JetBrains Rider1 is a cross-platform .NET IDE based on JetBrains

IntelliJ Platform2 and JetBrains ReSharper3.
IntelliJ Platform is an open-source platform developed by JetBrains

and is used to develop IDEs. It is most known for JetBrains IntelliJ
IDEA4, an IDE for JVM languages such as Java and Kotlin and for
Google Android Studio aiming mobile development. Its core components
include rich text-editor, UI framework, virtual file system, version control
integration, debugger framework and may be further extended with
plugins [2].
ReSharper was initially developed as an extension for Visual Studio, a

.NET IDE from Microsoft. It provides additional code inspections along
1jetbrains.com/rider
2github.com/JetBrains/intellij-community
3jetbrains.com/resharper
4jetbrains.com/idea

3

Figure 1: A screenshot of JetBrains Rider with invoked code completion
feature, test run results and a list of errors found in solution.

with possible fixes, complex refactorings and a better source code
navigation. ReSharper supports C#, VB.NET and languages used in
web-development such as JavaScript, CSS and HTML. In Rider it offers
the same features it has when is used in Visual Studio.
Rider supports languages that ReSharper or IntelliJ support but neither

had F# support before this work and many Rider preview users wanted to
use the language in it. This work is aimed to bring an F# support to Rider.

4

1 Statement of the problem
A language support in an IDE consists of several parts. Usually code

being analyzed belongs to a project, so an IDE should be able to work
with project systems used by developers using that language. An IDE text
editor should help user reading the code by highlighting it syntactically
and semantically. Further analysis should result in showing warning and
errors, offering possible fixes. Additionally, the editor should have features
like commenting a line of code or extending selection range according to
the language constructs. Usually an IDE has refactorings support allowing
users to rename defined symbols, extract and inline expressions. Another
important part of such support is a navigation in a project. It includes
a global search of symbol definitions as well as a navigation to their uses
across the codebase.
The purpose of this work is to implement an initial F# support in

JetBrains Rider which would consist of several tasks:

• design an implementation,

• implement language specific features including:

– code analysis and editor features,
– working with F# projects,

– code analysis and navigation,
– building, running and debugging code,

• publish an F# support plugin.

5

2 Overview
Rider is built on top of IntelliJ platform, a frontend, which is written

in Java and Kotlin and runs on JVM, and ReSharper, a backend, mostly
written in C# and executed in CLR. These parts run in separate virtual
machines and communicate using RdProtocol, a custom asynchronous
stateful protocol designed for Rider. The protocol uses a DSL written in
Kotlin and generates Kotlin and C# files for corresponding Rider parts.
F# Software Foundation maintains an open-source F# compiler library

called FSharp.Compiler.Service5 (FCS) that provides APIs designed to be
used by editors and IDEs. FCS is already used by existing F# support
implementations such as Visual F# (Visual Studio plugin), FsAutoComplete
(used by Ionide6 plugins for Visual Studio Code and Atom editors) and other
tools.
While support for most languages in ReSharper and IntelliJ was

implemented from scratch, FCS and other tools may be used for
implementing F# support in Rider. Reusing existing tools allows us to
offer features other F# implementations already have. FCS is actively
maintained by the F# community and no substantial extra work would be
needed in the future to support newer versions of the language because
FCS shares its codebase with the actual language compiler and updates
accordingly.
FCS provides a variety of APIs that produce ready-to-use info like data

needed for source code navigation, based on parse trees, signature tooltips or
semantic highlighting ranges. At the same time FCS offers APIs providing
data to be further processed to implement other features on top of it. For
example, it includes APIs like getting all symbol uses in a project, as seen
by F# language, which may be used to implement a rename refactoring.
Several APIs are implemented in both ways. Such APIs include two

ways of getting possible code completions at a location: there is an option
to return a list of completions with ready-to-insert text and preformatted

5github.com/fsharp/FSharp.Compiler.Service
6ionide.io

6

signatures tooltips and an option returning list of symbols available in the
context. The latter option provides more useful data but involves a need
of processing these symbols manually. Tools such as Visual F# mostly use
APIs that yield prepared data and filter or modify it when needed. When
FCS does not provide an API with info needed it is possible to offer a patch
to the project thanks to its being open-source.
Other F# support implementations are open-source and may be used as

an FCS usage reference.

7

3 Implementation design
Both platforms used in Rider, IntelliJ and ReSharper, provide SDKs

allowing to implement new features and languages support. There are
several possible ways of implementing an F# support in Rider. One way is
to use FsAutoComplete tool that itself uses FCS and provides command
line interface, thus it may be used by programs written in an arbitrary
language. If FsAutoComplete was used it would be possible to implement
an IntelliJ plugin in Kotlin that could be used not only in Rider but in
other IntelliJ-based IDEs as well. However, a downside of this approach
would be a lack of F# integration with other .NET languages supported
by ReSharper.
Using FCS in a ReSharper plugin referencing ReSharper.SDK may be

used to add an F# support to ReSharper and eventually getting it in Rider.
In that case an IntelliJ plugin targeting Rider should be implemented as
well to notify the platform that ReSharper should be used for files in this
language and to implement some features on the frontend part.

Figure 2: A simplified integration design.

8

FCS has an internal background compiler and uses its checks results.
The checking is done in two stages: a parsing and a type-check. Each
stage yields data that may be used for implementing various features. The
parsing stage is fast and may be used for creating navigation cache,
highlighting syntax errors and validating possible breakpoint locations.
The type-checking stage uses parse results and involves inferring types,
checking other files in the project and a process of attempting to
generalize defined symbols. The results of the latter stage include, but are
not limited to, semantical errors and warnings, uses of symbols found in a
file. FCS provides APIs like getting possible completions at a location,
showing tooltips and methods overload signatures using these type-check
results as well.
The FCS package also contains other types used by the compiler which

may be reused as well. For example, the lexer included may be used for
basic syntax highlighting. Lexer helpers may be used to check whether an
identifier is valid or to get the list of keywords defined in the language.

9

4 Language specific features implementation

4.1 Code analysis and editor features
ReSharper provides many extension points using inversion of control [7]

and dependency injection [6] patterns. A language support must implement
language-specific types and services to be used by other ReSharper parts.
It includes a definition of a language and file extensions associated with it,
lexer and parser factories, feature-specific services like a searcher provider
or a reference processor.
Lexer factory needed by ReSharper must create a lexer based on a text

buffer passed in. Later, a token buffer, created by resulting lexer, is used
to create a cached lexer which in turn is passed to a parser factory.
Configuration-defined constants used by conditional compilation process
do not appear before the parsing stage. However, these constants are
needed by FCS lexer but are not passed to ReSharper lexer factories. This
limitation resulted in implementing a dummy lexer factory to satisfy
ReSharper requirement and swapping its results later with a proper lexer
implementation results during a parsing stage.
Language-specific daemon, a ReSharper background code analysis task,

was implemented. It is used to highlight source code semantically and to
present warnings and errors found by FCS. The implemented daemon is
also used to map symbols resolved by FCS to ReSharper representations
allowing to navigate to linked elements like base and derived symbols, or to
navigate between signatures and implementations of symbols.
F#-aware editor actions were implemented on top of FCS APIs and other

parts introduced during this work. For example, commenting a line is done
using the implemented F# lexer as well as highlighting matching braces. At
the same time, highlighting usages of a symbol under a caret is done using
FCS API which is based on a file type-check results.

10

4.2 Working with F# projects
ReSharper and Rider, being very extensible, have rare places which were

not previously needed to be extended with plugins. For example, both have
a concept of a project language for projects targeting .NET. Supported
project languages are defined internally and there was no way to define one
in a plugin. This lead to problems like being unable to create caches for
cross-language navigation and resolve process or even having no way to run
an F# console application or add it to existing solutions. Patches allowing
defining new .NET project languages externally were pushed to ReSharper
and Rider.
Types defining F# project language, project properties and

configurations were implemented as well.
FCS performs parsing and type-checking in a context of some project.

A context is set by project options containing files to check, paths to
referenced assemblies, configuration-specific compiler arguments [4] and
referenced projects options. Files in a project are checked in the order
defined in the project file which is different from C# and VB.NET projects
and is needed to be handled properly. In the case of F# scripts single-file
project options should be used.
FCS project includes a tool for producing suitable project options

using project files called ProjectCracker7. It starts an MSBuild instance, a
build engine used in .NET projects, and creates project options using its
results. Rider itself does the same job of reading these project files with
MSBuild, adding parsed projects (with their properties including files
names and references) to its project model so running another MSBuild
instance did not seem reasonable. Additionally, using ProjectCracker on
macOS and Linux from a ReSharper plugin would make it run on Rider’s
bundled Mono which differs from Mono installed in the user system and
due to modified environment may produce wrong results or not work at
all. Rider includes a part to communicate with MSBuild called
MsBuildHost, which is run in a different process using .NET runtime

7nuget.org/packages/FSharp.Compiler.Service.ProjectCracker/

11

installed in the system and communicates with ReSharper using
RdProtocol.
An implemented project options provider tracks changes to the project

model, updates and invalidates project options notifying FCS when
needed. It creates project options using results from MsBuildHost by
obtaining project files paths in the right order and other properties needed
by FCS.

4.3 Source code navigation
FCS provides API for creating navigation cache and this API is used

in other implementations such as Visual F#. This API uses parsing stage
results, thus it is fast enough, and provides info about symbol names and
places they are defined at. However, this cache does not provide enough
information needed by ReSharper because the very same cache is later used
for analysis as well.
For each type defined in source code or in an assembly ReSharper

solution cache also includes its kind (class, interface, struct, etc), type
parameters, names of types this type implements or is derived from, its
attributes and modifiers (like abstract or static in C#) and so on. This
cache is built on top of Program Structure Index (PSI) [3], ReSharper
abtract syntax trees with symbol representations (called declared elements
in there) and powerful mechanisms of references and types. Generally
speaking, most of features in ReSharper are implemented on top of PSI,
not only this particular cache. Types of PSI tree nodes implement various
interfaces defined in ReSharper allowing a great part of analysis to be
language-independent.
Initial plugin prototype did not have a PSI implementation for F#. For

most features it had it used offsets of tokens in files that were converted
from FCS APIs results which use line and column coordinates. By using
this technique it was possible to implement features like errors highlighting
or finding symbol uses across F# projects but it did not integrate well into
cross-language navigation and analysis in ReSharper. It was clear then that

12

PSI was needed for a better user experience.
ReSharper.SDK includes lexer and PSI-compatible parser generators

that are used in ReSharper itself. Implementing an F# parser from scratch
did not seem reasonable in the amount of time and other ways were
considered. As the most of code analysis is being done by FCS, ReSharper
does not actually need a true PSI for F# files. This lead to idea of creating
a partial PSI for F# files that would contain crucial info needed by
navigation system and cross-language analysis. During the parsing stage
FCS produces abstract syntax trees that contain ranges of tree nodes and
these trees can be converted to PSI with a needed structure.
Parser generator bundled with ReSharper.SDK was used to generate

PSI data structures using a simplified F# grammar written for this case.
ReSharper.SDK also contains a base class for tree builders that suites well
for this task and was used to implement an F# AST walker that creates a
needed PSI structure.
Some of the info needed for types cache is not contained in FCS ASTs

and, subsequently, in converted PSI trees. For example, in F# object types
are defined using ‘type’ keyword and actual type kinds are computed later
during the type-check. The F# 4.0 specification [1] includes rules that are
used during kind inference process and are applied to type members and
attributes. Unfortunately, applying these rules to ASTs is not correct in
general case due to a possibility to abbreviate attribute types making types
with such attributes compile with a different kind. However, after analyzing
popular F# projects it was clear that this approach still may work well in
the most cases. Proper resolving type abbreviations in cases like this can
be done using a separate cache for abbreviated types in the future. In
addition to a partial structure of types and members, F# cache provider
was implemented. It is used to declare these symbols in the solution cache
that is used by ReSharper navigation and the type system for other analysis.
ReSharper type system includes representations for all compiled types

defined in source code and assemblies. It is used to compute types of
expressions in code and parameters and return types of type members,
substituting type parameters when needed. These types are later used by

13

other analysis including type usage inspections. To make F# work with
other languages in ReSharper, types inferred by F# compiler must be
properly mapped to their ReSharper representations. As for now, a
significant amount of types is converted properly making it possible to use
these types from projects using other languages. This part is considered to
be work in progress but in its current state it already allows it to be used.
ReSharper uses compiled assemblies to resolve found symbols to when

source code is not available or the language used is not supported. It means
that when a project in an unsupported project is changed it has to be
compiled to make changes visible from projects using supported languages.
Implementing the F# cache made it possible to work with symbols defined
in F# without building F# projects first.
FCS maintains its own type-check results cache. Many of its public

APIs provide a subset of this data limited by what is mostly needed for
F# analysis. Additional APIs providing internal data like compiled symbols
representations may be used for better ReSharper integration and to avoid
duplication of some logic. One such patch was pushed to the FCS project.
At the same time, reusing internal FCS cache may improve performance on
very large F# projects.

4.4 Building, running and debugging code
F# projects use the same build system as C# and VB.NET do, so building

these projects has been supported in ReSharper before this work.
Running and debugging code is handled by corresponding Rider

subsystems. Pushing patches to Rider and ReSharper allowing to add
.NET project languages externally made it possible to reuse these
mechanisms.
ReSharper bundled with Rider contains types that aim to replace

missing features previously offered by Visual Studio. Some of these types
are not public until a separate Rider SDK release. This was the case for
an interface to provide possible breakpoint ranges on a line. This interface
was made public and implemented in the plugin allowing to set

14

breakpoints in F#. For debugging F# code the same debugger is used as
for other .NET languages.

15

5 Conclusion
During this work an initial F# support plugin was implemented which is

now bundled in JetBrains Rider allowing its users to use F# language. The
following tasks were done:

• an FCS integration was designed,

• language specific features were implemented including:

– code analysis and editor features,
– working with F# projects,

– source code navigation,
– running and debugging F# code.

• an F# support plugin is now bundled in Rider.

The plugin source code is going to be available at
github.com/jetbrains/resharper-fsharp.

16

References
[1] F# 4.0 specification. –– URL: http://fsharp.org/specs/

language-spec/4.0/FSharpSpec-4.0-latest.pdf.

[2] JetBrains. IntelliJ Plugin Development Guidelines. ––
URL: https://www.jetbrains.com/help/idea/2017.1/
plugin-development-guidelines.html.

[3] JetBrains. ReSharper DevGuide. –– URL: https://www.jetbrains.
com/help/resharper/sdk/Architecture/PSI.html.

[4] Microsoft. F# compiler options. –– URL: https://docs.microsoft.
com/en-us/dotnet/articles/fsharp/language-reference/
compiler-options.

[5] Syme Don, Granicz Adam, Cisternino Antonio. Expert F#. –– Apress,
2007. –– ISBN: 978-1-4302-0285-1. –– URL: http://dx.doi.org/10.
1007/978-1-4302-0285-1_19.

[6] Wikipedia. Dependency injection. –– URL: https://en.wikipedia.
org/wiki/Dependency_injection.

[7] Wikipedia. Inversion of control. –– URL: https://en.wikipedia.org/
wiki/Inversion_of_control.

17

http://fsharp.org/specs/language-spec/4.0/FSharpSpec-4.0-latest.pdf
http://fsharp.org/specs/language-spec/4.0/FSharpSpec-4.0-latest.pdf
https://www.jetbrains.com/help/idea/2017.1/plugin-development-guidelines.html
https://www.jetbrains.com/help/idea/2017.1/plugin-development-guidelines.html
https://www.jetbrains.com/help/resharper/sdk/Architecture/PSI.html
https://www.jetbrains.com/help/resharper/sdk/Architecture/PSI.html
https://docs.microsoft.com/en-us/dotnet/articles/fsharp/language-reference/compiler-options
https://docs.microsoft.com/en-us/dotnet/articles/fsharp/language-reference/compiler-options
https://docs.microsoft.com/en-us/dotnet/articles/fsharp/language-reference/compiler-options
http://isbndb.com/search-all.html?kw=978-1-4302-0285-1
http://dx.doi.org/10.1007/978-1-4302-0285-1_19
http://dx.doi.org/10.1007/978-1-4302-0285-1_19
https://en.wikipedia.org/wiki/Dependency_injection
https://en.wikipedia.org/wiki/Dependency_injection
https://en.wikipedia.org/wiki/Inversion_of_control
https://en.wikipedia.org/wiki/Inversion_of_control

	Introduction
	Statement of the problem
	Overview
	Implementation design
	Language specific features implementation
	Code analysis and editor features
	Working with F# projects
	Source code navigation
	Building, running and debugging code

	Conclusion
	References

